Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 11. harjoituksen ratkaisut

Koko: px
Aloita esitys sivulta:

Download "Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 11. harjoituksen ratkaisut"

Transkriptio

1 Tknillinn korkakoulu Mat Epälinaarisn lmnttimntlmän prustt (Mikkola/Ärölä) 11. harjoituksn ratkaisut Tht. 1 Rfrnssitilan suurita käyttän (kokonais-lagrang) lausuttu hto krittisn aika-askln pituudll on (6.6.63) t crit min l0 c 0 ja päivittyn Lagrangn sityksn mukainn hto puolstaan (6.6.61) t crit min, c 2 0 = F 2 C SE + S 11 ρ 0 (1) l c, c2 = CσT + σ 11. (2) ρ Jotta molmmilla sitystavoilla päädyttäisiin samaan aika-askln pituutn, tulisi olla l0 c 0 = l c. (3) Yksiaksiaalisssa muodonmuutostilassa pätvät yhtydt F = l/l 0 = λ 1 = J. Käyttämällä hyväksi tangnttimodulin välistä yhtyttä (Box 5.1) C SE = Jλ 4 1 CσT, J = λ 1, (4) PK2 jännityksn ja Cauchyn jännityksn välistä yhtyttä (Box 3.2) S = JF σf T, skä massansäilymisyhtälöä (2.2.10) ρj = ρ 0 saadaan c 2 0 = F 2 C SE + S 11 ρ 0 = J 2 J 3 C σt + J J σ 11 J Jρ = CσT + σ 11 J 2 ρ = c2 J 2. (5) Ottamalla huomioon rfrnssitilan ja nykytilan pituuksin välinn yhtys l = λ 1 l 0 = J l 0 saadaan l0 c 0 = l /J c /J = l c. (6) Näin olln kumpikin sitystapaa johtaa samaan htoon krittisn aika-askln pituudll. Tht. 2 Tasapainotilan lämmönjohtumisyhtälö on x m (K mn θ x n ) = (K mn θ,n ),m = 0, (7) jolla on äärttömän tarkastlualun tapauksssa ratkaisu θ = θ = vakio. Lisätään tasapainoratkaisuun ajasta riippuva häiriö θ jolloin saadaan Epästationäärinn diuusioyhtälö on Sijoittamalla tähän häiritty ratkaisu saadaan θ(t) = θ + θ(t) = θ + ωt+iκn x. (8) θ t (K mnθ,n ),m = 0. (9) θ t (K mn( θ,n + θ,n )),m = θ t (K θ mn,n ),m = 0, (10) 1

2 josta dlln Tästä saadaan ω ωt+iκn x i 2 κ 2 K mn n n n m ωt+iκn x = (ω + κ 2 K mn n n n m ) ωt+iκn x = 0. (11) ω + κ 2 n K n = 0 ω = κ 2 n K n. (12) Ehto ratkaisun stabiiliudll on R(ω) 0. Koska (κ 2 ) 0 κ R, saadaan stabiilisuushdoksi n K n 0, missä n on milivaltainn suunta. Diuusiokrroinmatriisin K ollssa symmtrinn totutuu kysinn hto, jos K positiivismidniitti. Tht. 3 Matriaalinn tangntiaalijäykkysmatriisi saadaan sovltamalla oppikirjan lausktta (6.4.13), jonka mukaan K mat IJ = B T I [C σt ]B J dω. (13) Ω Tangnttimodulimatriisi Voightin notaatiota käyttän kirjoittuna on [C σt ] = CσT 1111 C1122 σt C1112 σt C2211 σt C2222 σt C2212 σt C σt 1211 C σt 1222 C σt 1212 Nlisolmuisn lmntin muotofunktiot ovat (Appix 3, A3.10) (14) N I = 1 4 (1 + ξ Iξ)(1 + η I η), (15) missä ξ I ja η I ovat ξ ja η koordinaatit kantalmntin solmussa I. Muotofunktioidn drivaatat nykytilan koordinaattin suhtn ovat (4.4.42) N T I,x = [N I,x N I,y ] = N T I,ξF ξ, (16) missä F ξ on kantalmntin ja nykytilan välinn muodonmuutosgradintti (4.4.40) [ ] x,ξ x F ξ =,η. (17) y,ξ y,η Sijoittamalla dllisn lauskksn koordinaatit x ja y lausuttuna lmntin solmukoordinaattja ja muotofunktioita käyttän ja suorittamalla drivoinnit saadaan Tämän kääntismatriisi on F ξ = I=1 [ xi ξ I (1 + η I η) x I η I (1 + ξ I ξ) y I ξ I (1 + η I η) y I η I (1 + ξ I ξ) ]. (18) F ξ = 1 [ ] y,η x,η, J J ξ y,ξ x ξ = x,ξ y,η x,η y,ξ. (19),ξ Solmuun I liittyväksi matriisiksi B I saadaan dllä laskttujn muotofunktioidn drivaattojn avulla B I = N I,x 0 0 N I,y. (20) N I,y N I,x Näistä saadaan koottua koko lmntill B = [ ] B 1 B 2 B 3 B 4. Sijoittamalla dllä sittyt tulokst matriaalisn tangnttimatriisin lauskksn ja muuntamalla lauskkssa siintyvä nykytilan tilavuusintgraali kantalmnttialusn (dω = J ξ a dξ dη) saadaan K mat = 1 1 B T [C σt ]BJ ξ a dξ dη, (21) 2

3 missä a on lmntin paksuus. Ylnsä laskut suorittaan yksikköpaksuutta kohti, jolloin asttaan yksinkrtaissti a = 1. Gomtrinn jäykkyysmatriisi saadaan oppikirjan lauskksta (6.4.14) K go IJ = IH IJ, H IJ = B T I σb J dω, (22) Matriisi B I on (4.5.2) B T I = NI,x T = [ ] N I,x N I,y. (23) Tarvittavat muotofunktiodn drivaatat on laskttu jo matriaalista tangntiaalijäykkyyttä johdttassa. Jännitystnsori saadaan konstitutiivista yhtyttä käyttän. Sijoittamalla dllä sittyt lauskkt ja ottamalla huomioon, ttä kysssä on 2D thtävä saadaan K go IJ = I Ω B T I σb J J ξ a dξ dη. (24) Tht. 4 Annttua konstitutiivista yhtyttä käyttän saadaan tangnttimodulill lausk [C σt ] = Jännitys on puolstaan λ + 2µ λ 0 λ λ + 2µ µ, λ = λ 0 J, µ = µ 0 λ 0 ln J J. (25) σ = µ 0 J (B I) + λ 0 (ln J)I, (26) J missä B = FF T on vasmmanpuolinn Cauchyn-Grnin muodonmuutostnsori. Tämän laskmisksi tarvitaan muodonmuutosgradinttia lmntin intgrointipistissä. Titokonn rajallissta sanapituudsta aihutuvin pyöristysvirhidn välttämisksi kannattaa muodonmuutosgradintti F laska siirtymägradinttia H hyväksi käyttän. Siirtymistä drivoimalla saadaan u = x X H = u X = x X X X = F I F = H + I. (27) Siirtymägradintti lmntin alulla saadaan lausuttua solmusiirtymiä u I ja muotofunktioidn drivaattoja käyttän muodossa H = u I B T 0I, B T 0I = [N I,X N I,Y ] = [N I,ξ N I,η ] F 0ξ. (28) Kantalmntin ja rfrnssitilan välinn muodonmuutogradintti F 0ξ ja sn kääntistnsori saadaan laskttua asttamalla thtävän 3 lauskkssa (18) x I = X I. Intgraalit lmntin yli saadaan laskttua numrissti Gaussin kvadratuurja käyttän. Oppikirjan yhtälöstä (4.5.21) saadaan 2Dtapauksn intgointikavaksi 1 1 f(ξ, η) dξdη = n Q1 n Q2 Q 1 =1 Q 2 =1 w Q1 w Q2 f(ξ Q1, η Q2 ). (29) Kahdn pistn kaavalla ovat intgrointipistidn koordinaatit ξ i = ±1/ 3 ja painokrtoimt w i = 1 (Kirjan liit, tabl A3.3). Tästä tnpäin ratkaisu on dllä sitttyjn lauskkidn kirjoittamista titokonll. Lasknta suoritttiin MATLAB ohjlmistoa ja tidostoja h11t4.m ja muoto4.m käyttän. Kysist tidostot on sittty näidn ratkaisujn lopussa. Tuloksna saadaan pyydtyiksi matriisiksi K mat = , (30) symm

4 K go = symm (31) Lasknnassa käyttyt MATLAB tidostot: h11t4.m X = [0.0, 1.0, 1.0, 0.0; 0.0, 0.0, 1.0, 1.0]; Alkutilan solmukoordinaatit x = [0.0, 0.9, 1.2, 0.0; 0.0, 0.0, 1.2, 0.9]; Nykytilan solmukoordinaatit lam = 100.0; mu = 100.0; Matriaalivakiot XI = 1.0/sqrt(3.0)*[-1.0, 1.0]; Intgrointipistidn koordinaatit W = [1.0, 1.0]; Painokrtoimt a = 1.0; Elmntin paksuus Kmat = zros(8,8); Kgo = zros(8,8); HH = zros(4,4); Taulukoidn alustus U = x - X; Siirtymät Intgrointi for ipx = 1:2 suunta xi for ipy = 1:2 suunta ta xi = XI(ipx); ta = XI(ipy); intgrointipistn koordinaatit w = W(ipx)*W(ipy); painokrroin [N,J] = muotof4(x,xi,ta); Muotofunktiot ja drivaatat X:n ja Y:n suhtn H = zros(2); Siirtymägradintti for I = 1:4 H = H + [U(1,I)*N(2,I), U(1,I)*N(3,I); U(2,I)*N(2,I), U(2,I)*N(3,I)]; F = H + y(2); B = F*F'; JF = dt(f); Muodonmuutosgradintti Vasmmanpuolinn C-G df.tnsori Muodonmuutosgradintin dtminatti if(jf <= 0) 'Virh: Jacobin dtrminantti nolla tai ngatiivinn' paus [N,J] = muotof4(x,xi,ta); Muotofunktiot ja drivaatat x:n ja y:n suhtn lam2 = lam/jf; mu2 = (mu - lam*log(jf))/jf; apu = lam *mu2; C = [apu, lam2,0; lam2, apu, 0; 0, 0, 2.0*mu2]; Konstitutiivinn matriisi Sig = mu/jf*(b-y(2)) + lam/jf*log(jf)*y(2); Jännitystnsori B1 = [N(2,1), 0 ; 0, N(3,1); N(3,1), N(2,1)]; B2 = [N(2,2), 0 ; 0, N(3,2); N(3,2), N(2,2)]; B3 = [N(2,3), 0 ; 0, N(3,3); N(3,3), N(2,3)]; 4

5 B4 = [N(2,4), 0 ; 0, N(3,4); N(3,4), N(2,4)]; B = [B1,B2,B3,B4]; BB = N((2:3),:); Kmat = Kmat + B'*C*B*a*J*w; HH = HH + BB'*Sig*BB*a*J*w; for i = 1:4 for j = 1:4 Kgo(2*i-1,2*j-1) = HH(i,j); Kgo(2*i,2*j) = HH(i,j); K = Kmat + Kgo; muotof4.m function[n,j] = muotof4(x,xi,ta) =============================================================================================== Funktio muotof4(x,y,xi,ta) palauttaa nlisolmuisn lmntin muotofunktioidn ja niidn drivaattojn arvot, skä Jacobin dtrminantin arvon lmntin pistssä (xi,ta) Kutsuparamtrit: x = [x1, x2, x3, x4 Elmntin solmukoordinaatit y1, y2, y3, y4] xi & ta Kantalmntin pist, jossa arvot halutaan. Funktio palauttaa: N = [ N1, N2, N3, N4 Taulukko, jossa nsimmäisllä rivillä dn1dx, dn2dx, dn3dx, dn4dx muotofunkiodn arvot, toislla ja kolmannlla rivillä dn1dy, dn2dy, dn3dy, dn4dy]; drivaatat x:n ja y:n suhtn. J Jacobin dtrminatti =============================================================================================== Muotofunktiot ja niidn drivaatat xi:n ja ta:n suhtn Nxy = [(1-xi)*(1-ta), (1+xi)*(1-ta), (1+xi)*(1+ta), (1-xi)*(1+ta); -1+ta, 1-ta, 1+ta, -1-ta ; -1+xi, -1-xi, 1+xi, 1-xi ]; Nxy = 0.25*Nxy; Jacobin matriisi F = [0,0;0,0]; for I =1:4 F = F + [x(1,i)*nxy(2,i), x(1,i)*nxy(3,i); x(2,i)*nxy(2,i), x(2,i)*nxy(3,i)]; Jacobin matriisin dtrminantti ja kääntismatriisi J = F(1,1)*F(2,2) - F(1,2)*F(2,1); Finv = 1/J*[F(2,2), -F(1,2); -F(2,1), F(1,1)]; Muotofunktioidn drivaatat x:n ja y:n suhtn dndx = [0,0,0,0]; dndy = [0,0,0,0]; for I = 1:4 dndx(i) = Nxy(2,I)*Finv(1,1) + Nxy(3,I)*Finv(2,1); 5

6 dndy(i) = Nxy(2,I)*Finv(1,2) + Nxy(3,I)*Finv(2,2); Krätään muotofunktiot ja drivaatat yhtn taulukkoon N = [Nxy(1,:);dNdx;dNdy]; 6

Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 12. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 12. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.87 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 2. harjoituksen ratkaisut Teht. Kirjan esimerkissä on kaikissa matriiseissa diagonaalin ulkopuolisilla termeillä

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa. / ELEMENIMENEELMÄN PERUSEE SESSIO : Gaussin intgrointi mojanan alussa. JOHDANO Ylisssä lujuusopin lmnttimntlmässä lmntin jäykkyysmatriisi [ k ] ja kvivalnttinn solmukuormitusvktori { r } lasktaan määrätyistä

Lisätiedot

Sauvaelementti hum

Sauvaelementti hum Sauvalmntti hum.9. Yhdn solmuvapausastn sauvalmntti akastllaan kuvan mukaista sauvalmnttiä. Sauvan vasmmassa päässä on sauvan lokaalisolmu numo, jonka -koodinaatti on ja vastaavasti oikassa päässä lokaalisolmu

Lisätiedot

Ax 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0

Ax 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0 Tamprn tknillinn yliopisto Tknisn suunnittlun laitos EDE-00 Elmnttimntlmän prustt. Harjoitus 6 Syksy 0. F 00 OpNro 859 L 800 mm M T 85 K K 9 E 05000 MPa Kulmat ja pituudn lämpölaajnmiskrroin α 0.60865

Lisätiedot

Lämmönsiirto (ei tenttialuetta)

Lämmönsiirto (ei tenttialuetta) ämmönsiirto um 4..3 ämmönsiirto (i tnttialutta) rminologiaa ämpötila on suur, joka kuvaa, mitn kuuma jokin sin tai ain on. ämpötilaa (lat. tmpratura) mitataan SI-järjstlmässä klvinillä (K) tai clsiusastilla

Lisätiedot

Nelisolmuinen levyelementti

Nelisolmuinen levyelementti Lv hm 6..3 Nliolminn lvlmntti arkatllaan kvan nliolmita lvlmnttiä. q 6 q 8 η 3 q 5 ( 3, 3 q 7 (, q (, v P q ξ (, q q 3 Pitn P koordinaatit voidaan laa mokoordinaattin ξ ja η avlla, jotka ovat normratt

Lisätiedot

Rakenteiden mekaniikan menetelmiä metallirakentajille OSA 1 Elementtimenetelmän alkeet

Rakenteiden mekaniikan menetelmiä metallirakentajille OSA 1 Elementtimenetelmän alkeet Rakenteiden mekaniikan menetelmiä metallirakentajille OSA Elementtimenetelmän alkeet Reijo Kouhia TKK Rakenteiden mekaniikka..25 Metallirakentamisen tutkimuskeskus, Seinäjoki MEKANIIKAN ONGELMIEN RAKENNE

Lisätiedot

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt Jakso 15. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt Tässä jaksossa käsitllään vaihtovirtapiirjä. Mukana on skä sarjapiirjä ttä linaaripiirjä. Sarjapiirilaskut ovat hkä hlpompia, sillä virta

Lisätiedot

Exam III 10 Mar 2014 Solutions

Exam III 10 Mar 2014 Solutions TTY/ Department o Mechanical Engineering and Industrial Systems TE III / EDE_ / S EDE- Finite Ement Method Exam III Mar Solutions. Compute the dection at right end o the y,v / F structure using the potential

Lisätiedot

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5.

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi II Harjoitus Ratkaisuhdotuksia Aapo Tvanlinna. Lask sivun 4 simrkin tapaan sllainn likiarvo luvull, ttä virhn itsisarvo on pinmpi kuin 5. Huomataan nsin,

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

Empiiriset sovellukset

Empiiriset sovellukset Empiirist sollukst Kotithtään ratkaisu.4. S ystmianalyysin Tknillinn korkakoulu Esitlmä # - Esitlmöijän nimi Optimointiopin sminaari - Kät Kotithtää Epäsymmtrisn tidon huutokauppa öljysiintymästä Piirrä

Lisätiedot

3 TOISEN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. y + p(x)y + q(x)y = r(x) (1)

3 TOISEN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. y + p(x)y + q(x)y = r(x) (1) 5 3 TOISEN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT Huomautus pälinaarisista diffrntiaalihtälöistä: Epälinaarisn DY:n ratkaismisn i ol lispätvää mntlmää. Joitakin rikoistapauksia voidaan ratkaista:

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

Ensimmäisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon. + p(x)y = r(x) (28)

Ensimmäisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon. + p(x)y = r(x) (28) .5 Linaarist diffrntiaaliyhtälöt 10 Ensimmäisn krtaluvun diffrntiaaliyhtälö on linaarinn, jos s voidaan kirjoittaa muotoon + p(x)y = r(x) (8) Yhtälö on linaarinn y:n ja y:n suhtn, p ja r voivat olla mitä

Lisätiedot

4 KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT

4 KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT Krtalukua n olvassa diffrntiaalihtälössä F(,,,, (n) ) = siint n:nnn krtaluvun drivaatta (n) = d n /d n ja mahdollissti almpia drivaattoja, :tä ja :ää.

Lisätiedot

Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)

Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1) S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia

Lisätiedot

Luku 4 Elementtimenetelmä tasoalueessa

Luku 4 Elementtimenetelmä tasoalueessa Luku 4 Elementtimenetelmä tasoalueessa Elementtimenetelmän yleistys useampiulotteisiin tapauksiin on sangen suoraviivaista. Kaksidimensionaalisuus mahdollistaa erilaisia elementtigeometrioita, joista tässä

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) . Lasketaan valmiiksi derivaattoja ja niiden arvoja pisteessä x = 2: f(x) = x + 3x 3 + x 2 + 2x + 8, f(2) = 56, f (x) = x 3 + 9x 2 + 2x + 2, f (2) = 7, f (x) = 2x 2 + 8x + 2, f (2) = 86, f (3) (x) = 2x

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

Sami Holopainen Rakenteiden mekaniikka, Vol. 37 No. 2, 2004, ss

Sami Holopainen Rakenteiden mekaniikka, Vol. 37 No. 2, 2004, ss AVARUUSRISTIKON GEOMETRIAN OPTIMOINNISTA Sami Holopainn Rakntidn mkaniikka, Vol. 37 No. 2, 2004, ss. 34-46 TIIVISTELMÄ Artikklissa tarkastllaan usin kirjallisuudssa siintyvän avaruusristikon yhdistttyä

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

Venymälle isotermisessä tilanmuutoksessa saadaan AE AE

Venymälle isotermisessä tilanmuutoksessa saadaan AE AE S-11435, Fyskka III (ES) Tntt 75 1 Stsmän tunnstttavssa olvaa hukkasta on jakautunut kahdll nrgatasoll Ylm taso on dgnrotumaton ja sn nrga on 1, mv korkam kun almman tason, joka uolstaan on dgnrotunut

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 6. harjoitus jännitysmitat Ratkaisut T 1: Ohuen suoran sauvan pituus referenssitilassa on 0 ja poikkipinta-ala on A 0. Sauvan akselin suuntaisen

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi hum 8.0. Numeerinen integrointi Numeerisia integrointimenetelmiä on useita. Käsitellään tässä yhteydessä kuitenkin vain Gauss in integrointia, joka on elementtimenetelmän yhteydessä

Lisätiedot

CST-elementti hum

CST-elementti hum CS-lmntti hm 4..3 CS-lmntti arkatllaan kan kolmiolmita kolmiolmnttiä, jota kttaan akionmän kolmiolmntiki (Contant Strain riangl). q 6 3 q 5 ( 3, 3 ) (, ) q 4 q 3 P q (, ) q O Pitn P koordinaatit oidaan

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4 BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

e n 4πε S Fysiikka III (Est) 2 VK

e n 4πε S Fysiikka III (Est) 2 VK S-11.137 Fysiikka III (Est) VK 7.5.009 1. Bohrin vtyatomimallissa lktronilla voi olla vain tittyjä nopuksia. Johda kaava sallituill nopuksill, ja lask sn avulla numrinn arvo suurimmall mahdollisll nopudll.

Lisätiedot

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y Diffrntiaaliyhtälöt, Syksy 215 Harjoitus 2, Ratkaisut 1.11.215 1. Ratkais sparoituvat diffrntiaaliyhtälöt a) y = y 3, b) y = 1 + y 2 y 2. y Ratkaisu. a): Yhtälö y = 3 on hyvin määritlty kun 3. Lisäksi

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 / MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A = 1 / 21 Määritelmä 1 Reaaliluvuista a ij, missä i 1,..., k ja j 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A... a k1 a k2 a kn sanotaan k n matriisiksi. Usein merkitään A [a ij ]. Lukuja

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Jännitysten ja venymien vastaavuus kontinuumimekaniikassa

Jännitysten ja venymien vastaavuus kontinuumimekaniikassa Rakenteiden Mekaniikka (Journal of Structural Mechanics) Vol. 49 Nro 1 016 s. 14 4 rmseura.tkk.fi/rmlehti/ c Kirjoittajat 015. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu. Jännitysten ja venymien vastaavuus

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

. Mitä olisivat y 1 ja y 2, jos tahdottaisiin y 1 (0) = 2 ja y 2 (0) = 0? x (1) = 0,x (2) = 1,x (3) = 0. Ratkaise DY-ryhmä y = Ay.

. Mitä olisivat y 1 ja y 2, jos tahdottaisiin y 1 (0) = 2 ja y 2 (0) = 0? x (1) = 0,x (2) = 1,x (3) = 0. Ratkaise DY-ryhmä y = Ay. BMA583 Differentiaaliyhtälöiden peruskurssi Harjoitus 6, Kevät 7. Oletetaan että saaliskalapopulaation lisääntymisnopeus (ilman kuolemia on suoraan verrannollinen kalapopulaation (merkataan tätä symbolilla

Lisätiedot

Luku 7 Numeerinen integrointi

Luku 7 Numeerinen integrointi Luku 7 Numeerinen integrointi Luvussa esitetään elementtimenetelmässä yleisimmin käytössä olevat kvadratuurit, eli numeeriset integrointikaavat. Kvadratuurit muodostetaan korvaamalla integroitava funktio

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot