Iteratiiviset ratkaisumenetelmät
|
|
- Esa Salminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics
2 Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n ; Jos x k on määrätty, niin x k+1 = Bx k + c, B on menetelmän iteraatiomatriisi; c kiinteä vakiovektori, joka riippuu alkuperäisen yhtälöryhmän oikeanpuolen vektorista. Keijo Ruotsalainen Matematiikan jaos 2 / 23
3 Matriisinormeista Matriisin A luonnollinen normi Ax A = sup x 0 x. Kaikki matriisin p-normit ovat ns. luonnollisia normeja. Matriisin normin avulla voidaan arvioida ominaisarvojen suuruutta. Lemma Jokaiselle matriisin A luonnolliselle normille matriisin spektraalisäde ρ(a) A. Keijo Ruotsalainen Matematiikan jaos 3 / 23
4 Todistus Matriisin A ominaisarvo λ s ja x s vastaava ominaisvektori Tällöin A = sup Ax x Ax s x s = λ sx s x s = λ s. Kaikille ominaisarvoille λ A, Spektraalisäde ρ(a) = max λ s A. Keijo Ruotsalainen Matematiikan jaos 4 / 23
5 Spektraalisäde ja normi Lause Jokaiselle ǫ > 0 on olemassa luonnollinen normi siten, että ρ(a) A ρ(a)+ǫ. Lause Seuraavat väittämät ovat yhtäpitäviä: 1. lim k B k = 0; 2. lim k B k v = 0, v R n ; 3. spektraalisäde ρ(b) < 1; 4. Ainakin yhdelle matriisinormille B < 1. Keijo Ruotsalainen Matematiikan jaos 5 / 23
6 Todistus Tod.: (1) = (2) : Väite seuraa epäyhtälöstä B k v B k v. (2) = (3) : Jos ρ(b) 1, niin on vektori u ja luku λ 1 siten, että Bu = λu. Näin ollen B k u = λ k u ja siten reaalilukujono B k u = λ k u ei suppene kohti nollaa vastoin oletusta: B k v 0 kaikille v R n. (3) = (4) : Väite seuraa suoraan edellisestä lauseesta. (4) = (1) : Tämä seuraa epäyhtälöstä: B k B k. Keijo Ruotsalainen Matematiikan jaos 6 / 23
7 Iteraatioiden suppeneminen Oletus: Yhtälöllä x = Bx + c on yksikäsitteinen ratkaisu. Iteraatiot suppenevat, jos Lause kaikilla alkuarvauksilla x 0. lim x k = x k Seuraavat väittämät ovat yhtäpitäviä: 1. Iteratiivinen menetelmä on suppeneva; 2. ρ(b) < 1; 3. Ainakin yhdelle matriisinormille B < 1. Keijo Ruotsalainen Matematiikan jaos 7 / 23
8 Todistus Määritellään virhevektori e k = x k x. Kaikille k N e k = x k x = B(x k 1 x) = Be k 1, e k = B k e 0. Näin ollen lauseen väittämä on tosi edellisen lauseen nojalla. Keijo Ruotsalainen Matematiikan jaos 8 / 23
9 Virhe-arviot Lause Oletus: B < 1. A priori-arvio: A posteriori-arvio: x x k B k 1 B x 1 x 0, x x k B 1 B x k x k 1, missä matriisinormi on vektorinormin kanssa yhteensopiva. Keijo Ruotsalainen Matematiikan jaos 9 / 23
10 A priori-arvion todistus A priori-arvio: x m x k m 1 i=k m 1 i=k x i+1 x i m 1 i=k B i (x 1 x 0 ) B i x 1 x 0 B k 1 B x 1 x 0 lim m x m x k = x x k B k 1 B x 1 x 0 Keijo Ruotsalainen Matematiikan jaos 10 / 23
11 Todistus: A posteriori-arvio A posteriori-arvio: x x k m 1 i=k m k 1 i=1 x i+1 x i m k 1 i=1 B i (x k x k 1 ) B i x k x k 1 { B i } x k x k 1 i=1 lim m x m x k = x x k B 1 B x k x k 1 Keijo Ruotsalainen Matematiikan jaos 11 / 23
12 Virhe-arvioiden käyttö Kuinka monta iteraatiota tarkkuuteen x x k ǫ? Ensimmäisen iteraation jälkeen: ln( B k 1 B x 1 x 0 ) ln(ǫ) x 1 x 0 ) k ln(ǫ(1 B ) ln( B ) A posteriori-arviolla virhettä kontrolloidaan laskennan kuluessa. Keijo Ruotsalainen Matematiikan jaos 12 / 23
13 Jacobin menetelmä Matriisin A summahajotelma A = L+D + U L on A:n alakolmio-osa, U on A:n yläkolmio-osa D on A:n diagonaaliosa. Ax = b Dx = b (L+U)x. Jos a ii 0, niin x = D 1 (L+U)x + D 1 b. Jacobin menetelmässä iteraatiomatriisi on B J = D 1 (L+U), c = D 1 b Keijo Ruotsalainen Matematiikan jaos 13 / 23
14 Gauss-Seidelin menetelmä Yhtälöryhmä Ax = (D + L)x + Ux = b x = (D + L) 1 Ux +(D + L) 1 b. (D + L) 1 on olemassa, kun A:n diagonaalialkiot ovat nollasta eroavia. Gauss-Seidelin menetelmän iteraatiomatriisi ja vakiovektori ovat B G = (D + L) 1 U, c = (D + L) 1 b. Keijo Ruotsalainen Matematiikan jaos 14 / 23
15 Iteraatioden koordinaattiesitys Jacobi: i = 1,...,n Gauss-Seidel: x (k+1) x (k+1) i = 1 a ii (b i i = 1 i 1 [ a i,l x (k+1) a l ii l=1 l=1, l i a il x (k) l ) n l=i+1 a i.l x (k) l + b i ] Keijo Ruotsalainen Matematiikan jaos 15 / 23
16 Menetelmien suppenemisesta Lause Jacobin ja Gauss-Seidelin menetelmät suppenevat, mikäli matriisi A on aidosti diagonaalidominantti, ts. joko on voimassa a ii > n a ij, tai a ii > n a ji. j = 1 j i j = 1 j i Tällöin joko B < 1 tai B 1 < 1. On tilanteita, joissa Jacobin menetelmä suppenee; mutta Gauss-Seidelin menetelmä ei, ja päinvastoin. Mutta jos molemmat menetelmät suppenevat, niin yleensä Gauss-Seidelin konvergenssinopeus on huomattavasti nopeampi. Keijo Ruotsalainen Matematiikan jaos 16 / 23
17 Esimerkkejä Esim. Tutki seuraaville matriiseille Jacobin ja Gauss-Seidelin iteraatioiden suppenemista: A 1 = 7 4 2, A 2 = Keijo Ruotsalainen Matematiikan jaos 17 / 23
18 SOR-menetelmä Yhtälöryhmä: Ax = b. Relaksaatioparametri ω (0, 2) SOR-iteraatio: Ax = b ω(d + L+U)x = ωb Dx +ω(d + U + L)x = ωx + Dx (D +ωl)x = ωb+(1 ω)dx ωux x = (D +ωl) 1[ ] ωb+(1 ω)dx ωu(x) x (k+1) = (D +ωl) 1[ ωb+(1 ω)dx (k) ωux (k)] SOR-menetelmän vaihtoehtoinen esitys: x (k+1) = x (k) +( 1 ω D + L ) 1(b Ax (k) ) Keijo Ruotsalainen Matematiikan jaos 18 / 23
19 SOR-menetelmän konvergenssista Lause Olkoon B ω SOR-menetelmän iteraatiomatriisi. Tällöin jokaiselle ω R on voimassa ρ(b ω ) ω 1. Näin ollen SOR-menetelmä hajaantuu, kun ω 0 tai ω 2. Lause Olkoon yhtälöryhmän kerroinmatriisi A symmetrinen ja positiivisesti definiitti. Silloin SOR-iteraatio suppenee, jos ja vain jos ω (0,2). Keijo Ruotsalainen Matematiikan jaos 19 / 23
20 Resistiivinen virtapiiri Keijo Ruotsalainen Matematiikan jaos 20 / 23
21 Yhtälöryhmä Solmuanalyysi (nodal analysis): Potentiaali solmuissa on V i ; Kirchhoffin virtalaki: k adj(i) I k = 0 Komponentin yli menevä virta V i V j R Solmu i = 0 maadoitetaan V 0 = 0 Jännite lähteen aiheuttama virta I 0 0 Yhtälöryhmä YV = I, I = [I ] Y ij = { k adj(i) 1 R, i = j 1 R Keijo Ruotsalainen Matematiikan jaos 21 / 23
22 Matriisin ominaisuudet Matriisi Y on blokki tridiagonaalinen, symmetrinen ja diagonaalisesti dominantti: Positiivisesti definiitti: V YV = 4n 1 i=1 4n 1 Y ii Vi 2 + i,j=1 (V i V j ) 2, R missä Y ii = 4 R, i 1 ja Y 11 = 3 R Ratkaistaan konjugaattigradientti-, Gauss-Seidelin ja SOR-menetelmällä (optimaalinen parametri ω = 1.76). Keijo Ruotsalainen Matematiikan jaos 22 / 23
23 Menetelmien vertailu Keijo Ruotsalainen Matematiikan jaos 23 / 23
Konjugaattigradienttimenetelmä
Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet:
5.. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [, ) jolla on ominaisuudet: x = x = x + y x + y, x, y V a x = a x, x V, a K (= R tai C) Esimerkki 5..
Numeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
MATEMATIIKAN JAOS NUMEERISET MENETELMÄT
MATEMATIIKAN JAOS NUMEERISET MENETELMÄT Harjoitustehtäviä, kevät 2012 1. Tarkastellaan summaa S = 1+0.4+0.3+0.2+0.04+0.03+0.02+0.01. a) Laske summa laskukoneella vasemmalta oikealle käyttäen liukulukuaritmetiikkaa,
Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44
Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä
Numeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Reuna-arvotehtävien ratkaisumenetelmät
Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)
Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä
Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista
Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos
Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2010 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos
Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2009 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
Funktioiden approksimointi ja interpolointi
Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3
Ominaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
Numeeriset menetelmät
Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
Pienimmän neliösumman menetelmä
Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
Paikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).
Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun
Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät
Numeeriset menetelmät 1. välikoe, 14.2.2009 1. Määrää matriisin 1 1 a 1 3 a a 4 a a 2 1 LU-hajotelma kaikille a R. Ratkaise LU-hajotelmaa käyttäen yhtälöryhmä Ax = b, missä b = [ 1 3 2a 2 a + 3] T. 2.
Yhtälöryhmän iteratiivinen ratkaiseminen
Yhtälöryhmän iteratiivinen ratkaiseminen V V I Berg Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2015 Tiivistelmä: V V I Berg, Yhtälöryhmän iteratiivinen ratkaiseminen
Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24
LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua
Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45
Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Luento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
2 Konveksisuus ja ratkaisun olemassaolo
2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä
Kurssimateriaalia K3/P3-kursille syksyllä 003. 8.0.003 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni.. Normi
Kohdeyleisö: toisen vuoden teekkari
Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y
ja F =
MATRIISIALGEBRA Harjoitustehtäviä syksy 2016 Tehtävissä 1 ja 2a käytetään seuraavia matriiseja: ( ) 6 2 3 A =,B = 7 1 2 2 3,C = 4 4 2 5 3,E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1.
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Matriisilaskenta Luento 8: LU-hajotelma
Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
3.2.2 Tikhonovin regularisaatio
3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M
6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
Numeeriset menetelmät
Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Este- ja sakkofunktiomenetelmät
Este- ja sakkofunktiomenetelmät Keijo Ruotsalainen Mathematics Division Luennon kulku Este- ja sisäpistemenetelmät LP-ongelmat ja logaritminen estefunktio Polun seuranta Newtonin menetelmällä Sakkofunktiomenetelmistä
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
Lineaarinen toisen kertaluvun yhtälö
Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Gaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
MATRIISIALGEBRA. Harjoitustehtäviä syksy Olkoot A =, B =
MATRIISIALGEBRA Harjoitustehtäviä syksy 2008 0 3 2 3. Olkoot, B =, C =. 3 2 3 2 4 0 Määrättävä A + B, 4A 2B, A T, C T, (A T ) T. 2. Jos A, B ja C ovat kuten edellisessä tehtävässä, onko a) C + C T määritelty,
Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
Tenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
2, E = Määrää 3A, B 2A ja E + F. 2. Laske (mikäli mahdollista) AB, BA, A 2, BC, CB ja F = 1 0 0
MATRIISIALGEBRA Harjoitustehtäviä syksy 2012 Tehtävissä 1-2 käytetään seuraavia matriiseja: A = 1 2 ( ) 0 5 1 2 4, B =, C = 1 2, E = 1 0 0 0 1 0 ja F = 1 0 0 0 1 0. 3 7 2 4 3 3 1 3 4 2 2 3 0 1. Määrää
Ratkaisuehdotukset LH 8 / vko 47
Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat
1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
f[x i ] = f i, f[x i,..., x j ] = f[x i+1,..., x j ] f[x i,..., x j 1 ] x j x i T n+1 (x) = 2xT n (x) T n 1 (x), T 0 (x) = 1, T 1 (x) = x.
Kaavakokoelma f[x i ] = f i, f[x i,..., x j ] = f[x i+,..., x j ] f[x i,..., x j ] x j x i T n+ (x) = 2xT n (x) T n (x), T (x) =, T (x) = x. n I,n = h f(t i + h 2 ), E,n = h2 (b a) f (2) (ξ). 24 i= I,n
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Neliömatriisin adjungaatti, L24
Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa
Positiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
Käänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Mat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
Käänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
tyyppi metalli puu lasi työ I II III metalli puu lasi työ
MATRIISIALGEBRA Harjoitustehtäviä syksy 29 ( 7 1 1 4 1 1. Olkoot, B = 1 5 2 5 3 Määrää 2A, B 2A, A T, ( 2A) T, (A T ) T. ), C = ( 1 ) 4 4 ja E = 7. 3 2. Olkoot A, B, C ja E kuten edellisessä tehtävässä.
Ratkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
Ominaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät
1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,
Likimääräisratkaisut ja regularisaatio
Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.
Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
Matematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
Numeerinen integrointi ja derivointi
Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion
Konvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30
DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia
Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB