Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
|
|
- Julia Aaltonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Chapter 3. The Molecular Dance 1 Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
2 Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen energia: Molekyylien satunnaisliike tuhoaa järjestystä Johtopäätös: Solut toimivat paremmin kylmässä? EI! Miksi? Biologinen kysymys: Miten nanomaailma poikkeaa makromaailmasta?
3 Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen energia: Molekyylien satunnaisliike tuhoaa järjestystä Johtopäätös: Solut toimivat paremmin kylmässä? EI! Miksi? Biologinen kysymys: Miten nanomaailma poikkeaa makromaailmasta? Fysikaalinen idea: Kaikki on termisessä liikkeessä
4 Jakaumista Diskreetti jakauma: Muuttuja saa diskreettejä arvoja 1,,... N riippumatonta tapausta: N 1 kpl = 1 N kpl = jne. Todennäköisyys tapaukselle i on P( i ), missä N N i Additiivisuus: Todennäköisyys tapaukselle, että havaitaan joko i tai j N i N N Normiointi: i P j P( ) suurilla N i P( ) P( ), i j i j N N... N N N 1 ( i) 1
5 Jatkuva jakauma: Muuttuja jatkuva Todennäköisyys tapaukselle, että dn( 0 ) mittausta saa arvon välillä [ 0, 0 + d], on dn( 0) N P( ) d suurille 0 N Normiointi: P ( ) d 1 Normaalijakauma: 1 P( ) e 0 = 0, = 0,5 = 1
6 Muuttujan odotusarvo (keskiarvo): Funktion f() odotusarvo: ( ) ( ) diskreetti f i P i i f( ) f ( ) P( ) d jatkuva Muuttujan varianssi: Keskihajonta: ( ) diskreetti ip i i P( ) d jatkuva varianssi( ) keskihajonta (RMS)
7 Terminen liike: kineettinen kaasuteoria Ideaalikaasulaki: Boltzmannin vakio: k B = 1, J/K pv Nk T nrt k T J pn nm N ideaalikaasupartikkelia kuutiossa (harva kaasu): mv Liikemäärä muuttuu törmäyksissä seinään: Törmäysten välinen aika (samaan seinään) per molekyyli: Seinään voima: (yhdestä molekyylistä) N molekyyliä: 1 B ( ) B r 4,1 10 4,1 vauhti jakautunut f ( mv ) mv mv t L L v mv t L v f p A Nm v Nm v k BT L L V m v
8 y z ja 3 v v v v v kin 1 3 E m v k T B Ideaalikaasupartikkelin keskim. kineettinen energia on 3 kt B Ei riipu (ideaali)kaasumolekyylien lajista eikä koosta Esim. N huoneenlämmössä M(N ) 8 g/mol v 3 3 4,1 10 m 0,08 kg / mol / mol 1 kbt J m s
9 Esim. Minkä kokoiset (ideaalikaasu)partikkelit alkavat leijua huoneenlämmössä ilmassa, jos niiden tiheys on sama kuin veden?
10 Esim. Minkä kokoiset (ideaalikaasu)partikkelit alkavat leijua huoneenlämmössä ilmassa, jos niiden tiheys on sama kuin veden? Potentiaalienergiaero lattian ja katon välillä U mg Vg k T 1 (3m) (3m) B r 4,1 10 J 4,110 J 4 V 3 r 1,4 10 m kg m ,81 3m 3 m s r 3nm Vrt. Vesimolekyylin r = 0,135 nm
11 Esim. Molekyylien liike solukalvossa 11 Translaatio -dim. Keskim. translaatioenergia / molekyyli = kt Molekyyleillä eri massa ja siten eri keskim. vauhti Ei ideaalikaasu: vuorovaikutuksia molekyylien välillä B
12 Molekyylien vauhtijakauma Tähän asti vain keskimääräinen v ; mikä on vauhtijakauma? Voidaan mitata: Tyhjiö: höyrystyneet metalliatomit eivät koe törmäyksiä kaasuatomeihin Höyrystetty metalli Thallium-höyry: 944 K ja 870 K redusoitu nopeus skaalaa T:n u u m kt 4 B
13 Boltzmann-jakauma Ideaalikaasun molekyylien vauhdit normaalijakautuneet: Tasapainossa v 0 (muuten nettovirtaus) kt v m v B y z P( v ) v m kt mv k T m P( v, v y, vz ) e kt B B v v 1 P( v) e todennäk. että -suunt. v v e B 3 mv k T B
14 Boltzmann-jakauma N toisistaan riippumattomasti liikkuvaa ideaalikaasumolekyyliä: 1 N 1 N mv mv mv ½ m( v v... v ) kbt kbt kbt kbt ( 1,,..., N )... P v v v e e e e Ideaalikaasumolekyylit eivät vuorovaikuta: vain kineettistä energiaa E kbt P( tila) Boltzmann-jakauma e Pätee myös yleisesti, kun potentiaalienergiatermit U( i ) tunnetaan Kun T 0, P(alin energiatila) 1
15 Aktivaatioenergiavalli Aktivaatioon tarvitaan usein jokin minimienergia Esim. veden haihdutus: Nopeusjakauma kattilassa Aluksi tasapainossa kansi suljettuna ja eristettynä Kannen avaus: karannut jakaumaosa: e E k T Kannen sulkemisen jälkeen uusi tasapaino (katkoviiva) Yksinkert. kemiallisten reaktioiden nopeuden T-riippuvuus barrier B e E k T barrier B
16 Relaksaatio tasapainoon: Kokonaisenergia ei muutu Energian jakautuminen partikkeleille muuttuu Törmäysten kautta Liikkeen järjestyksen aste muuttuu Mekaaninen energia termiseksi energiaksi: KITKA Järjestynyt liike satunnaisliikkeeksi Esim. Suihku korkeaenergisiä vesimolekyylejä veteen:
17 Molekyylien terminen liike Translaatiot, värähtelyt, rotaatiot Värähtelyt: Atomit tasapainoasemansa ympärillä Rotaatiot: Koko molekyyli Molekyylin sisäiset -sidosten ympäri Molekyylin konformaatioenergia riippuu sidoskulmista Esim. Etaani CH 3 -CH 3
18 Chapter 4. Random Walks, Friction and Diffusion Dissipaatio: Järjestys epäjärjestys Dissipatiivisia prosesseja: Diffuusio nesteessä Kitka Resitanssi Lämmönjohtuminen Tärkeitä nanoskaalan maailmassa Biologinen kysymys: Jos kaikki liike on satunnaista solujen nanomaailmassa, miten voimme sanoa mitään ennustuskykyistä solujen toiminnasta? Fysikaalinen idea: Satunnaisesti liikkuvien solutason toimijoiden kollektiivinen liike voi olla ennustettavaa, vaikka yksittäisen ei.
19 Kuljetusilmiöt biologisissa systeemeissä 19 Passiivinen vs. aktiivinen Lyhyt vai pitkä etäisyys Aksonin pituus ihmisessä voi olla lähes 1 m Proteiini- ym. synteesi soomassa Miten kuljetus aksonin synaptisille päätteille? Diffuusio? Akt. kuljetusmekanismit?
20 Brownin liike Robert Brown (187): Siitepölyhiukkaset (kolloidipartikkelit) liikkuvat satunnaisesti nesteessä Liikkeen nopeus riippuu lämpötilasta Liike ei lakkaa Elottomatkin partikkelit liikkuvat samalla tavoin Ongelmia: Siitepölyhiukkaset suuria (m), vesimolekyylit pieniä (< nm) Vesimolekyylien kineettinen energia ei riitä potkimaan Molekyylien törmäystaajuudet suuria (>10 1 s -1 ) Mahdoton nähdä korkeataajuista liikettä Einstein (1905): Liike kuitenkin liuosmolekyylien potkuista Kehitti teorian selittämään Brownin liikkeen Nähdään vain hyvin harvinaisia tapahtumia = isoja siirtymiä Suuri määrä potkuja kuljettamassa satunnaisesti samaan suuntaan Nobel -palkinto valosähköisestä ilmiöstä Perrin (1909): Teorian kokeellinen vahvistus mikroskopialla Nobel 196 diffuusiosta ja Brownin liikkeestä
21 Perrinin kokeet:
22 Satunnaiskävely ( random walk ) ja diffuusio Diffuusiolain johto yhdessä dimensiossa: Satunnaisaskel, pituus L; askelten välinen aika t Askeleella j siirtymä k j L, k j = 1 Paikka askeleen j jälkeen j : j = j-1 + k j L Lähtö paikasta 0 = 0
23 k L L k L k N N 1 N N 1 N 1 N N N askelta N NL 0 toistojen 1 keskiarvossa
24 Määritellään diffuusiokerroin D: L t kokonaiskävelyaika D, missä N t t askelten välinen aika Dt 1-dimensioinen diffuusiolaki N Yksittäinen satunnaiskävely 30 satunnaiskävelyn keskiarvo
25 Satunnaiskävely kahdessa dimensiossa: N N N r y 4Dt Satunnaiskävely kolmessa dimensiossa: N N N N r y z 6Dt
Luento Pääteemat: Vetysidos Veden ominaisuudet Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
Luento 0.1.017 1 Pääteemat: Vetysidos Veden ominaisuudet Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Vetysidos Varattujen ja myös neutraalien molekyylien välillä Kaksi elektronegatiivista
LisätiedotChapter 4. Random Walks, Friction and Diffusion
Chapter 4. Random Walks, Friction and Diffusion 1 Luento3 6.1.017 Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen kuvantaminen Chapter 4. Random Walks, Friction and Diffusion Dissipaatio:
LisätiedotBECS-C2101 Biofysiikka
BECS-C2101 Biofysiikka 1 Luento 2 16.1.2015 Solujen sisustan koostumus Biomolekyylien vuorovaikutukset ja rakenne Veden ominaisuudet Chapter 2. What s Inside Cells 2 Biologinen kysymys: Miten solut toteuttavat
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin
LisätiedotNesteen sisäinen kitka ja diffuusio
Nesteen sisäinen kitka ja diffuusio 1 Luento.1.016 (oppikirjan luku 4) Nesteen sisäinen kitka Satunnaiskävelyilmiöitä Diffuusio Diffuusio kalvon läpi Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotBiofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.
Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä
LisätiedotTermodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
Lisätiedotkertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on
tavoitteet kertausta Tiedät mitä on Boltzmann-jakauma ja osaat soveltaa sitä Ymmärrät miten päädytään kaasumolekyylien nopeusjakaumaan Ymmärrät kuinka voidaan arvioida hiukkasen vapaa matka Kaikki mikrotilat,
LisätiedotLuento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
LisätiedotLuento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit
Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotEntrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit
Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
Lisätiedot6. Entropia, lämpötila ja vapaa energia
6. Entropia, lämpötila a vapaa energia 1 Luento 6 24.2.2017: Shannonin entropia M I NK P ln P 1 Boltzmannin entropia S k B ln Lämpötila Vapaa energia 2 Probleemoita: Miten DNA-sekvenssistä määräytyvän
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotChapter 7. Entropic forces at work
Chapter 7. Entropic forces at work 1 Luento 8 4.3.2016 Osmoottinen paine Pintajännitys Tyhjennysvuorovaikutus MIKSI? Vapaa energia F a = E a -TS a voi pienentyä 1. Pienentämällä energiaa 2. Kasvattamalla
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
Lisätiedotinfoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2
infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
LisätiedotTermodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotPuhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
Lisätiedot( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi
S-4.35, FYSIIKKA III, Syksy 00, LH, Loppuiikko 38 LH-* Laske happimolekyylin keskimääräinen apaa matka 300 K lämpötilassa ja,0 baarin paineessa. Voit olettaa, että molekyyli on pallon muotoinen ja pallon
LisätiedotKemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
LisätiedotLuku 5: Diffuusio kiinteissä aineissa
Luku 5: Diffuusio kiinteissä aineissa Käsiteltävät aiheet... Mitä on diffuusio? Miksi sillä on tärkeä merkitys erilaisissa käsittelyissä? Miten diffuusionopeutta voidaan ennustaa? Miten diffuusio riippuu
LisätiedotBiofysiikka, Luento
Biofysiikka, Luento 4 3..017 1 Diffuusio eri geometrioissa ja sovelluksia Varattujen partikkelien diffuusio (elektrodiffuusio) Johdatus matalien Reynolds-lukujen maailmaan Aikariippuvat diffuusioprosessit
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotLuku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.
Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen
LisätiedotMaxwell-Boltzmannin jakauma
Maxwell-Boltzmannin jakauma Homogeenisessa tasapainotilassa redusoidut yksihiukkastodennäköisyydet f voivat olla vain nopeuden funktioita, f = f(v ), ja H-funktio ei toisaalta voi riippua ajasta, eli dh
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
LisätiedotLuento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi
Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-
LisätiedotREAKTIOT JA ENERGIA, KE3. Kaasut
Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
LisätiedotValomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.
Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin
LisätiedotS , Fysiikka III (S) I välikoe Malliratkaisut
S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli
LisätiedotTeddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
LisätiedotDissipatiiviset voimat
Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
LisätiedotLASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotEkvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotEkvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
Lisätiedot8. Chemical Forces and self-assembly
Luento 10 24.3.2017 1 Kemiallinen potentiaali Sähkökemiallinen potentiaali Kemiallisen reaktion suunta Reaktiokoordinaatti Entsymaattisten reaktioiden kinetiikka Elektro-osmoottiset ilmiöt solukalvolla
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
Lisätiedot3.4 Liike-energiasta ja potentiaalienergiasta
Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
Lisätiedot- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)
KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:
LisätiedotLuento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
LisätiedotKuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio
Kuljetusilmiöt Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Johdanto Kuljetusilmiöt on yhteinen nimitys prosesseille, joissa aineen molekyylien liike aiheuttaa energian,
Lisätiedotdl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl
Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan
LisätiedotKäytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
LisätiedotVastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.
Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
Lisätiedot766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)
7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
LisätiedotLIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotVauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä
S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen
LisätiedotEkvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.
. Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotChapter 7. Entropic forces at work
Chapter 7. Entropic forces at work Osmoottinen paine Pintaännitys Tyhennysvuorovaikutus MIKSI? Hiukan termodynamiikan kertausta Tasapainotila: systeemiin vaikuttava nettovoima = 0 Jos vain yksi systeemin
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
LisätiedotBM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotKEMIAN MIKROMAAILMA, KE2 VESI
VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen
LisätiedotKeski-Suomen fysiikkakilpailu
Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee
Lisätiedot1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2
FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotLuento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
Lisätiedotvetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
LisätiedotLuento 7: Atomien ja molekyylien väliset voimat ja kineettinen kaasuteoria
Luento 7: Atomien ja molekyylien äliset oimat ja kineettinen kaasuteoria kirjan kappaleet.,.,. ja.. Osan pohjana on käytetty luentomonistetta Termofysiikan perusteet, I. apari ja H. Vehkamäki (http://www.courses.physics.helsinki.fi/fys/termo/termofysiikka_h.pdf)
LisätiedotREAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos
ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli
LisätiedotMekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:
Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei
LisätiedotSÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
LisätiedotMassakeskipiste Kosketusvoimat
Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)
LisätiedotMiltä työn tekeminen tuntuu
Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu
Lisätiedot