811120P Diskreetit rakenteet
|
|
- Jyrki Niemi
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 811120P Diskreetit rakenteet Kombinatoriikka
2 7.1 Johdanto Kombinatoriikka tutkii seuraavan kaltaisia kysymyksiä: Kuinka monella tavalla jokin toiminto voidaan suorittaa? Kuinka monta tietynlaista objektia on olemassa? Esimerkkejä Kuinka monesti algoritmin tietyt askeleet suoritetaan Montako salausavainta jossain tietyssä salausjärjestelmässä on käytössä Reittien lukumäärä lähteestä kohteeseen Objektien keskinäisten järjestysten lukumäärä Joukon osajoukkojen lukumäärä P Diskreetit rakenteet, Kombinatoriikka 2
3 7.1 Johdanto (2) Kombinatoriikalla on läheinen yhteys klassiseen todennäköisyyslaskentaan Tapahtuman todennäköisyys = suotuisten tapausten lukumäärä jaettuna kaikkien tapausten lukumäärällä Esimerkki: Mikä on todennäköisyys saada lotossa yhdellä rivillä 7 oikein? Vastaus: 1/(kaikkien lottorivien lukumäärä) P Diskreetit rakenteet, Kombinatoriikka 3
4 7.2 Joukkojen unionin koko Olkoot A ja B joukkoja; mikä on A B =? Jos lasketaan A + B, niin joukon A B alkiot lasketaan kahdesti; siis A B = A + B A B Tehtävä1: Erään kurssin 120:stä opiskelijasta 84 osaa ohjelmoida C kielellä ja 66 Javalla. Jos 45 osaa ohjelmoida sekä C:llä että Javalla, niin kuinka moni ei osaa ohjelmoida kummallakaan? Vastaus: 15 Tehtävä2: Laske A B C Vastaus: A + B + C A B A C B C + A B C P Diskreetit rakenteet, Kombinatoriikka 4
5 7.3 Tuloperiaate Perustuu siihen, että A B = A B Esimerkki: Eräässä tekstinkäsittelyohjelmassa kirjaimelle on tarjolla viisi erilaista fonttia ja kolme tyyliä (normaali, kursivoitu ja lihavoitu). Monellako tavalla kirjaimen fontin ja tyylin yhdistelmä voidaan valita? Olkoon fonttien joukko F ja tyylien joukko T. Silloin F = 5 ja T = 3. Yhdistelmiä on yhtä paljon kuin joukossa F T alkioita, ts. F T = 15 Periaate: Jos toiminto A voidaan suorittaa m:llä eri tavalla ja toiminto B tämän jälkeen n:llä, toiminnon A suorittamisesta riippumattomalla tavalla, niin toiminto A ja B voidaan suorittaa m n eri tavalla P Diskreetit rakenteet, Kombinatoriikka 5
6 7.3 Tuloperiaate (2) Tehtävä: Eräässä tietojärjestelmässä käyttäjätunnukset koostuvat kolmesta latinalaisen aakkoston (26 kirjainta) suuresta kirjaimesta, joita seuraa kolmen numeron jono (esim. ABC123). Kuinka monta erilaista käyttäjätunnusta on olemassa? Kuinka monessa käyttäjätunnuksessa numero 0 esiintyy ainakin kerran? Vastaus: ja P Diskreetit rakenteet, Kombinatoriikka 6
7 7.4 Permutaatiot Permutaatio on jonkin joukon alkioiden järjestys Permutaatiolla pyritään selvittämään, kuinka moneen järjestykseen n:n alkion joukon alkiot voidaan asettaa Esim. alkioiden a, b ja c eri järjestykset abc, acb, bac, bca, cab, cba (6 kappaletta) Jos alkioita n, permutaation 1. alkio voidaan valita n eri tavalla, 2. alkio n 1 eri tavalla, jne..., (n 1). alkio kahdella eri tavalla ja n. alkio yhdellä tavalla -> tuloperiaatteen nojalla n:n alkion permutaatioiden lukumäärä on n (n 1) 2 1 = n! (merkintä; nimitys n:n kertoma) P Diskreetit rakenteet, Kombinatoriikka 7
8 7.4 Permutaatiot (2) Tehtävä: Liikuntatunnilla on 10 oppilasta. Opettaja haluaa järjestää oppilaat jonoon kaikilla mahdollisilla tavoilla. Jos yhden jonon muodostaminen kestää 10 sekuntia, niin kuinka kauan kestää kaikkien järjestysten toteuttaminen? Vastaus: 420 vuorokautta P Diskreetit rakenteet, Kombinatoriikka 8
9 7.4 Permutaatiot (3) Olkoon annettu 12 palloa, jotka ovat väriä lukuunottamatta samanlaisia. Olkoot palloista 3 sinistä, 4 punaista ja 5 vihreää. Monellako tavalla ne voidaan järjestää? Jos kaikki pallot olisivat erilaisia, järjestyksiä olisi 12! kappaletta. Nyt sinisiä palloja voidaan vaihdella 3! = 6 tavalla ja lopputulos on sama. Samoin punaisia 4! ja vihreitä 5! tavalla. Siten järjestyksiä on 12!/(3! 4! 5!) = P Diskreetit rakenteet, Kombinatoriikka 9
10 7.4 Permutaatiot (4) Em. tarkastelu voidaan yleistää Oletetaan, että meillä on n kappaletta k:ta eri tyyppiä olevia alkioita; tyyppiä i on n i kpl niin, että n 1 +n n k = n. Silloin alkioiden järjestyksiä on n! x = n 1!n 2! n k! P Diskreetit rakenteet, Kombinatoriikka 10
11 7.5 Joukon osajoukon poimiminen Olkoon joukossa n alkiota. Kuinka monella tavalla siitä voidaan poimia r ( n) alkiota, jos alkiot pidetään järjestyksessä? Kuten permutaatiossa 1. alkio voidaan valita n eri tavalla, 2. alkio n 1 eri tavalla, jne..., r. alkio (n+1-r) eri tavalla ja n. alkio yhdellä tavalla -> kaikkiaan P n, r = n n 1 n 2 n r + 1 eri tapaa Esimerkki. Valmentaja poimii 10 pelaajan joukosta jääkiekkokentällisen kenttäpelaajat pelipaikkajärjestyksessä. Montako tapaa? Kentällä 5 pelaajaa, joten mahdollisuuksia on 10*9*8*7*6 = P Diskreetit rakenteet, Kombinatoriikka 11
12 7.6 Kombinaatiot Tarkastellaan n-alkioista joukkoa A, josta otetaan r:n alkion otoksia. Otoksia tarkastellaan joukkoina, ts. niiden alkioiden järjestyksellä ei ole väliä -> tällaisia joukkoja nimitetään joukon A r-kombinaatioiksi Joukon A r-kombinaatioiden lukumäärä on C n, r = n r = P(n,r) r! = n! r! n r! Esimerkki. Montako erilaista Eurojackpot-riviä on olemassa? Pelissä arvotaan 5 numeroa 50:stä 2 tähtinumeroa 10:stä, joten rivejä on 50 5 * 10 2 = = P Diskreetit rakenteet, Kombinatoriikka 12
13 7.6 Kombinaatiot (2) Tehtävä. Mikä on todennäköisyys saada yhdellä pelatulla lottorivillä a) 7 oikein, b) tasan 6 oikein? Vastaus. 1/ / P Diskreetit rakenteet, Kombinatoriikka 13
14 Palaute #!? P Diskreetit rakenteet, Kombinatoriikka 14
Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta
Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,
LisätiedotTOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio
1..018 TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio Esimerkki 1: Sinulla on 5 erilaista palloa. Kuinka monta erilaista kahden pallon paria voit muodostaa, kun valintajärjestykseen a) kiinnitetään
Lisätiedot1. Kuinka monella tavalla joukon kaikki alkiot voidaan järjestää jonoksi? Tähän antaa vastauksen: tuloperiaate ja permutaatio
TOD.NÄK JA TILASTOT, MAA10 Kombinatoriikka Todennäköisyyksiä (-laskuja) varten tarvitaan tieto tapahtumille suotuisien alkeistapausten lukumäärästä eli tapahtumaa vastaavan osajoukon alkioiden lukumäärästä.
LisätiedotLukumäärän laskeminen 1/7 Sisältö ESITIEDOT:
Lukumäärän laskeminen 1/7 Sisältö Samapituisten merkkijonojen lukumäärä I Olkoon tehtävänä muodostaa annetuista merkeistä (olioista, alkioista) a 1,a 2,a 3,..., a n jonoja, joissa on p kappaletta merkkejä.
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Olkoon S = {s 1,s 2,...,s n } äärellinen otosavaruus. Oletetaan, että Pr(s i ) = 1, kaikille i = 1, 2,...,n n Tällöin alkeistapahtumat
LisätiedotKaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
LisätiedotTODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS
TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS Klassinen todennäköisyys P suotuisten alkeistapausten lkm kaikkien alkeistapausten lkm P( mahdoton tapahtuma ) = 0 P( varma tapahtuma ) = 1 0 P(A) 1 Todennäköisyys
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot
Lisätiedothttps://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015
12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotJohdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2005) 1 Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Kombinatoriikan perusperiaatteet
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 3 / vko 10
Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 10 Tuntitehtävät 17-18 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 21-22 loppuviikon harjoituksissa. Kotitehtävät 19-20 tarkastetaan loppuviikon
LisätiedotMat Sovellettu todennäköisyyslasku A
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,
Lisätiedot30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Lisätiedot0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
LisätiedotOsa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen
LisätiedotTodennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset
Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan
Lisätiedot8.1. Tuloperiaate. Antti (miettien):
8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei
LisätiedotSuotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä
Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39
Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39 Tuntitehtävät 21-22 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 25-26 loppuviikon harjoituksissa. Kotitehtävät 23-24 tarkastetaan loppuviikon
Lisätiedot1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa
Lisätiedot9 Yhteenlaskusääntö ja komplementtitapahtuma
9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että
LisätiedotAlgoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Lisätiedot8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan?
8.2. Permutaatiot Esim. 1 irjaimet, ja asetetaan jonoon. uinka monta erilaista järjes-tettyä jonoa näin saadaan? Voidaan kuvitella vaikka niin, että hyllyllä on vierekkäin kolme laatikkoa (tai raiteilla
LisätiedotRatkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
LisätiedotTilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.
Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle
LisätiedotA = B. jos ja vain jos. x A x B
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,
Lisätiedot2. laskuharjoituskierros, vko 5, ratkaisut
2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,
LisätiedotApprobatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotMääritelmiä. Nopanheitossa taas ω 1 = saadaan 1, ω 2 = saadaan 2,..., ω 6 = saadaan
Todennäköisyys Todennäköisyys on epävarman matematiikkaa. Matemaattinen todennäköisyys mallintaa satunnaisia ilmiöitä, kuten esimerkiksi nopantai lantinheitto. Todennäköisyyttä voi lähestyä mm. tilastollisesti
LisätiedotAlgoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
LisätiedotKaulaketju. Syöte. Tuloste. Esimerkki 1. Esimerkki 2
A Kaulaketju Kaulaketjussa on sinisiä ja punaisia helmiä tietyssä järjestyksessä. Helmien järjestys voidaan esittää merkkijonona, jossa S vastaa sinistä helmeä ja P punaista helmeä. Esimerkiksi ketjussa
LisätiedotTodennäköisyyslaskenta - tehtävät
Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotMuodolliset kieliopit
Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.
LisätiedotLuonnolliset vs. muodolliset kielet
Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma
LisätiedotD ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 1A
Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio
Lisätiedot811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
Lisätiedot031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta
031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio
Lisätiedot1. Logiikan ja joukko-opin alkeet
1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista
LisätiedotKuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij
Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä
LisätiedotJuuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
LisätiedotLuku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
LisätiedotRelevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi
Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
LisätiedotMat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:
Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,
Lisätiedot5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lisätiedot4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
LisätiedotNeljän alkion kunta, solitaire-peli ja
Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat
Lisätiedot1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:
MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
Lisätiedot&idx=2&uilang=fi&lang=fi&lvv=2015
20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotPeliteoria luento 1. May 25, 2015. Peliteoria luento 1
May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.
LisätiedotTodennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
Lisätiedot****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
LisätiedotLisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Lisätiedot33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen
LisätiedotTodennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
LisätiedotMatriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
LisätiedotLohkoasetelmat. Vilkkumaa / Kuusinen 1
Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotLukion matematiikkakilpailun alkukilpailu 2015
Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä
LisätiedotTodennäköisyyslaskenta I
Todennäköisyyslaskenta I Ville Hyvönen, Patrik Lauha, Topias Tolonen 1 Kesä 2018 1 Virheitä ja kehitysehdotuksia otetaan vastaan jatkuvasti osoitteeseen topias.tolonen@helsinki.f i. Kiitos palautteestasi!
Lisätiedot4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
LisätiedotTopologia Syksy 2010 Harjoitus 9
Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,
LisätiedotUolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2
Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
LisätiedotTilastotieteen perusteet
Tilastotieteen perusteet Esim. Arvostettu juoma-asiantuntija ekonomisti E osallistuu juomien makutestiin, jossa voi saada voi saada arvonimen Melko Suuri Maistaja (MSM *), Suuri maistaja (SM**) tai Erittäin
LisätiedotJos d-kohdan vasemmalla puolella perusjoukkona on X, niin oikealla puolella
DISKREETTI MATEMATIIKKA, harjoitustehtävät Tehtäviä tulee todennäköisesti lisää. Uudet tehtävät tulevat aikanaan ladattavaksi samalle sivulle, josta tämäkin moniste löytyi. Ilmoitustaululta on nähtävissä
Lisätiedot4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
LisätiedotTodennäköisyyslaskenta
Todennäköisyyslaskenta Syksy 2017 Kerkko Luosto 3. lokakuuta 2017 Kerkko Luosto Todennäköisyyslaskenta 3. lokakuuta 2017 1 / 33 Johdanto Johdantoesimerkki Esimerkki Hannu Huijari ostaa Keijo Kelmiltä Hämärätorilla
LisätiedotOtanta ilman takaisinpanoa
Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku
Lisätiedot1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:
MAA6. Loppukoe 8.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan
LisätiedotTekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.
3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää
LisätiedotTodennäköisyyslaskenta sivuaineopiskelijoille
Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.
Lisätiedot3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään
LisätiedotAlgoritmit. Ohjelman tekemisen hahmottamisessa käytetään
Ohjelmointi Ohjelmoinnissa koneelle annetaan tarkkoja käskyjä siitä, mitä koneen tulisi tehdä. Ohjelmointikieliä on olemassa useita satoja. Ohjelmoinnissa on oleellista asioiden hyvä suunnittelu etukäteen.
Lisätiedotkeskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5
Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
LisätiedotÄärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen
Lisätiedot