TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat Sovelletun matematiikan erikoistyö. Ei-normaalisten tuottojakaumien mallintaminen
|
|
- Arto Sipilä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TKNLLNN KOKKOULU Systeemanalyysn laboratoro Mat-.18 Sovelletun matematkan erkostyö -normaalsten tuottoakaumen mallntamnen Tmo Salmnen 581V soo, 1. Toukokuuta 7 1
2 Ssällysluettelo Ssällysluettelo... Johdanto... 3 roksmont kahdella normaalakaumalla... 3 Van huukkuuden älttely... Huukkuuden a vnouden älttely... 5 Jakauman muuntamnen vastaamaan ennustetta... 6 Korrelaatot... 8 Smulont... 1 Numeersa tuloksa... 1 Hgh Yeld lanat... 1 Jaann osakendeks Valtolanat... 1 Johtoäätökset Krallsuusvtteet... 15
3 Johdanto Modernssa ortfoloteorassa sotuskohteden logartmtuottoen odotetaan noudattavan normaalakaumaa. Hstora on kutenkn osottanut, että oletus e ole täysn akkansa tävä kaklla sotusluoklla. Tämän työn tarkotus on tutka hstoratuottoen kuvaamsta kahden normaalakauman yhdstelmällä, mkä mahdollstaa hstorallsen keskarvon a keskhaonnan lsäks hstorallsen huukkuuden a vnouden mallntamsen. Työssä tutktaan myös, mten kahden normaalakauman taaukseen vodaan sovttaa oma tuotto-odotus. Lsäks tutktaan mten sotuskohteden korrelaatot muuttuvat käytettäessä kahden normaalakauman yhdstelmää. Louks tehdään numeersa testeä er markknandeksehn menetelmän testaamseks. roksmont kahdella normaalakaumalla Käyttämällä kahta normaalakaumaa logartmtuottoen akauman aroksmontn vodaan alkueräsen akauman odotusarvon a keskhaonnan lsäks ältellä oko alkueräsen akauman huukkuutta (kurtoss ta sekä huukkuutta että vnoutta (skewness (Delaneds et al.. Huukkuus K a vnous S määrtellään satunnasmuuttuan X momentten avulla seuraavast: ( X K ( X 3 ( X S ( X 3 / Olkoon Z a Z normaalst akautuneta satunnasmuuttua odotusarvolla a a keskhaonnolla a. Satunnasmuuttua X, olla on halutut omnasuudet, määrtellään kahden akaumen a sekotuksena nn, että X:n arvo otetaan - akaumasta todennäkösyydellä a -akaumasta todennäkösyydellä 1-: X Z Z (,1, 3
4 mssä on tasaakautunut vällle [, 1] a ndkaattorfunkto määrtellään seuraavast: 1, C, kun C on tos muullon Van huukkuuden älttely Van huukkuutta (K älteltäessä akaumlla a on sama odotusarvo mutta erävät keskhaonnat. Satunnasmuuttuan X akauman momentt saadaan seuraavast (olettamalla, että akauman odotusarvo on : ( X ( X ( X ( X 3 3 (1 3(1 Keskhaonnat vodaan määrätä ykskästtesest ollan knntetyllä sekotussuhteella ( vaatmalla, että akauman huukkuus K X a keskhaonta X täsmäävät havantoanestosta laskettuhn lukuhn (K a. Seuraavassa on kutenkn yksnkertastamsen vuoks oletettu, että 1. K X X ( X ( X ( X 3 3(1 (1 (1 1 K atkasemalla yhtälöar saadaan: (1 K 1 ( / 3 Jotta vodaan varmstaa, että a, on sekotussuhteelta vaadttava 1 3/ K < < 1
5 hdon täyttyessä ätee myös ehdottavat, että valtaan mnmomalla suhdetta 1. Delaneds, Lagnado, a Tkhonov ( keskhaonnat saadaan lähelle yhtä. Mnmonnsta seuraava :n arvo on c, 1 c mssä /. Tällön akaumen c K 1 K 3 3 Tonen lähestymstaa etsä aremaa sekotussuhdetta on hakea se, olla havantoaneston a estmodun theysakauman välnen vrhenelösumma mnmotuu. Mnmont vodaan suorttaa käyttäen otan numeersta otmontmenetelmää. Huukkuuden a vnouden älttely Sekä huukkuutta (K että vnoutta (S älteltäessä akaumlla a on lsäks erävät odotusarvot ( a. Tällön X:n nelä ensmmästä momentta ovat: ( X (1 ( X ( X ( X (1 3(1 (1 3(1 ( (1 (1 Jakaumen keskhaonnat a odotusarvot vodaan määrätä ollan knntetyllä sekotussuhteella ( vaatmalla, että akauman huukkuuden a keskhaonnan lsäks myös odotusarvo a vnous täsmäävät alkueräsen akauman kanssa. Saadaan eälneaarnen yhtälöryhmä, onka ratkasua e voda esttää suletussa muodossa, oten ratkasu oudutaan etsmään numeersest. Parhaan sekotussuhteen hakemnen on toteutettu kultasen lekkauksen otmontmenetelmällä, mkä vaat oletuksen, että nelösumman ruu sekotussuhteesta lkman konveksst. mrsten testen erusteella tämä oletus tää akkansa. Kultasen lekkauksen menetelmää varten etstään ensn hakuväl laskemalla 5
6 nelösumma sekotussuhteen arvolla.5 ykskön välen välltä [.55,.95]. tsntävälks valtaan enn arvo ±.5. Jossan taauksssa havataan, että vrhenelösumma alkueräseen akaumaan verrattuna on suurem, kun myös alkueräsen akauman vnoutta ältellään. Koska äämääränä vodaan tää vrhenelösumman mnmonta, on syytä etsä okaselle akaumalle aras sovtus sekä huukkuutta että vnoutta a anoastaan huukkuutta älttelemällä. Nästä valtaan louks arem sen mukaan kum seuraa alkuerästä akaumaa tarkemmn vrhenelösummalla mtattuna. Jakauman muuntamnen vastaamaan ennustetta Smulonta varten on tosnaan tarkotuksenmukasta saada estmotu akauman odotusarvo vastaamaan ollan muulla tavalla hankttua ennustetta. Haluttu odotusarvo annetaan yleensä vuotusen artmeettsen tuoton odotusarvona, oten stä e voda srtää suoraan logartmsen tuoton akaumaan. Tavallsessa (yhden normaalakauman taauksessa sotuskohteen hnta (P noudattaa rosessa: d ln [ S( t ] υ dt d, (1 olle ätee (Luenberger 1998: ln[ S( t / S( ] υt ln[ S( t / S( ] t std ( a lognormaaln akauman eäsymmetrsyydestä ohtuen ( t / S( 1 ( υ e t S (3 Jos lähtöarvoks on annettu haluttu vuotunen tuoton odotusarvo r, saadaan vastaava logartmsen tuoton odotusarvo laskettua seuraavast: S(1 / S( υ ln 1 1 r e 1 [ r] 1 υ ( 6
7 Kahden akauman taauksessa akauman estmonnn älkeen mellä on akaumat a a nden odotusarvot, keskhaonnat a sekotussuhde. Näden yhtesakaumalla on tässä vaheessa o okea keskhaonta, oka ruu akaumen a keskhaontoen lsäks nden odotusarvoen erosta. Nän ollen muuttaessa akauma vastaamaan haluttua odotusarvoa, akaumen a odotusarvoen ero on dettävä vakona. Tosn sanoen on löydettävä sova lsäys, oka lsätään molemen akaumen odotusarvoon. Nän vodaan muuttaa yhtesakauman odotusarvoa täen sen keskhaonta vakona. Kahden akauman taauksessa sotuskohteen hnta noudattaa rosessa: [ S( t ] ( d t d ( d t d d ln (5 Logartmsen tuoton odotusarvo hetkellä t on akaumen a odotusarvoen sekotussuhteella anotettu odotusarvo: ln[ S( t / S( ] (1 Vastaavast tuoton odotusarvo on: S( t / S( (6 1 1 t( t ( e (1 e (7 Jos haluamme asettaa onkun vuotusen tuoton odotusarvon (r, akaumen a odotusarvohn on lsättävä okn luku : (1 / S( 1 ( 1 ( S 1 r e (1 e (8 Molemmsta eksonenttfunktosta vodaan erottaa termt e : e e 1 ( (1 e 1 ( 1 r (9 Nyt vodaan ratkasta halutun tuoton, sekotussuhteen sekä akaumen a odotusarvoen a keskhaontoen funktona: 1 r ln (1 1 1 ( ( e (1 e 7
8 Lsäämällä ss akaumen a odotusarvohn, saadaan yhtesakauma vastaamaan haluttua tuotto-odotusta r. Korrelaatot Monen sotuskohteen yhtesakaumaa estmotaessa on otettava huomoon myös sotuskohteden välset korrelaatot. Jos okaselle akaumalle arvotaan erkseen luku, onka mukaan satunnasluku otetaan oko akaumasta ta, kohteden välset korrelaatot enenevät huomattavast. Tällön yhtesakaumaa on mahdotonta saada noudattamaan suura alkueräsä korrelaatota. Jakaumen välstä korrelaatota vodaan kasvattaa kenotekosest käyttämällä samaa satunnaslukua kullekn sotuskohteelle. Tällön kahden sotuskohteen välnen kovaranss määräytyy seuraavast ( ( ( [ ( ] ( ( ( Z Z Z Z r r Merktään sotuskohteen akauman odotusarvon eroa sotuskohteen odotusarvoon a lasketaan kertolasku auk: Satunnasmuuttuat ovat rumattoma loulausekkeesta, oten ndkaattorfunkton odotusarvot vodaan erottaa muusta lausekkeesta: 8
9 ( ( ( ( nsmmästen odotusarvoen ssällä oleva tulo on ta 1 ruen satunnasluvusta. Nän ollen nden odotusarvot ovat todennäkösyyksä, että edellä manttu tulo on 1. Valtaan ndekst a nn, että. ( (1 ( ( ( ( Satunnasmuuttuat ovat (,1 normaalst akautuneta, oten nden odotusarvot ovat nolla muuten ats tlantessa, ossa a kerrotaan keskenään. Kysesen tulon odotusarvo on satunnasmuuttuen a välnen korrelaatokerron (merk. ρ. ( ( ( ρ ρ ρ (1 ( Vaatmalla että saatu lauseke on yhtä suur kun haluttu kovaranss vodaan korrelaatokerron ratkasta yhtälöstä: ρ (1 ( (1 ( Yllä saatn ratkastua yhtälö, onka avulla vodaan ratkasta satunnaslukuen generonnssa käytettävä korrelaato hstorallsen korrelaaton akaansaamseks. mrset testt kutenkn osottavat, että vakka menetelmä usemmssa taauksssa tom hyvn, saattaa se ossan taauksssa ohtaa yhtä suuremn korrelaatohn a/ta e-ostvsest defnttsn korrelaatomatrsehn. 9
10 Smulont Koska olemme aroksmoneet akauma normaalakauman yhdstelmllä, smulontn vodaan käyttää lkman samaa menetelmää kun tavallsesta normaalakaumasta smulotaessa (kts. esm. Law (. nsmmäseks tulee valta askeltuus t a haluttu smulontaskelten määrä sekä laskea muunnetun korrelaatomatrsn Choleskyn haotelma. Yks smulontaskel toteutetaan seuraavast: 1. Otetaan n satunnaslukua 1 n (,1 normaalakaumasta a yks satunnasluku (,1 tasaakaumasta. Muunnetaan :t noudattamaan laskettua korrelaatota: c 1 3. Lasketaan logartmset tuotot:, ln[ r ], os os Numeersa tuloksa Tässä kaaleessa tutktaan kahden normaalakauman sovttamsen tuomaa lsähyötyä er ndeksen kuukaustuottohn akana 1/1998-6/6. Tutkttavks ndekseks valtaan korkean luottorskn (hgh yeld lanat, aann osakendeks a valtonlanandeks. Hgh Yeld lanat Hgh yeld lanat ovat hyvä esmerkk taauksesta, ossa hstoratuottoen logartmt evät noudata normaalakaumaa. lla ylemmässä kuvassa on estetty kahden normaalakauman avulla estmotu akauma, todellnen akauma sekä normaalakauma. Kuvasta nähdään, että hstoraakauma e noudata normaalakaumaa, mutta kahden normaalakauman yhdstelmä seuraa hstoraakaumaa o erttän hyvn. lemassa kuvassa on estetty normaalakaumat a, osta yhtesakauma koostuu. Hstoraakauman huukkuus on saavutettu sekottamalla sovassa suhteessa levää a kaeaa normaalakaumaa. Kuten ylemmästä kuvasta nähdään, hstoraakauman vasen 1
11 häntä on selväst aksum kun okea häntä, mkä tekee akaumasta vnon. Haluttu vnous on saavutettu srtämällä leveän akauman ( odotusarvo vasemmalle än. Tässä taauksessa yhtesakaumassa on 57.5 % akaumaa a.5 % akaumaa el stmotu akauma Todellnen akauma Normaalakauma stmotu akauma Normaalakauma Normaalakauma kuva 1 - Hgh Yeld lanoen kk-tuotot 1/1998-6/6 Jaann osakendeks Hyvä esmerkk taauksesta, ossa kahta normaalakaumaa käyttämällä e saavuteta uurkaan lsäarvoa, on Jaann osakendeks. lla olevasta kuvasta nähdään, että logartmtuottoen hstoraakauma on lkman normaalnen a nän ollen myös estmotu yhtesakauma on lkman normaalnen. 11
12 1.5 1 stmotu akauma Todellnen akauma Normaalakauma stmotu akauma Normaalakauma Normaalakauma kuva - Jaann osakendeksn kk-tuotot 1/1998-6/6 Valtolanat Kolmantena esmerkknä ovat valtonlanat, oden logartmtuottoen hstoraakauma on selväst vno. Kuvasta 3 nähdään, että kahden normaalakauman yhtesakauma mukautuu selväst tavallsta normaalakaumaa aremmn vnoon hstoraakaumaan. 1
13 15 1 stmotu akauma Todellnen akauma Normaalakauma stmotu akauma Normaalakauma Normaalakauma kuva 3 - Valtonlanandeksn kk-tuotot 1/1998-6/6 Johtoäätökset Työssä tutkttn logartmtuottoakauman kuvaamsta kahdella normaalakaumalla. Näytettn, kunka kahdella normaalakaumalla vodaan ältellä oko alkueräsen akauman huukkuutta ta huukkuutta a vnoutta. Krallsuudessa on estetty myös muta menetelmä e-normaalsten akaumen kuvalemseen. smerkks Caro a Nelson (1997 esttelevät NOT (normal to anythng menetelmän, ossa sotuskohteen akaumaa kuvataan eksaktst sen hstoraakaumalla. Työssä näytettn myös taa, mten hstoraakaumaan sovtetulle kahden normaalakauman yhdstelmälle vodaan asettaa haluttu tuotto-odotus. Kahden akauman välsen korrelaaton sälyttämseks ohdettn kaava, olla ratkastaan satunnaslukuen generonnssa käytettävät korrelaatot. Todettn kutenkn, ette menetelmä on 13
14 sellasenaan vrheherkkä ollekn erkostaaukslle. Tarkem selvttämnen ätetään lsätutkmukslle. Louks tutkttn kahden akauman tomvuutta er ndeksen kuukaustuotolle. Todettn, että ossan taauksssa hstorallnen tuottoakauma noudattaa normaalakaumaa lähes täydellsest, kun taas ossan taauksssa huukkuuden a vnouden mallntamnen tuo selvän arannuksen hstoraakauman sovttamseen. 1
15 Krallsuusvtteet Delaneds,G., Lagnado,. a Tkhonov S. (: Monte Carlo Smulaton of Non- Normal Processes, dscusson aer, MKsk Caro, M.C. a Nelson L. (1997: Modelng and Generatng andom Vectors wth rbtrary Margnal Dstrbutons and Correlaton Matrx, workng aer Law,.M. a Kelton, W.D. ( Smulaton Modelng and nalyss, thrd edton, McGW-HLL, Sngaore Luenberger, D.G. (1998. nvestment Scence, Oxford unversty ress, New York 15
Uuden eläkelaitoslain vaikutus allokaatiovalintaan
TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...
Kokonaislukuoptimointi
Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten
Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi
Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät
3. Datan käsittely lyhyt katsaus
3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
AB TEKNILLINEN KORKEAKOULU
B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat
Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:
Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,
SU/Vakuutusmatemaattinen yksikkö (5)
SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28
Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ
FYSA220/2 (FYS222/2) VALON POLARISAATIO
FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron
r i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä
Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18
SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen
Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun
Epätäydelliset sopimukset
Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen
SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
4. A priori menetelmät
4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen
Sähköstaattinen energia
ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä
Yrityksen teoria ja sopimukset
Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu
SU/Vakuutusmatemaattinen yksikkö (6)
SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto
Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht
b g / / / / H G I K J =. S Fysiikka (ES) Tentti
S4.35 Fyskka (ES) Tntt 4.9. 3 6. Sälö, jonka tlavuus on,5 m, ssältää haa, jonka an on,5 Pa ja lämötla C. (a) Montako moola haa sälössä on? (b) Montako klogrammaa? (c) Mtn an muuttuu, jos lämötla kasvaa
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
Painotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
7. Modulit Modulit ja lineaarikuvaukset.
7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden
Galerkin in menetelmä
hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan
COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
Pyörimisliike. Haarto & Karhunen.
Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f
MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN
MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset
S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
Kollektiivinen korvausvastuu
Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...
1, x < 0 tai x > 2a.
PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto
on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.
SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella
Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi
TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo
Venymälle isotermisessä tilanmuutoksessa saadaan dl = α LdT + df = df AE AE Ulkoisen voiman tekemä työ saadaan integroimalla δ W = FdL :
S-11435, Fyskka III (ES) Tentt 194 1 Setsemän tunnstettavssa olevaa hukkasta on jakautunut kahdelle energatasolle Ylem taso on degenerotumaton ja sen energa on 1, mev korkeam kun alemman tason, joka uolestaan
Kuluttajahintojen muutokset
Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä
Moderni portfolioteoria
Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.
Yksikköoperaatiot ja teolliset prosessit
Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...
1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.
BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä
Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen
Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen
10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10
Helsingin ylioisto, Itä-Suomen ylioisto, Jyväskylän ylioisto, Oulun ylioisto, Tamereen ylioisto ja Turun ylioisto Matematiikan valintakokeen 3.6.0 ratkaisut. Oletetaan, että litralla (uhdasta) bensiiniä
T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.
Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n
d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ
TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä
TKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet
SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron
Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon
Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto
Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals
Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät
Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
3D-mallintaminen konvergenttikuvilta
Maa-57.270, Fotogammetan, kuvatulknnan ja kaukokatotuksen semnaa 3D-mallntamnen konvegenttkuvlta nna Evng, 58394J 2005 1 Ssällysluettelo Ssällysluettelo...2 1. Johdanto...3 2. Elasa tapoja kuvata kohdetta...3
Kuorielementti hum
Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka
Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa
Y m ä r s t ö m n s t e r ö n m o n s t e 122 Ilmanvahdon lämmöntalteenotto lämöhävöden tasauslaskennassa HELINKI 2003 Ymärstömnsterön monste 122 Ymärstömnsterö Asunto- ja rakennusosasto Tatto: Lela Haavasoja
Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi
Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen
Mekaniikan jatkokurssi Fys102
Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma
6. Stokastiset prosessit
luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst Stokastset prosesst () Tarkastellaan otakn (lkenneteoran kannalta ta stten
Tuotteiden erilaistuminen: hintakilpailu
Tuotteden erlastumnen: hntaklalu Lass Smlä 19.03.003 Otmonton semnaar - Kevät 003 / 1 Johdanto Yrtykset evät yleensä halua tuottaa saman tuoteavaruuden tlan täyttävä tuotteta (syynä Bertrandn aradoks)
Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.
Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla
FDS-OHJELMAN UUSIA OMINAISUUKSIA
FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.
Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:
Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol.
LH-1 Kaasusälö ssältää 1, g typpeä 1800 K lämpötlassa Sälön tlavuus on 5,0 l Laske pane sälössä ottamalla huomoon, että tässä lämpötlassa 30 % typpmolekyylestä, on hajonnut atomeks Sovella Daltonn laka
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä
PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.
PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte
1. PARAMETRIEN ESTIMOINTI
Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,
Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro
Lsätehtävä 1. Erään yrtyksen satunnasest valttujen työntekjöden possaolopäven määrät olvat vuonna 003: 5, 3, 1, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4,, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19, 17, 14, 7 a)
Aamukatsaus 13.02.2002
Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%
Paikkatietotyökalut Suomenlahden merenkulun riskiarvioinnissa
Teknllnen korkeakoulu Lavalaboratoro Helsnk Unversty of Technology Shp Laboratory Espoo 2007 M-300 Tomm Arola Pakkatetotyökalut Suomenlahden merenkulun rskarvonnssa TEKNILLINEN KORKEAKOULU HELSINKI UNIVERSITY
POISTUMISAIKALASKELMAT PALOTILANTEISSA
POISTUMISAIKALASKELMAT PALOTILANTEISSA Tmo Korhonen, Smo Hostkka ja Olav Kesk-Rahkonen VTT Rakennus- ja yhdyskuntateknkka PL 1803, 02044 VTT Tvstelmä Tässä artkkelssa estellään uus postumsajan laskentamenetelmä
VERKKOJEN MITOITUKSESTA
J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän
Venymälle isotermisessä tilanmuutoksessa saadaan AE AE
S-11435, Fyskka III (ES) Tntt 75 1 Stsmän tunnstttavssa olvaa hukkasta on jakautunut kahdll nrgatasoll Ylm taso on dgnrotumaton ja sn nrga on 1, mv korkam kun almman tason, joka uolstaan on dgnrotunut
5. Datan käsittely lyhyt katsaus
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 4..0 Thomas Hackman HTTPK I, kevät 0, luento 5 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15
A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60
HASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)
KUVIEN LAADUN ANALYSOINTI
KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn
Suoran sovittaminen pistejoukkoon
Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja
Usean muuttujan funktioiden integraalilaskentaa
Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal