Moniulotteisia todennäköisyysjakaumia

Koko: px
Aloita esitys sivulta:

Download "Moniulotteisia todennäköisyysjakaumia"

Transkriptio

1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1

2 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka Mellin (007)

3 Multinomijakauma Multinomijakauman tausta 1/3 Multinomijakauma on binomijakauman (ks. lukua Diskreettejä jakaumia) yleistys useamman toisensa poissulkevan tapahtuman tilanteeseen. Olkoon A 1, A,, A k otosavaruuden S ositus. Tällöin: A i A j =, i j S = A 1 A A k Olkoot tapahtumien A 1, A,, A k todennäköisyydet: Pr(A i ) = p i, i = 1,,, k p 1 + p + + p k = 1 TKK (c) Ilkka Mellin (007) 3

4 Multinomijakauma Multinomijakauman tausta /3 Määritellään satunnaismuuttujat i, i = 1,,, k: i = Tapahtuman A i esiintymisten lukumäärä n-kertaisessa toistokokeessa Tällöin i ~Bin( n, pi), i = 1,,, k jossa p i = Pr(A i ), i = 1,,, k Lisäksi = n 1 k TKK (c) Ilkka Mellin (007) 4

5 Multinomijakauma Multinomijakauman tausta 3/3 Multinomijakaumalla tarkoitetaan satunnaismuuttujien 1,,, k yhteisjakaumaa. Huomautus: Satunnaismuuttuja i eivät ole riippumattomia, koska niitä sitoo toisiinsa ehto k = n jossa toistokokeiden lukumäärä n on kiinteä luku. TKK (c) Ilkka Mellin (007) 5

6 Multinomijakauma Multinomijakauma ja sen pistetodennäköisyysfunktio Satunnaismuuttujat 1,,, k noudattavat (k 1)- ulotteista multinomijakaumaa, jos niiden yhteisjakauman pistetodennäköisyysfunktio on muotoa Pr( 1 = n1 ja = n ja ja k = nk) n! n1 n nk = p1 p pk n1! n! nk! jossa p1+ p + + pk = 1 n1+ n + + nk = n Merkintä: ( 1,,, k ) Multinom(p 1, p,, p k ; n) TKK (c) Ilkka Mellin (007) 6

7 Multinomijakauma Multinomijakauman ominaisuuksia Jos k =, niin multinomijakauma yhtyy binomijakaumaan: Pr Multinom( 1 = n1 ja = n n1) = Pr Bin( 1 = n1) Multinomijakauman yksiulotteiset reunajakaumat ovat binomijakaumia. Multinomitodennäköisyydet saadaan korottamalla multinomi (p 1 + p + + p k ) potenssiin n: n n! n1 n n ( p1+ p + + p ) = k k p1 p pk n1! n! nk! jossa summa lasketaan yli kaikkien lukujen n 1, n,, n k, joille pätee ehto n 1 + n + + n k = n TKK (c) Ilkka Mellin (007) 7

8 Moniulotteisia todennäköisyysjakaumia Multinomijakauma >> Kaksiulotteinen normaalijakauma TKK (c) Ilkka Mellin (007) 8

9 Kaksiulotteinen normaalijakauma Kaksiulotteinen normaalijakauma on normaalijakauman (ks. lukua Jatkuvia jakaumia) kaksiulotteinen yleistys. Huomautus: Normaalijakauman yleistystä p-ulotteiseen avaruuteen (p > 1) kutsutaan multinormaalijakaumaksi tai p-ulotteiseksi normaalijakaumaksi. TKK (c) Ilkka Mellin (007) 9

10 Kaksiulotteinen normaalijakauma ja sen tiheysfunktio 1/ Satunnaismuuttujat ja noudattavat kaksiulotteista normaalijakaumaa, jos niiden yhteisjakauman tiheysfunktio on muotoa 1 1 f ( x, y) = exp Q( x, y) π (1 ) 1 ρ ρ jossa x y x y Qxy (, ) µ µ µ µ ρ = + Merkintä: (, ) N (µ, µ,,, ρ ) TKK (c) Ilkka Mellin (007) 10

11 Kaksiulotteinen normaalijakauma ja sen tiheysfunktio / Kaksiulotteisen normaalijakauman N (µ, µ,,, ρ ) parametrien on toteuttava seuraavat ehdot: < µ < + > 0 < µ < + > 0 1< ρ <+ 1 TKK (c) Ilkka Mellin (007) 11

12 Kaksiulotteinen normaalijakauman parametrit Olkoon (, ) N (µ, µ,,, ρ ) Kaksiulotteisen normaalijakauman parametreina, jotka täysin määräävät jakauman, ovat satunnaismuuttujien ja odotusarvot ja varianssit sekä niiden korrelaatio: E( ) = µ Var( ) = E( ) = µ Var( ) = Cor(, ) = ρ Lisäksi Cov(, ) = = ρ TKK (c) Ilkka Mellin (007) 1

13 Tiheysfunktion ominaisuudet Kaksiulotteisen normaalijakauman tiheysfunktio määrittelee pinnan z = f (x, y) kolmiulotteisessa avaruudessa. Pinnalla on maksimi satunnaismuuttujien ja odotusarvojen µ ja µ määräämässä jakauman todennäköisyysmassan painopisteessä (µ, µ ). Pinnan muodon määräävät tasa-arvoellipsit x y x y Qxy (, ) µ µ µ µ ρ = + = c (vakio) TKK (c) Ilkka Mellin (007) 13

14 Tasa-arvoellipsien ominaisuudet 1/3 Kaksiulotteisen normaalijakauman tiheysfunktion muodostaman pinnan muodon määräävillä tasaarvoellipseillä on seuraavat ominaisuudet: (i) Ellipsien keskipisteenä on jakauman todennäköisyysmassan painopiste (µ, µ ) (ii) Ellipsien eksentrisyys on sekä korrelaatiokertoimen ρ että standardipoikkeamien ja funktio. (iii) Ellipsi on sitä eksentrisempi mitä voimakkaammin satunnaismuuttujat ja ovat korreloituneita eli mitä suurempi on ρ TKK (c) Ilkka Mellin (007) 14

15 Tasa-arvoellipsien ominaisuudet /3 (iv) Jos ρ = 0 ellipsien pääakselit ovat koordinaattiakseleiden suuntaiset. (v) Jos ρ = 0 ja lisäksi = niin ellipsit ovat ympyröitä. (vi) Jos ρ = ±1 niin ellipsit surkastuvat janoiksi. TKK (c) Ilkka Mellin (007) 15

16 Tasa-arvoellipsien ominaisuudet 3/3 Tasa-arvoellipsien pääakselit ovat satunnaismuuttujien ja kovarianssimatriisin Σ = ominaisvektoreiden suuntaiset ja niiden pituudet suhtautuvat toisiinsa kuten matriisin Σ ominaisarvojen neliöjuuret. TKK (c) Ilkka Mellin (007) 16

17 Esimerkki: Jakauman määrittely Olkoon (, ) N (4, 3,, 1, 0.7) Jakauman parametrit ovat E( ) = µ = 4 Var( ) = = E( ) = µ = 3 Var( ) = = 1 Cor(, ) = ρ = 0.7 Siten Cov(, ) = ρ = = TKK (c) Ilkka Mellin (007) 17

18 Esimerkki: Tiheysfunktion kuvaaja Olkoon (, ) N (4, 3,, 1, 0.7) jolloin µ = 4 = µ = 3 = 1 ρ = 0.7 Kuva oikealla esittää jakauman tiheysfunktiota f (x, y) x y TKK (c) Ilkka Mellin (007) 18

19 Esimerkki: Tasa-arvoellipsien yhtälöt Olkoon (, ) N (4, 3,, 1, 0.7) Jakauman todennäköisyysmassan painopisteenä on piste (µ, µ ) = (4, 3) Jakauman tiheysfunktion muodostaman pinnan muodon määräävät tasa-arvoellipsit x 4 y 3 x 4 y 3 Qxy (, ) = = c (vakio) Ellipsien keskipisteenä on jakauman todennäköisyysmassan painopiste (µ, µ ) = (4, 3) TKK (c) Ilkka Mellin (007) 19

20 Esimerkki: Kovarianssimatriisi Olkoon (, ) N (4, 3,, 1, 0.7) Tällöin satunnaismuuttujien ja kovarianssimatriisi on Σ = ρ = ρ = = TKK (c) Ilkka Mellin (007) 0

21 Esimerkki: Kovarianssimatriisin pääakselihajotelma 1/6 Olkoon Σ = ULU kovarianssimatriisin Σ pääakselihajotelma, jossa L on matriisin Σ ominaisarvojen muodostama diagonaalimatriisi ja U on vastaavien ominaisvektoreiden muodostama ortogonaalinen matriisi, jossa ominaisvektorit ovat sarakkeina. TKK (c) Ilkka Mellin (007) 1

22 Esimerkki: Kovarianssimatriisin pääakselihajotelma /6 Olkoot λ 1 λ matriisin Σ ominaisarvot ja u 1 = (u 11, u 1 ) u = (u 1, u ) niitä vastaavat ominaisvektorit. Tällöin λ1 0 u11 u1 L=, 0 λ U= u1 u ja U ΣU = L U U = UU = I TKK (c) Ilkka Mellin (007)

23 Esimerkki: Kovarianssimatriisin pääakselihajotelma 3/6 Olkoon λ kovarianssimatriisin Σ ominaisarvo. Tällöin λ toteuttaa yhtälön λ det( Σ λi) = det λ = λ ( + ) λ+ = 0 Tämän. asteen yhtälön ratkaisut saadaan kaavasta + ± ( ) + 4 λ = Ratkaisuiksi saadaan λ 1 =.6091 λ = TKK (c) Ilkka Mellin (007) 3

24 Esimerkki: Kovarianssimatriisin pääakselihajotelma 4/6 Olkoon u = (u 1, u ) kovarianssimatriisin Σ ominaisarvoa λ vastaava ominaisvektori. Tällöin u toteuttaa matriisiyhtälön Σu= λu Koska vaadimme, että uu = u1 + u = 1 niin vektori u = (u 1, u ) saadaan ratkaistuksi yhtälöryhmästä + = λ ( λ) u1 u 0 u1+ ( ) u = 0 u1 + u = 1 TKK (c) Ilkka Mellin (007) 4

25 Esimerkki: Kovarianssimatriisin pääakselihajotelma 5/6 Ominaisarvoa λ 1 =.6091 vastaavaksi ominaisvektoriksi saadaan u 1 = (u 11, u 1 ) = (0.8517, 0.540) Ominaisarvoa λ = vastaavaksi ominaisvektoriksi saadaan u = (u 1, u ) = ( 0.540, ) TKK (c) Ilkka Mellin (007) 5

26 Esimerkki: Kovarianssimatriisin pääakselihajotelma 6/6 Kovarianssimatriisin Σ = = = pääakselihajotelmaksi Σ = ULU saadaan siis λ L = = 0 λ u11 u U = = u1 u jossa L on matriisin Σ ominaisarvojen muodostama diagonaalimatriisi ja U on vastaavien ominaisvektoreiden muodostama ortogonaalinen matriisi, jossa ominaisvektorit ovat sarakkeina. TKK (c) Ilkka Mellin (007) 6

27 Esimerkki: Tasa-arvoellipsit ja niiden pääakselit 1/4 Olkoon (, ) N (4, 3,, 1, 0.7) Jakauman tiheysfunktion muodostaman pinnan muodon määräävien tasa-arvoellipsien pääakselit leikkaavat jakauman todennäköisyysmassan painopisteessä ( µ, µ ) = (4,3) Tasa-arvoellipsien pääakseleiden pituudet suhtautuvat toisiinsa kuten kovarianssimatriisin Σ ominaisarvojen λ 1 =.6091 λ = neliöjuuret ja vastaavat ominaisvektorit määräävät pääakseleiden suunnat. TKK (c) Ilkka Mellin (007) 7

28 Esimerkki: Tasa-arvoellipsit ja niiden pääakselit /4 Tasa-arvoellipsien pääakseleiden suuntaisten suorien yhtälöt ovat y = a1+ bx 1 y = a + bx jossa u b1 = = = u a1 = µ b1µ = 3 b1 4 = ovat suurempaa ominaisarvoa.6091 vastaavan, pitempään pääakseliin liittyvän suoran kertoimet ja u b = = = u a = µ bµ = 3 b 4 = ovat pienempää ominaisarvoa vastaavan, lyhyempään pääakseliin liittyvän suoran kertoimet. TKK (c) Ilkka Mellin (007) 8

29 Esimerkki: Tasa-arvoellipsit ja niiden pääakselit 3/4 Olkoon (, ) N (4, 3,, 1, 0.7) jolloin µ = 4 = µ = 3 = 1 ρ = 0.7 Kuva oikealla esittää jakauman tiheysfunktion kuvaajan tasaarvoellipsejä, jotka vastaavat (likimäärin) todennäköisyyksiä 68 %, 95 % ja 99.7 %. Esimerkiksi uloimman ellipsin sisään jää n % jakauman todennäköisyysmassasta N (4, 3,, 1, 0.7) ( µ, µ ) TKK (c) Ilkka Mellin (007) 9

30 Esimerkki: Tasa-arvoellipsit ja niiden pääakselit 4/4 Olkoon (, ) N (4, 3,, 1, 0.7) Kuva oikealla esittää jakauman tiheysfunktion kuvaajan tasaarvoellipsejä, jotka vastaavat (likimäärin) todennäköisyyksiä 68 %, 95 % ja 99.7 %. Kuvaan on lisäksi piirretty tasaarvoellipsien pääakselien suuntaiset suorat y = x y = x N (4, 3,, 1, 0.7) TKK (c) Ilkka Mellin (007) 30

31 Reunajakaumat Voidaan osoittaa, että kaksiulotteisen normaalijakauman reunajakaumat ovat normaalisia: N(µ, ) N(µ, ) ja niiden tiheysfunktiot ovat 1 1 x µ f ( x) = exp π 1 1 y µ f ( y) = exp π TKK (c) Ilkka Mellin (007) 31

32 Esimerkki: Reunajakaumat 0.5 N(4, ) 0.5 N(3, 1) Olkoon (, ) N (4, 3,, 1, 0.7) Kuvat yllä esittävät satunnaismuuttujien ja reunajakaumia: N(4, ) N(3, 1) TKK (c) Ilkka Mellin (007) 3

33 Korreloimattomuus vs riippumattomuus Kaksiulotteisen normaalijakauman tapauksessa satunnaismuuttujien ja korreloimattomuus on yhtäpitävää niiden riippumattomuuden kanssa. Huomautuksia: Satunnaismuuttujien riippumattomuudesta seuraa aina niiden korreloimattomuus. Satunnaismuuttujien korreloimattomuudesta ei yleisesti seuraa niiden riippumattomuus. TKK (c) Ilkka Mellin (007) 33

34 Korreloimattomuus vs riippumattomuus: Perustelu 1/3 Oletetaan, että satunnaismuuttujat ja noudattavat kaksiulotteista normaalijakaumaa: (, ) N (µ, µ,,, ρ ) Jos satunnaismuuttujat ja ovat riippumattomia, niin ne ovat myös korreloimattomia, koska satunnaismuuttujien riippumattomuudesta seuraa aina niiden korreloimattomuus; ks. lukua Moniulotteiset satunnaismuuttujat ja jakaumat. Oletetaan nyt, että satunnaismuuttujat ja korreloimattomia eli ρ = 0 TKK (c) Ilkka Mellin (007) 34

35 Korreloimattomuus vs riippumattomuus: Perustelu /3 Kaksiulotteisen normaalijakauman tiheysfunktio on 1 1 f ( x, y) = exp Q( x, y) π 1 ρ (1 ρ ) x µ y µ x µ y µ Qxy (, ) = ρ + Jos ρ = 0, niin 1 1 x µ µ f ( x, y) = exp π + y x µ y µ = exp exp π π = f ( x) f ( y) TKK (c) Ilkka Mellin (007) 35

36 Korreloimattomuus vs riippumattomuus: Perustelu 3/3 Jos siis ρ = 0, niin f ( x, y) = f ( x) f ( y) jossa f (x) ja f (y) ovat satunnaismuuttujien ja reunajakaumien tiheysfunktiot. Koska oletuksesta ρ = 0 seuraa, että kaksiulotteisen normaalijakauman tiheysfunktio voidaan esittää reunajakaumiensa tiheysfunktioiden tulona, niin satunnaismuuttujat ja ovat tällöin rippumattomia; ks. lukua Moniulotteiset satunnaismuuttujat ja jakaumat. TKK (c) Ilkka Mellin (007) 36

37 Ehdolliset jakaumat 1/ Kaksiulotteisen normaalijakauman ehdolliset jakaumat ovat normaalisia: ( ( = y )~ N µ, ) jossa µ = E( = y) = µ + ρ ( y µ ) = Var( = y) = (1 ) ρ TKK (c) Ilkka Mellin (007) 37

38 Ehdolliset jakaumat / Kaksiulotteisen normaalijakauman ehdolliset jakaumat ovat normaalisia: ( ( = x )~ N µ, ) jossa µ = E( = x) = µ + ρ ( x µ ) = Var( = x) = (1 ) ρ TKK (c) Ilkka Mellin (007) 38

39 Ehdolliset jakaumat: Perustelu 1/4 Esitetään perustelu kaksiulotteisen normaalijakauman ehdollisten jakaumien normaalisuudelle tarkastelemalla satunnaismuuttujan ehdollista jakaumaa satunnaismuuttujan suhteen (ehdolla = x). Olkoon f f ( x, y) ( y x) = satunnaismuuttujien ja yhteisjakauman tiheysfunktio = satunnaismuuttujan ehdollisen jakauman tiheysfunktio satunnaismuuttujan suhteen = satunnaismuuttujan reunajakauman tiheysfunktio f ( x) Ehdollisen jakauman tiheysfunktion määritelmän mukaan f ( x, y) f ( y x) = f ( x) TKK (c) Ilkka Mellin (007) 39

40 Ehdolliset jakaumat: Perustelu /4 Kaksiulotteisen normaalijakauman tiheysfunktio f ( x, y) : 1 1 f ( x, y) = exp Q( x, y) π 1 ρ (1 ρ ) x µ y µ x µ y µ Qxy (, ) = ρ + Satunnaismuuttujan reunajakauman tiheysfunktio f ( x) : 1 1 x µ f ( x) = exp π TKK (c) Ilkka Mellin (007) 40

41 Ehdolliset jakaumat: Perustelu 3/4 Nähdään (melko) helposti, että f ( x, y) f ( y x) = f ( x) 1 1 = exp Qy ( x) π ρ (1 ρ) (1 ) Qy ( x) = y µ y ρ ( x µ ) TKK (c) Ilkka Mellin (007) 41

42 Ehdolliset jakaumat: Perustelu 4/4 Siten satunnaismuuttujan ehdollinen jakauma satunnaismuuttujan suhteen (ehdolla = x) on normaalinen: ( = x )~ N( µ, ) jossa µ = E( = x) = µ + ρ ( x µ ) = Var( = x) = (1 ρ ) TKK (c) Ilkka Mellin (007) 4

43 Ehdolliset odotusarvot Satunnaismuuttujan ehdollinen odotusarvo eli regressiofunktio satunnaismuuttujan suhteen E( = y) = µ + ρ ( y µ ) on lineaarinen satunnaismuuttujan arvojen y suhteen. Satunnaismuuttujan ehdollinen odotusarvo eli regressiofunktio satunnaismuuttujan suhteen E( = x) = µ + ρ ( x µ ) on lineaarinen satunnaismuuttujan arvojen x suhteen. TKK (c) Ilkka Mellin (007) 43

44 Regressiosuorat Kaksiulotteisen multinormaalijakauman regressiokäyrät ovat suoria, joiden yhtälöt voidaan kirjoittaa satunnaismuuttujan saamien arvojen x funktioina seuraaviin muotoihin: (i) x:n regressiosuora y:n suhteen: 1 y = µ + ( x µ ) ρ (ii) y:n regressiosuora x:n suhteen: y = µ + ρ ( x µ ) TKK (c) Ilkka Mellin (007) 44

45 Regressiosuorien ominaisuudet 1/5 Olkoon 1 y = µ + ( x µ ) ρ x:n regressiosuora y:n suhteen ja y = µ + ρ ( x µ ) y:n regressiosuora x:n suhteen. TKK (c) Ilkka Mellin (007) 45

46 Regressiosuorien ominaisuudet /5 Regressiosuorilla on seuraavat ominaisuudet: (i) Molemmat regressiosuorat kulkevat jakauman todennäköisyysmassan painopisteen (µ, µ ) kautta. (ii) Molempien regressiosuorien kulmakertoimilla ja satunnaismuuttujien ja korrelaatiokertoimella ρ on aina sama merkki: Suorat ovat nousevia, jos ρ > 0. Suorat ovat laskevia, jos ρ < 0. (iii) x:n regressiosuora y:n suhteen on aina jyrkempi kuin y:n regressiosuora x:n suhteen, koska ρ 1 TKK (c) Ilkka Mellin (007) 46

47 Regressiosuorien ominaisuudet 3/5 (iv) (v) x:n regressiosuora y:n suhteen on sitä loivempi mitä voimakkaammin satunnaismuuttujat ja ovat korreloituneita eli mitä suurempi on ρ y:n regressiosuora x:n suhteen on sitä jyrkempi mitä voimakkaammin satunnaismuuttujat ja ovat korreloituneita eli mitä suurempi on ρ TKK (c) Ilkka Mellin (007) 47

48 Regressiosuorien ominaisuudet 4/5 (vii) Molemmat regressiosuorat ovat sitä jyrkempiä mitä pienempi on satunnaismuuttujan varianssi (vi) Molemmat regressiosuorat ovat sitä jyrkempiä mitä suurempi on satunnaismuuttujan varianssi (viii) Regressiosuorat yhtyvät täsmälleen silloin, kun ρ = ±1 TKK (c) Ilkka Mellin (007) 48

49 Regressiosuorien ominaisuudet 5/5 (ix) Jos ρ = 0, niin regressiosuorat ovat kohtisuorassa toisiaan vastaan ja x:n regressiosuora y:n suhteen on x = µ ja y:n regressiosuora x:n suhteen on y = µ jolloin x:n saamat arvot eivät riipu y:n saamista arvoista ja y:n saamat arvot eivät riipu x:n saamista arvoista. TKK (c) Ilkka Mellin (007) 49

50 Esimerkki: Regressiosuorat 1/ Olkoon (, ) N (4, 3,, 1, 0.7) x:n regressiosuora muuttujan y suhteen on 1 y = µ + ( x µ ) ρ 1 1 = 3 + ( x 4) = x 0.7 y:n regressiosuora muuttujan x suhteen on y = µ + ρ ( x µ ) 1 = ( x 4) = x TKK (c) Ilkka Mellin (007) 50

51 Esimerkki: Regressiosuorat / Olkoon (, ) N (4, 3,, 1, 0.7) Kuva oikealla esittää jakauman tiheysfunktion kuvaajan tasaarvoellipsejä, jotka vastaavat (likimäärin) todennäköisyyksiä 68 %, 95 % ja 99.7 %. Kuvan suorista jyrkempi y = x on x:n regressiosuora y:n suhteen ja suorista loivempi y = x on y:n regressiosuora x:n suhteen N (4, 3,, 1, 0.7) TKK (c) Ilkka Mellin (007) 51

52 Regressiosuorat ja standardointi Regressiosuorat voidaan kirjoittaa standardoitujen muuttujien x µ y µ x = y = funktioina seuraaviin muotoihin: 1 y = ρ x x:n regressiosuora y:n suhteen y = ρ x y:n regressiosuora x:n suhteen Standardoitujen muuttujien välisten regressiosuorien kulmakertoimet ovat siis toistensa käänteislukuja. TKK (c) Ilkka Mellin (007) 5

53 Ehdolliset varianssit 1/ Satunnaismuuttujan ehdollinen varianssi satunnaismuuttujan suhteen on korkeintaan yhtä suuri kuin satunnaismuuttujan varianssi: 0 = (1 ρ ) Jos siis ρ 0, niin satunnaismuuttujan ehdollinen jakauma satunnaismuuttujan suhteen vaihtelee x:n regressiosuoran ympärillä vähemmän kuin satunnaismuuttuja oman painopisteensä ympärillä. Lisäksi pätee, että = 0 ρ =± 1 = ρ = 0 TKK (c) Ilkka Mellin (007) 53

54 Ehdolliset varianssit / Satunnaismuuttujan ehdollinen varianssi satunnaismuuttujan suhteen on korkeintaan yhtä suuri kuin satunnaismuuttujan varianssi: 0 = (1 ρ ) Jos siis ρ 0, niin satunnaismuuttujan ehdollinen jakauma satunnaismuuttujan suhteen vaihtelee y:n regressiosuoran ympärillä vähemmän kuin satunnaismuuttuja oman painopisteensä ympärillä. Lisäksi pätee, että = 0 ρ =± 1 = ρ = 0 TKK (c) Ilkka Mellin (007) 54

55 Ehdolliset varianssit: Kommentti Satunnaismuuttujan ehdollisen varianssin kaavasta = (1 ρ ) ja satunnaismuuttujan ehdollisen varianssin kaavasta = (1 ρ ) nähdään välittömästi, että kumpikaan ehdollisista variansseista ei riipu ehtomuuttujan arvoista. Siten kaksiulotteisen normaalijakauman kummankaan ehdollisen jakauman todennäköisyysmassan vaihtelu vastaavan regressiosuoran ympärillä ei riipu ehtomuuttujan arvoista. TKK (c) Ilkka Mellin (007) 55

56 Esimerkki: Ehdolliset varianssit Olkoon (, ) ~ N (4, 3,, 1, 0.7) Satunnaismuuttujan ehdollinen varianssi satunnaismuuttujan suhteen on 0 = (1 ρ ) = (1 0.7 ) = 1.0 = Satunnaismuuttujan ehdollinen varianssi satunnaismuuttujan suhteen on 0 = (1 ρ ) = (1 0.7 ) 1= = TKK (c) Ilkka Mellin (007) 56

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Johdatus regressioanalyysiin

Johdatus regressioanalyysiin Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2007) 1 Johdatus regressioanalyysiin >> Regressioanalyysin lähtökohdat ja tavoitteet

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

2. Multinormaalijakauma

2. Multinormaalijakauma Multinormaalijakauma 15 2. Multinormaalijakauma 2.1 Alustavaa johdattelua Monimuuttujamenetelmissä multinormaalijakaumalla on ehkä vielä keskeisempi asema kuin normaalijakaumalla yhden muuttujan tilastollisissa

Lisätiedot

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2005) 1 Johdatus regressioanalyysiin Regressioanalyysin lähtökohdat ja tavoitteet Deterministiset mallit ja regressioanalyysi

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 7

031021P Tilastomatematiikka (5 op) viikko 7 0302P Tilastomatematiikka (5 op) viikko 7 Jukka Kemppainen Mathematics Division Yhteisjakauma Edellä on tarkasteltu yksiulotteista satunnaismuuttujaa. Sovelluksissa joudutaan usein tarkastelemaan samanaikaisesti

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio. Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Ilkka Mellin 1. korjattu painos Ilkka Mellin I Ilkka Mellin II Esipuhe Tämä moniste pyrkii antamaan perustiedot todennäköisyyslaskennasta. Monisteen ensisijaisena tavoitteena on

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Todennäköisyysjakaumien mallintaminen Matlabohjelmalla

Todennäköisyysjakaumien mallintaminen Matlabohjelmalla Todennäköisyysjakaumien mallintaminen Matlabohjelmalla Tekijä: 55354J timo.nordlund@hut.fi Ohjaaja: Ilkka Mellin Jätetty: 13.8.2003 Sisällysluettelo 1. JOHDANTO... 3 2. OHJELMAKOODI... 4 2.1. RAKENNE...

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Tilastollisen päättelyn perusteet

Tilastollisen päättelyn perusteet Tilastollisen päättelyn perusteet Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Motivointiako? opiskelijoiden, jotka kammoavat matematiikkaa tai eivät katso ehtivänsä tai haluavansa

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61 3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Generointi yksinkertaisista diskreeteistä jakaumista

Generointi yksinkertaisista diskreeteistä jakaumista S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa TKK (c) Ilkka Mellin (2007) 1 Erityiskysymyksiä yleisen lineaarisen

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B

Mat Sovellettu todennäköisyyslaskenta B Mat-1.2620 Sovellettu todennäköisslaskenta B 1. välikoe 08.03.2011 / Kibble Kirjoita selvästi jokaiseen koepaperiin seuraavat tiedot: Mat-1.2620 SovTnB 1. vk 08.03.2011 opiskelijanumero + kirjain TEKSTATEN

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg 1 Todennäköisyys Satunnaismuuttujat Keskeinen raja-arvolause Aalto-yliopisto. tammikuuta 015 Kaksiulotteiset satunnaismuuttujat

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Matemaattinen Analyysi, k2012, L1

Matemaattinen Analyysi, k2012, L1 Matemaattinen Analyysi, k22, L Vektorit Merkitsemme koulumatematiikasta tuttua vektoria v = 2 i + 3 j sarake matriisilla ( ) 2 v = v = = ( 2 3 ) T 3 Merkintätavan muutos helpottaa jatkossa siirtymistä

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan Mitä pitäisi vähintään osata Tässäkäydään läpi asiat jotka olisi hyvä osata Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan osattavan 333 Kurssin sisältö Todennäköisyyden, satunnaismuuttujien

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot