6. Lineaariset operaattorit

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "6. Lineaariset operaattorit"

Transkriptio

1 96 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että Fourier-sarjat suppenevat L 2 -normissa (kts. Seuraus 5.8 sivulla 80). Osoitimme myös, että kun f on jatkuva ja 2π-periodinen funktio, niin Fourier-osasummien aritmeettiset keskiarvot suppenevat tasaisesti kohti funktiota f (kts. Fejérin lause 5.4 sivulla 76). Koska nälkä vain kasvaa syödessä, niin voimme miettiä uusia luontevia Fourier-sarjoihin liittyviä kysymyksiä: Kysymys 1: Suppeneeko Fourier-sarja L 1 -normissa, jos f on L 1 -funktio? Kysymys 2: Suppeneeko jatkuvan funktion Fourier-sarja pisteittäin? Eli jos f C(0, 2π) ja f(0) = f(2π), onko f(x) = lim n k= n f(k)e ikx = lim S n (f; x) kaikilla x? Näiden kysymysten ratkaisemiseksi meidän on tutkittava Fourier-osasummien S n (f; ) ominaisuuksia lineaarisena operaattorina f S n (f; ). Itse asiassa, jatkuvan lineaarikuvauksen käsite on funktioanalyysin keskeisiä peruskäsitteitä. Palautetaan lyhyesti mieleen kurssin alkupuolella jo esitellyt lineaariset operaattorit. Olkoon E ja F vektoriavaruuksia. Kuvaus T : E F on lineaarinen, jos T (αx + βy) = αt x + βt y kun x, y E ja α, β K. Lineaarisesta kuvauksesta käytetään usein nimitystä lineaarinen operaattori; näin erityisesti siinä tapauksessa, että T on jatkuva. Luvussa 2 käsittelimme jo lineaaristen operaattoreiden jatkuvuutta (kts. Määritelmä 2.21 sivulla 20 ja Lause 2.26 sivulla 22). Lisäksi osoitimme, että lineaarikuvaus T on jatkuva jos ja vain jos sen operaattorinormi T on äärellinen. Lineaarikuvauksen T : E F Operaattorinormihan määriteltiin T = sup x B e T x F. Nyt ryhdymme tarkastelemaan operaattoreiden itsensä muodostamia avaruuksia. Tätä varten otamme käyttöön muutaman uuden merkinnän. Olkoon E ja F normiavaruuksia. Asetamme L(E, F ) = { T : E F : T on lineaarikuvaus }, L (E, F ) = { T : E F : T on jatkuva lineaarikuvaus }, ja erityisesti, kun F = E, merkitsemme L (E) = L (E, E). Nyt osoittautuu, että jatkuvat lineaariset operaattorit muodostavat normiavaruuden, kun normiksi valitaan operaattorinormi.

2 FUNKTIONAALIANALYYSIN PERUSKURSSI Lause. Olkoot E ja F normiavaruuksia, joissa skalaarikuntana on K. Tällöin L (E, F ) on K-kertoiminen normiavaruus, jossa normina on operaattorinormi T T := sup{ T x F : x E, x E 1 }. Todistus. Jos S, T L(E, F ), niin vastaava summaoperaattori on (S + T )(x) = Sx + T x, x E. Kuvaus V = S +T on lineaarinen kuvaus E F, sillä jos x, y E ja α, β K, niin V (αx + βy) = S(αx + βy) + T (αx + βy) = αsx + βsy + αt x + βt y = α(sx + T x) + β(sy + T y) = αv (x) + βv (y) Samoin kuvaus cs on lineaarinen E F, kun (cs)(x) = csx, x E ja c K. Toteamme siis, että L(E, F ) on vektoriavaruus, kun nolla-alkiona on nollakuvaus 0(x) = 0 F kaikilla x E. Näytämme seuraavaksi, että L (E, F ) on avaruuden L(E, F ) vektorialiavaruus ja kuvaus T T on normi vektoriavaruudessa L (E, F ). Tämän näyttämiseksi käydään läpi normin aksiomat: ( N1) Olkoon S, T L (E, F ) ja x B E = { x E : x 1 }. Tällöin soveltamalla kolmioepäyhtälöä avaruudessa F saadaan, että (S + T )x F = Sx + T x F Sx F + T x F S + T sillä x 1. Siis S + T = sup x B E (S + T )x F S + T. Edelleen tästä seuraa, että operaattori S + T on jatkuva, joten S + T L (E, F ). ( N2) Olkoon c K ja x B E. Tällöin ct x F = c T x F, joten ct = sup{ ct x F : x B E } = c sup{ T x F : x B E } = c T Erityisesti tästä seuraa, että ct L (E, F ). Nyt yhdessä edellisen kohdan ( N1) kanssa tästä seuraa, että L (E, F ) on vektoriavaruuden L(E, F ) vektorialiavaruus.

3 98 FUNKTIONAALIANALYYSIN PERUSKURSSI ( N3) Operaattorinormin positiivisuus on selvä. Jos T = 0, niin T x F = 0 kaikilla x E eli T x = 0 kaikilla x E. Siispä T = 0, missä 0 on nollaoperaattori, joka on avaruuden L(E, F ) nolla-alkio. Käänteinen suunta on selvä. Siispä (L (E, F ), ) on normiavaruus. Tutkimme seuraavaksi, milloin avaruus L (E, F ) on Banachin avaruus eli täydellinen operaattorinormissa. Tätä ennen pohdimme hiukan erilaisia operaattoreihin liittyviä suppenemiskäsitteitä. Koska lineaariset operaattorit ovat kuvauksia, voimme puhua niiden pisteittäisestä suppenemisesta. Siis jos E ja F normiavaruuksia ja A E osajoukko, niin sanomme että jono (f n ) kuvauksia f n : A F suppenee pisteittäin joukossa A kohti kuvausta f : A F, jos lim f n(x) = f(x) kaikilla x A. Havaitsemme, että pisteittäinen suppeneminen säilyttää lineaarisuuden eli lineaaristen kuvausten pisteittäinen raja on myös lineaarinen kuvaus Lause. Olkoot E ja F normiavaruuksia ja (T n ) L(E, F ) jono lineaarikuvauksia, jotka suppenevat pisteittäin kohti kuvausta T : E F. Tällöin T L(E, F ). Todistus. Suoraan laskemalla T (λx + µy) = lim T n (λx + µy) = lim (λt n x + µt n y) = λt x + µt y. Nyt herääkin kysymys, säilyykö lineaarisen kuvauksen jatkuvuuskin pisteittäisessä suppenemisessa? Vastaus on yleisessä tapauksessa kielteinen, kuten seuraava esimerkki osoittaa Esimerkki. Olkoon P = { x : x on R-kertoiminen polynomi } ja x = sup 0 t 1 x(t), kun x P. Määrittemme jokaisella n N kuvauksen T n x = n ( x(1) x(1 1 n )). Tällöin T n : P R on lineaarinen ja T n L (P, R), sillä x(1), x(1 1 n ) x, joten T n x 2n x. Siispä T n 2n. Toisaalta lim T x(1) x(1 1 nx = lim ) n 1 n = x (1),

4 FUNKTIONAALIANALYYSIN PERUSKURSSI 99 joten jono (T n ) suppenee pisteittäin kohti kuvausta T : P R, x x (1). Kuitenkaan kuvaus T ei ole jatkuva: jos x n (t) = t n, niin x n = 1 ja T x n = x n (1) = n, joten T sup T x n =. Siis normiavaruuden jatkuvien lineaarikuvausten pisteittäinen raja ei välttämättä olekaan jatkuva. Ehkä yllättäen, täydellisyys pelastaa tilanteen, kuten tulemme näkemään luvussa 7 (käyttämällä tasaisen rajoituksen periaatetta). Palaamme nyt lyhyen pisteittäisen suppenemisen tarkastelun jälkeen operaattorinormin määräämään suppenemiseen Määritelmä. Jos (T n ) n L (E, F ) ja T L (E, F ), niin sanomme, että jono (T n ) suppenee kohti operaattoria T normin mielessä, jos Tällöin merkitsemme T n T. lim T n T = 0. Huomautus. Jos T n suppenee normin mielessä kohti operaattoria T, niin se suppenee myös pisteittäin, sillä kaikilla x E, kun n. T n x T x = (T n T )x T n T x 0, Käänteinen väite ei kuitenkaan pidä paikkaansa Esimerkki. Määrittelemme lineaarikuvaukset T n : l 1 l 1 asettaen kun x = (x n ) n=1 l1 ja n N. Tällöin T n x = (0,..., 0, x }{{} n, x n+1, x n+2,... ), n 1 kpl n T n x 1 = x k k=n x k = x 1, k=0 kun x l 1, joten kuvaukset T n ovat jatkuvia ja T n 1. Edelleen, T n (x) 0 kaikilla x l 1 eli T n 0 pisteittäin. Kuitenkaan jono (T n ) ei suppene normin mielessä kohti nollaoperaattoria: Jos e n = (0,..., 0, 1, 0, 0,... ) l }{{} 1, n 1 kpl niin T n e n = e n ja siis T e n 1 = e n 1 = 1, joten T n = 1 kaikilla n N.

5 100 FUNKTIONAALIANALYYSIN PERUSKURSSI Olemme jo todenneet, että jatkuvien lineaaristen operaattoreiden pisteittäinen suppeneminen ei takaa jatkuvuutta. Suppeneminen normin suhteen muuttaa tilanteen, kuten seuraava tulos osoittaa. Lisäksi, seuraavan keskeisen tuloksen avulla voimme rakentaa uusia Banachin avaruuksia lähtien tunnetuista avaruuksista Lause. Jos E on normiavaruus ja F on Banachin avaruus, niin L (E, F ) on Banachin avaruus. Todistus. Olkoon (T n ) Cauchyn jono avaruudessa L (E, F ) ja x E. Tällöin on T n x T m x = (T n T m )x T n T m x, kun n, m N, joten jono (T n x) on Cauchyn jono avaruudessa F. Koska F on täydellinen, niin jono (T n x) suppenee ja merkitään tätä rajaa T x = lim T n x. Siispä jono (T n ) suppenee kohti kuvausta T pisteittäin, joten Lauseen 6.2 sivulla 98 nojalla T on lineaarikuvaus E F. Olkoon ε > 0. Koska (T n ) on Cauchyn jono avaruudessa L (E, F ), niin on olemassa sellainen n 0 N, että aina kun n, m n 0, niin T n T m ε. Jos x E ja x 1, niin silloin T n x T m x F = (T n T m )x F T n T m x E T n T m ε. Pitämällä piste x E ja luku n N kiinteinä ja antamalla luvun m kasvaa rajatta tästä seuraa, että T n x T x F = lim m T nx T m x F ε, ja siis (T n T )x F ε aina, kun n n 0 ja x B E. Näin ollen kuvaus T n0 T on jatkuva, joten myös T = T n0 (T n0 T ) on jatkuva. Operaattorinormin ja viimeisimmän arvion nojalla määritelmän nojalla T n T ε, kun n n 0, joten jono (T n ) siis suppenee avaruudessa (L (E, F ), ). Siispä (L (E, F ), ) on täydellinen. Operaattorien avaruuksissa on myös algebrallista rakennetta, sillä voimme määritellä operaattoritulon yhdistettynä kuvauksina. Seuraava lause sanoo saman formaalimmin.

6 FUNKTIONAALIANALYYSIN PERUSKURSSI Lause. Olkoot E, F ja G normiavaruuksia. Olkoot T L (E, F ) ja S L (F, G) rajoitettuja lineaarisia operaattoreita. Silloin yhdistetty kuvaus ST L (E, G) ja ST S T. Todistus. Jatkuvien kuvausten yhdiste on jatkuva ja myös lineaaristen kuvausten yhdiste on lineaarinen. Siispä ST L (E, G). Jos x E ja x 1, niin ST x G = S(T x) G S T x F S T ja siis ST S T. Huomautus. Banachin avaruutta E sanotaan Banachin algebraksi, jos avaruuden E alkioille on määritelty tulo, joka toteuttaa seuraavan ehdon: xy x y, x, y E. ja lisäksi algebran ehdot: (seuraavassa x, y, z E ja λ K) x(yz) = (xy)z, x(y + z) = xy + xz, (tulon assosiatiivisuus), (osittelulait) ja (x + y)z = xz + yz, (λx)y = λ(xy) = x(λy), (skaalarilla kertomisen ja tulon yhteys) 6.8. Esimerkki. a) Lauseiden 6.6 ja 6.7 nojalla L (E) on Banachin algebra, kun E on Banachin avaruus, normina on operaattorinormi ja tulona ST on kuvausten yhdistäminen. b) Kun X on kompakti avaruus, niin C(X) on Banachin algebra, kun normina on ja tulona (fg)(x) = f(x)g(x). (HT 9/2006) 6.9. Lause. Olkoon T : E F lineaarinen bijektio. Tällöin T 1 on lineaarinen ja (6.10) T 1 jatkuva on olemassa α > 0, jolle T x α x, x E. Todistus. Jos x, y F ja λ, µ K, niin T (λt 1 x + µt 1 y) = λt T 1 x + µt T 1 y = λx + µy = T ( T 1 (λx + µy) ). Koska T on bijektio, niin tästä seuraa, että λt 1 x + µt 1 y = T 1 (λx + µy). Siispä T 1 on lineaarinen. Osoitetaan seuraavaksi (6.10). Koska T 1 x = 0 joss x = 0, niin voidaan olettaa E { 0} ja F {0}. Tällöin on siis olemassa sellainen x E, x 0, jolle 0 < T 1 x T 1. x

7 102 FUNKTIONAALIANALYYSIN PERUSKURSSI Siispä 0 < T 1 <, joten T 1 1 on hyvin määritelty. Jos nyt x E, niin x = T 1 T x T 1 T x, joten x T 1 T x, joka on voimassa kaikilla x E. Valitsemalla α = T 1 1 seuraa väitteen tämä suunta. Oletetaan, että T x α x kaikilla x E. Jos y F, niin olkoon x = T 1 y. Silloin T x = y ja siis T 1 y = x 1 α T x = 1 α y, joka on voimassa kaikilla y F. Siispä T 1 1/α < Seuraus. Olkoot E ja F normiavaruuksia ja T : E F lineaarinen bijektio. Silloin T on homeomorfismi jos ja vain jos on olemassa sellaiset vakiot α, β > 0, joille kaikilla x E. α x T x β x Todistus. Tämä seuraa välittömästi Lauseesta 2.26 sivulla 22 ja Lauseesta Huomautus. Jos T L (E, F ) toteuttaa Seurauksen 6.11 ehdot, niin sanomme, että T on lineaarinen isomorfismi ja että avaruudet E ja F ovat isomorfiset Lause. Olkoot E ja F normiavaruuksia ja olkoon T L (E, F ) isomorfismi. Silloin E on täydellinen jos ja vain jos F on täydellinen. Todistus. Symmetrian mukaan riittää osoittaa väite vain toiseen suuntaan. Olkoon (x n ) n=1 Cauchyn jono avaruudessa F. Silloin T 1 x n T 1 x m T 1 x n x m ja siis (T 1 x n ) n on Cauchyn jono avaruudessa E. Koska E on täydellinen, niin T 1 x n y E ja siispä x n T y = T (T 1 x n ) T y T T 1 x n y 0, kun n. Täten myös F on täydellinen. Jos normit 1 ja 2 ovat ekvivalentteja (kts. Määritelmä 2.9 sivulla 12), niin Lauseen 6.13 nojalla (E, 1 ) on täydellinen jos ja vain jos (E, 2 ) on täydellinen.

8 FUNKTIONAALIANALYYSIN PERUSKURSSI Esimerkki. a) Sturmin Liouvillen yhtälöiden yhteydessä tarkastelimme normia ( 1 ) 1/2 f H 1 = ( f (x) 2 + f(x) 2 ) dx ja normia 0 ( 1 1/2, f E = ( f (x) 2 p(x) + f(x) 2 q(x)) dx) 0 missä 0 < δ p, q M <. Silloin osoitimme, että δ f H 1 f E M f H 1 ja siten H 1 ja E määrääväät avaruuteen H 1 saman topologian ja molemmat normit ovat täydellisiä. b) Jos (a n ) n l p ja χ I on välin I karakteristinen funktio, niin kuvaus T : (a n ) n n a n χ [n,n+1) (x) määrää isomorfismin T : l p E, missä E on avaruuden L p (R) aliavaruus. Itse asiassa, T on isometria eli T x L p ( ) = x l p. c) Jos p q, niin l p ei ole isometrinen avaruuden l q kanssa (todistus sivuutetaan). Samoin avaruus L p on isometrinen avaruuden L q kanssa p = q. d) Jonoavaruus l 2 on isomorfinen erään avaruuden L q aliavaruuden kanssa, jos q 2. Mutta jos q < 2, niin tämä ei päde. Näiden todistukset ovat epätriviaaleja ja sivuutetaan. e) Jokainen separoituva Banachin avaruus E on isomorfinen avaruuden C(0, 1) aliavaruuden kanssa (ja tämänkin todistus sivuutetaan). Todistamme seuraavaksi hyödyllisen laajennusominaisuuden jatkuville operaattoreille Lause. Olkoon E normiavaruus, F Banachin avaruus, M E vektorialiavaruus (jota ei oleteta suljetuksi) sekä T : M F jatkuva lineaarikuvaus. Tällöin on olemassa yksikäsitteinen jatkuva lineaarikuvaus T : M F, jolle T z = T z kaikilla z M ja T = T. Todistus. Olkoon z M. Tällöin löytyy sellainen jono (x n ) M, jolle z = lim x n. Jos p, q N, saadaan T x p T x q = T (x p x q ) T x p x q, joten (T x n ) F on Cauchyn jono. Koska F on Banachin avaruus, niin jonolla (T x n ) n on raja-arvo T x F. Havaitaan, että tämä raja-arvo on riippumaton

9 104 FUNKTIONAALIANALYYSIN PERUSKURSSI jonon (x n ) valinnasta. Tämä nähdään valitsemalla toinen jono (y n ) M, jolle myös z = lim y n. Toistamalla edellinen päättely jonolle (z n ) löydetään rajaalkio y = lim T y n F. Koska x n y n z z = 0, niin kuvauksen T jatkuvuuden nojalla 0 = lim T (x n y n ) = lim T x n lim T y n = T y. Siispä y = T. Päättelemme tästä, että raja-arvo T z = lim T x n riippuu vain pisteestä z M eikä lainkaan jonon valinnasta. Nyt siis T on kuvaus M F. Jos z M ja x n = z kaikilla n N, niin T z = lim T x n = T z, joten T on kuvauksen T laajennus. Osoitetaan nyt, että T on lineaarinen kuvaus M F. Olkoon x, y M ja α K. Valitaan sellaiset jonot (x n ) M, (y n ) M, että lim x n = x ja lim y n = y. Tällöin myös jono (z n ) = (x n +αy n ) M ja tämä jono suppenee kohti vektoria x + αy. Siispä alkuosan perusteella T (x + αy) = lim T (x n + αy n ) = lim T x n + lim αt y n = T x + α T y. Edellisessä käytimme operaattorin T lineaarisuutta sekä kolmioepäyhtälöä siihen, että raja-arvon voi jakaa kahteen osaan. Edellinen lasku siis osoittaa, että T on lineaarinen. Osoitetaan seuraavaksi, että T = T. Jos z M, niin valitaan sellainen jono (x n ) n, että z = lim x n. Tällöin T z = lim T x n. Koska T x n T x n kaikilla n N ja kolmioepäyhtälön nojalla x n z, niin T z = lim T x n lim T x n = T z, joten T on jatkuva ja T T. Jos z M, niin joten myös T T. T z = T z T z,

10 FUNKTIONAALIANALYYSIN PERUSKURSSI 105 Vielä on osoitettava kuvauksen T yksikäsitteisyys. Olettakaamme, että S on jatkuva lineaarinen kuvaus M F, jolle Sz = T z kaikilla z M. Koska kuvaus S T on jatkuva M F, niin jokaisella z M on voimassa Sz T z = lim Sx n T x n = 0, kunhan (x n ) n M on jono, joka suppenee kohti pistettä z. Siispä S = T kaikilla z M ja kuvaus T on siten yksikäsitteinen. Lause 6.15 on eräs lineaarioperaattoreiden filosofian kulmakivistä. Esimerkkinä tarkastellaan Fourier-muunnosta Esimerkki. Jos f L 1 (R) on integroituva ja k R, asetetaan 1 (F) f(k) = f(x)e ikx dx (funktion f Fourier-muunnos) 2π Koska f(x)e ikx = f(x), kun x, k R on yllä mainittu integraali on hyvin määritelty kaikilla f L 1 (R). Koska Fourier-sarjojen L 2 -teoria on kaikkein toimivin (luku 5), haluaisimme määritellä Fourier-muunnoksen myös kaikille f L 2 (R). Ongelma: L 2 (R) L 1 (R), joten (F ):n integraali ei ole määritelty kaikilla f L 2 (R) 11. Mikä neuvoksi? Ratkaisu: Oletetaan aluksi, että f L 1 (R) L 2 (R). Tällöin voidaan todistaa Parsevalin identiteetin vastine f(k) 2 dk = f(x) 2 dx, f L 1 (R) L 2 (R). Toisin sanoen, kun M = L 1 (R) L 2 (R) L 2 (R), niin kuvaus T : f f on lineaarinen isometria 2 normissa. Lauseen 6.15 nojalla kuvaus T laajenee jatkuvaksi lineaarioperaattoriksi M L 2 (R), missä itse asiassa M = L 2 (R). Näin Fourier-muunnos f saadaan määriteltyä kaikille f L 2 (R). Tämä sama prosessi voidaan kuvata konkreettisemminkin. Jos f L 2 (R), niin f χ [ n,n] L 1 (R) L 2 (R) kaikilla n > 0. Lebesguen dominoidun suppenemisen lause implikoi, että f χ [ n,n] f L 2 ( ) 0, kun n, joten Lauseen 6.15 nojalla 1 n f(k) = lim f(x)e ikx dx 2π n kaikilla f L 2 (R). 11 Esimerkksi funktio f(x) = min{1, x 1 } kuuluu L 2 (R) \ L 1 (R)

11 106 FUNKTIONAALIANALYYSIN PERUSKURSSI Neumannin sarja Jos E on Banachin avaruus, T L (E) ja on olemassa jatkuva käänteiskuvaus T 1 L (E), sanomme usein, että T on kääntyvä (isomorfismin sijasta). Seuraavalla sovelluksissa hyödyllisellä menetelmällä, eli niin sanottulla Neumannin sarjalla, pystymme useissa tilanteissa selvittämään operaattorin kääntyvyyden ja jopa laskemaan käänteisoperaattorin T 1. Merkitsemme avaruuden E identtistä operaattoria merkillä I, siis Ix = x kaikilla x E. Edelleen operaattorin T iteraatteja merkitsemme T 0 = I, T k = T T T (k kappaletta) Lause (Neumannin sarja). Olkoon E Banachin avaruus ja T L (E) jatkuva lineaarikuvaus. Jos T < 1, niin operaattori I T on kääntyvä ja (I T ) 1 = k=0 missä yo. sarja on normisuppeneva avaruudessa L (E). Todistus. Lauseen 6.7 nojalla T k T k jokaisella k N. Nyt T k k=0 T k T k <. k=0 mikä suppenee, sillä T < 1 ja oikean puoleisin sarja on geometrinen sarja. Koska L (E) on Banachin avaruus (kts. Lause 6.6), niin Lauseen 3.22 sivulla 33 nojalla sarja S = lim S n = lim n T k L (E) k=0 suppenee. Tarkastellaan nyt osasummia S n. Koska (I T )S n = I + T + + T n (T + T T n+1 ) = I T n+1 = S n (I T ), niin (I T )S n I T n+1 0, kun n eli (I T )S = I. Vastaavasti nähdään, että S(I T ) = I, eli S on operaattorin I T käänteisoperaattori Esimerkki. Palaamme jo johdantoluvussa sekä Banachin kiintopistelauseen yhteydessä tarkastelemaamme esimerkkiin (kts. Esimerkki 3.40 sivulla 45) eli tarkastelemme integraaliyhtälöä ( ) f(x) K(x, t)f(t) dt = g(x), x [0, 1], missä K C([0, 1] [0, 1]) on jatkuva ja K < 1. Osoitamme nyt käyttämällä Neumannin sarjaa, että jos g C(0,1), niin tällöin yhtälöllä ( ) on

12 FUNKTIONAALIANALYYSIN PERUSKURSSI 107 yksikäsitteinen ratkaisu f C(0,1). Asetetaan (T f)(x) = 1 0 K(x, t)f(t) dt, x [0, 1], f C(0, 1). Harjoituksissa olemme jo osoittaneet, että T L (C(0, 1)) ja T K < 1. Nyt voimme soveltaa Neumannin sarjaa operaattoriin T, sillä T = T < 1. Siispä operaattori I +T = I ( T ) on kääntyvä, joten kirjoittamalla yhtälö ( ) operaattorimuodossa ja käyttämällä operaattorin I +T kääntyvyyttä ja Neumannin sarjaa saamme (I + T )f = g f = (I + T ) 1 g = ( T ) k g. Sivutuotteena saimme ratkaisulle f C(0, 1) konstruktion sarjana. Saatua sarjaa kannattaa verrata Banachin kiintopistelauseen antamaan konstruktioon. Koska kääntyvyys on algebrallinen ominaisuus, niin kääntyvät operaattorit muodostavat ryhmän kaikkien jatkuvien operaattoreiden joukossa. Tämä seuraa seuraavasta huomiosta. Huomautus. Jos S, T L (E) ja molemmat kääntyviä, niin yhdistetty kuvaus ST on kääntyvä ja (ST ) 1 = T 1 S 1, sillä ST T 1 S 1 = SS 1 = I ja T 1 S 1 ST = T 1 T = I. Neumannin sarjan avulla voimme myös tarkastella, minkälainen joukko kääntyvien operaattereiden joukko on topologisesti Lause. Olkoon E Banachin avaruus. Tällöin i) jos T L (E) on kääntyvä ja S L (E) toteuttaa arvion S < T 1 1, niin tällöin T S on kääntyvä. ii) kääntyvien operaattorien joukko { T L (E) : T kääntyvä } muodostaa avoimen ryhmän avaruudessa L (E) operaattorintulon suhteen. Todistus. Koska T L (E) on kääntyvä, niin erotus T S voidaan esittää tulona T S = T (I T 1 S). Oletuksen ja Lauseen 6.17 nojalla T 1 S T 1 S < 1, joten Neumannin sarjan nojalla operaattori I T 1 S on kääntyvä. Siispä edellisen huomautuksen nojalla myös operaattoritulo T (I T 1 S) = T S on kääntyvä. Tämä osoittaa väitteen i). Kohta ii) seuraa nyt edellisestä huomiosta, että kääntyvät operaattorit muodostavat ryhmän ja kohdasta i), jonka nojalla kääntyvien operaattorien joukko on avoin. k=0

f(k)e ikx = lim S n (f; x) kaikilla x?

f(k)e ikx = lim S n (f; x) kaikilla x? 102 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että jos f L 2, niin vastaavan Fourier-sarjan osasummat suppenevat kohti f:ää L 2 -normissa (kts. Seuraus 5.8 sivulla

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 7

FUNKTIONAALIANALYYSIN PERUSKURSSI 7 FUNKTIONAALIANALYYSIN PERUSKURSSI 7 2. Normi ja normiavaruus Olkoon E vektoriavaruus (eli lineaariavaruus) skalaarikuntana K = R tai K = C. Kurssilla Lineaarialgebra I määriteltiin vain R-kertoimiset vektoriavaruudet,

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

2. Normi ja normiavaruus

2. Normi ja normiavaruus 8 FUNKTIONAALIANALYYSIN PERUSKURSSI 2. Normi ja normiavaruus Olkoon E vektoriavaruus (eli lineaariavaruus) skalaarikuntana K = R tai K = C. Kurssilla Lineaarialgebra I määriteltiin vain R-kertoimiset vektoriavaruudet,

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

FUNKTIONAALIANALYYSI 2017

FUNKTIONAALIANALYYSI 2017 FUNKTIONAALIANALYYSI 2017 JOUNI PARKKONEN Nämä ovat muistiinpanoni funktionaalianalyysin kurssille kevätlukukaudella 2017. Tekstiä ei ole luettu äärimmäisen huolella puhtaaksi eikä sitä ole viilattu julkaisemista

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

4. Hilbertin avaruudet

4. Hilbertin avaruudet FUNKTIONAALIANALYYSIN PERUSKURSSI 51 4. Hilbertin avaruudet Hilbertin avaruudet ovat ääretönulotteisista normiavaruuksista ominaisuuksiltaan kaikkein lähinnä kotiavaruutta R n tai C n. Tästä syystä niiden

Lisätiedot

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n)

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n) FUNKTIONAALIANALYYSIN PERUSKURSSI 73 5. Fourier-sarjat Fourier esitti vuonna 1822 lämmönjohtamista koskevien tutkimusten yhteydessä kuuluisan menetelmänsä esittää mielivaltainen -jaksollinen funktio kehitelmänä

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot

5. Fourier-sarjat. f(x)e inx dx. c n (cos(nx) + i sin(nx)), n= N. 2π f(x)e inx dx = 1 2π. k= N. e inx, n Z. 2π f(x)e inx dx = 1 (f e n ) 2π

5. Fourier-sarjat. f(x)e inx dx. c n (cos(nx) + i sin(nx)), n= N. 2π f(x)e inx dx = 1 2π. k= N. e inx, n Z. 2π f(x)e inx dx = 1 (f e n ) 2π 78 FUNKTIONAALIANALYYSIN PERUSKURSSI 5. Fourier-sarjat Fourier esitti vuonna 1822 lämmönjohtamista koskevien tutkimusten yhteydessä kuuluisan menetelmänsä esittää mielivaltainen -jaksollinen funktio kehitelmänä

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Metriset avaruudet 2017

Metriset avaruudet 2017 Metriset avaruudet 2017 Jouni Parkkonen Merkintöjä N = {0, 1, 2,... } luonnolliset luvut #(A) N { } joukon A alkioiden lukumäärä A B = {a A : a / B} joukkojen A ja B erotus. A B on joukkojen A ja B erillinen

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v.

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v. FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 2006 ja kevät 2008 Kari Astala ja Petteri Piiroinen (v. 2006) Hans-Olav Tylli (v. 2008 hienosäätöä)

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

9. Dualiteetti. Todistus. Väite seuraa suoraan Lauseesta 6.6, koska skalaarikunta K on täydellinen.

9. Dualiteetti. Todistus. Väite seuraa suoraan Lauseesta 6.6, koska skalaarikunta K on täydellinen. 128 FUNKTIONAALIANALYYSIN PERUSKURSSI 9. Dualiteetti Jos E on vektoriavaruus, niin merkintä E = L(E, K) tarkoittaa avaruuden E algebrallista duaalia. Duaalin E ovat avaruuden E lineaarisia muotoja. Jos

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät Kari Astala ja Petteri Piiroinen

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät Kari Astala ja Petteri Piiroinen FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 26 Kari Astala ja Petteri Piiroinen Sopivaa oheis- ja lisälukemistoa tarjoavat esimerkiksi seuraavat

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0; 3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 26. huhtikuuta 2017 Pekka Salmi Hilbertin avaruudet 26. huhtikuuta 2017 1 / 115 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L),

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Kompaktisuus ja filtterit

Kompaktisuus ja filtterit Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 1 Ratkaisuehdotukset. I.1. Todista Cauchyn-Schwarzin epäyhtälö

HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 1 Ratkaisuehdotukset. I.1. Todista Cauchyn-Schwarzin epäyhtälö HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 1 Ratkaisuehdotukset I.1. Todista Cauchyn-Schwarzin epäyhtälö kun x, y R. x y x y, Ratkaisu: Tiedetään, että x + ty 2

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Reaalianalyysin perusteita

Reaalianalyysin perusteita Reaalianalyysin perusteita Heikki Orelma 16. marraskuuta 2008 Sisältö 1 Johdanto 3 2 Mitallisuus 3 3 Yksinkertaiset funktiot 6 4 Mitat ja integrointi 7 5 Kompleksisten funktioiden integrointi 10 6 Nolla-mittaisten

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

4. Martingaalit ja lokaalit martingaalit

4. Martingaalit ja lokaalit martingaalit STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet:

5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet: 5.. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [, ) jolla on ominaisuudet: x = x = x + y x + y, x, y V a x = a x, x V, a K (= R tai C) Esimerkki 5..

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

Tasa-asteisesti jatkuvien funktioperheiden suppenevista osajonoista

Tasa-asteisesti jatkuvien funktioperheiden suppenevista osajonoista Tasa-asteisesti jatkuvien funktioperheiden suppenevista osajonoista Pro gradu -tutkielma Toni Vesikko 243023 Itä-Suomen yliopisto 7. heinäkuuta 2016 Sisältö 1 Johdanto 1 2 Perusteet ja merkintöjä 2 3 Funktionaalianalyysin

Lisätiedot

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS HILBRTIN AVARUUDT 802652S MIKAL LINDSTRÖM KVÄÄN 2010 ANALYYSI 3 -LUNTOJN PRUSTLLA TOIMITTANT TOMI ALAST JA LAURI BRKOVITS Sisältö 1 Hilbertin Avaruudet 3 1.1 Normi- ja L p -avaruudet........................

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Tasainen suppeneminen ja sen sovellukset

Tasainen suppeneminen ja sen sovellukset Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2012 Kari Astala

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2012 Kari Astala FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 212 Kari Astala Luentomuistiinpanot perustuvat aikaisempiin versioihin vuodelta 26 (Kari Astala

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin. Matematiikan ja tilastotieteen laitos Topologia I 1. kurssikoe 26.2.2013 Malliratkaisut ja tehtävien tarkastamiset Tehtävät 1 ja 2 Henrik Wirzenius Tehtävät 3 ja 4 Teemu Saksala Jos sinulla on kysyttävää

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Johdatus topologiaan (4 op)

Johdatus topologiaan (4 op) 180305 Johdatus topologiaan (4 op) Kevät 2009 1. Alkusanat Sana topologia on johdettu kreikan kielen sanoista topos ja logos, jotka merkitsevät paikkaa ja tietoa. Jo 1700-luvun alussa käytettiin latinan

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Kalle

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

Euklidiset avaruudet. MS-C1540 Euklidiset avaruudet. Tavoitteet. Perusongelma. Esimerkki. Solmussa vai ei? Linkissä vai ei?

Euklidiset avaruudet. MS-C1540 Euklidiset avaruudet. Tavoitteet. Perusongelma. Esimerkki. Solmussa vai ei? Linkissä vai ei? MS-C1540 Euklidiset avaruudet Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2017 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu

Lisätiedot

MS-C1540 Euklidiset avaruudet

MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2017 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot