MS-C1420 Fourier-analyysi osa II

Koko: px
Aloita esitys sivulta:

Download "MS-C1420 Fourier-analyysi osa II"

Transkriptio

1 MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta Fourier-sarjat ja Fourier-integraalit Poissonin summakaava Whittaker-Shannonin interpolointikaava 2 Vaimennetunen distribuution Fourier-muunnos 3 Aliasoituminen 4 Ikkunoitu Fourier-muunnos 5 Diskreettien signaalien konvoluutiot G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Fourier-kertoimien numeerinen laskeminen ( Jos 1-jaksollisesta signaalista s on saatu havainnot q(j) s j j, 1,..., 1 ja halutaan laskea Fourie-kertoimien ŝ(k) approksimaatioita niin voidaan menetellä seuraavalla tavalla: Muodostetaan ensin s:n korvikkeena funktio g(t) ( q(j)p t j ), missä p (t + 1) p (t) ja { 1, t, p (t), t k, k 1, 2,..., 1, ( ) ( ) jolloin siis g j q(j) s j kaikilla j. Tämän funktion Fourier-kertoimet ovat ĝ(k) ˆq(k) p (k). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 ), Miksi? Funktion g Fourier-kertoimiksi saadaan ĝ(k) 1 e i2πkt e i2πkj ) q(j)p (t j dt 1 q(j) e i2πk(t j ) ) p (t j dt e i2πkj q(j) 1 j j e i2πkt p (t) dt e i2πkj q(j) p (k) ˆq(k) p (k). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

2 Jaksollistetut funktiot Jos s L 1 () ja siitä tehdään jaksollien funktio s J kaavalla s J (t) s(t j) s(t + j) niin s J L 1 (/Z) ja ŝ J (k) ŝ(k), k Z. Tämä ei välttämättä onnistu jos ainoastaan oletetaan, että s L 2 (). Miksi Koska e i2πkj 1, k, j Z niin muuttujan vaihdolla t τ + j saadaan e i2πkt s(t) dt j+1 e i2πkt s(t) dt 1 e i2πk(τ+j) s(t+j) dt j 1 e i2πkτ s(t + j) dt 1 e i2πkτ s(t + j) dτ. Esimerkki jaksollistamisesta Jos > 1 ja p L 1 () on sellainen, että p() 1, p(j) kaikilla j Z \ {} ja p (t) p((t j)) niin silloin p (t + 1) p (t), p (t) 1 kun t ja p (t) kun t k ja k 1, 2,..., 1. Lisäksi pätee p (k) 1 ( ) k ˆp, k Z. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Poissonin summakaava Jos s L 1 (), s on jatkuva kokonaislukupisteissä ja jono j s(t + j) suppenee tasaisesti kun t ( δ, δ) kun missä δ > niin lim k s(k) lim k k ŝ(k) ja jos esim. k Z s(k) < ja k Z ŝ(k) < niin pätee ŝ(k). Huom! k Z s(k) k Z Soveltamalla tätä tulosta tyyppiä t s(t x), t e i2πxt s(t) ja t s(at) oleviin funktioihin ja niiden kombinaatioihin saadaan lisää kaavoja. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Miksi Poissonin summakaava on voimassa Kyse on oleellisesti siitä missä mielessä, jos lainkaan, käänteiskaava s J (t) k Z ei2πk t ŝ J (k) pätee kun t. Olkoon g(t) lim j s(t + j) jolloin g L1 (/Z) ja ĝ(k) ŝ(k). Oletuksesta, että jono j s(t + j) suppenee tasaisesti kun t (, δ) seuraa, että g on jatkuva pisteessä. Silloin pätee missä F 1 (F g)() lim (F g)() g() ( ) 2 sin(πt) sin(πt) ja koska toisaalta k k ei2πk ĝ(k) k k ŝ(k) niin saadaan väite g:n määritelmästä. Jos k Z s(k) < ja k Z ŝ(k) < rajat-arvot voidaan ottaa ja saadaan väite k Z s(k) k Z ŝ(k). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

3 Vaimennetut distribuutiot Whittaker-Shannonin interpolointikaava Jos s L 2 () ja ŝ(ν) kun ν > 1 2 niin s(t) k Z s(k)sinc (t k) t, missä sinc (t) sin(πt) πt jos t ja 1 jos t. Jos s L 1 () ja ŝ(ν) kun ν > 1 2 niin s L2 () ja oletuksesta s L 2 () seuraa, että k Z s(k)sinc (t k) < kaikilla t. S () { h : h on jatkuva ja lineaarinen funktio: S() C }. Jatkuvuus? Funktio h : S() C on jatkuva jos lim n h(ψ n ) h(ψ) kun ψ n, ψ S() ja lim n ψ n ψ eli lim n d(ψ n, ψ) missä d(ϕ, ψ) k m 2 (k+m) sup t t k (ϕ (m) (t) ψ (m) (t)) 1 + sup t t k (ϕ (m) (t) ψ (m) (t)). äin ollen funktio h : S() C on jatkuva jos jokaisella ψ S() ja jokaisella ɛ > on olemassa δ > siten että jos ϕ S() ja d(ϕ, ψ) < δ niin h(ϕ) h(ψ) < ɛ. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Vaimennetun distribuution Fourier-muunnos Jos h S () niin ĥ F(h) on vaimennettu distribuutio Huom! ĥ(ψ) h( ˆψ). Jotta voidaan osoittaa, että ĥ S () jos h S () pitää ensin osoittaa että Fourier-muunnos on jatkuva: S() S(). (Lineaarisuus on melkein itsestään selvä asia.) Esimerkki Jos s : C on mitallinen ja on olemassa m siten, että s(t) (1 + t ) m dt < niin voidaan määritellä vaimennettu distribuutio s D (tai pelkästään s) kaavalla s D (ψ) s(t)ψ(t) dt. Jos s D (ψ) kun ψ S(), eli s D, niin s(t) melkein kaikilla t. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Diracin δ-funktio Voidaan määritellä vaimennettu distribuutio δ T seuraavasti: δ T (ψ) ψ(t ). Jos p L 1 () on sellainen, että p(t) dt 1, esim. p(t) e πt2, ja merkitään p a (t) ap(at) niin p a (t T )ψ(t) dt ψ(t ), lim a joten δ T on funktioiden p a (t T ) raja-arvo distribuutiomielessä. Distribuution δ T Fourier-muunnos δ T on määritelmän mukaan distribuutio jonka arvo testifunktiolla ψ on δ T (ψ) δ T ( ˆψ) ˆψ(T ) e i2πt ν ψ(ν) dν, eli funktion t e i2πt ν generoima distribuutio. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

4 Diracin δ-funktio, jatk. Funktion p a (t T ) Fourier-muunnos on e i2πνt ap(a(t T )) dt a(t T ) τ e i2π ν a τ e i2πt ν p(τ) dτ i2πt e νˆp ( ν a ), koska dt 1 a dτ ja t τ a + T. Kun a saadaan raja-arvona funktio e i2πt ν koska lim a ˆp ( ) ν a ˆp() p(t) dt 1 oletuksen mukaan, jolloin taas nähdään että δ T :n Fourier-muunnos on funktio e i2πt ν (tai tämän funktion generoima distribuutio). Vaimennetun distribuution Fourier-muunnos on järkevästi määritelty! Jos s L 1 () tai s L 2 () niin Miksi? ŝ D (ŝ) D eli F(s D ) F(s) D. Jos esim. s L 1 () niin määritelmän mukaan F(s D )(ψ) s D ( ˆψ) s(t) ˆψ(t) dt. Koska sekä s että ψ L 1 () niin kertolaksukaavan nojalla, joka pätee myös kuin kuin molemmat funktiot ovat neliöintegroituvia, s(t) ˆψ(t) dt ŝ(t)ψ(t) dt (ŝ) D (ψ), ja koska ψ S() oli mielivaltainen, niin väite seuraa. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Vaimennetun distribuution derivaatta Jos h S () niin sen derivaatta h määritellään kaavalla h (ϕ) h(ϕ ). Kun todistetaann, että h on vaimennettu on ensin osoitettava, että derivointi on jatkuva funktio: S() S(). Miksi näin? Jos s on derivoituva funktio ja on olemassa m siten, että ( s(t) + s (t) )(1 + t ) m dt niin s D ja (s ) D ovat vaimennettuja distribuutioita ja pätee (s D ) (ψ) s D (ψ ) s(t)ψ (t) dt / s(t)ψ(t) dt + s (t)ψ(t) dt (s ) D (ψ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Operaatioita vaimennetuilla distribuutioilla Kun s on funktio C voimme määritellä seuraavat operaatiot: (T x s)(t) s(t x), (M x s)(t) e i2πxt s(t), (C x s)(t) s(xt) (missä x ) ja ehdosta L x s D (L x s) D missä L T, M tai S, niin saadaan seuraavat määritelmät vaimennetuille distribuutioille: (T x h)(ψ) h(t x ψ), (M x h)(ψ) h(m x ψ), ( ) (C x h)(ψ) h 1 x C 1 ψ. x Lisäksi jos ϕ C () ja sup t (1 + t ) k(m) ϕ (m) (t) < kaikilla m jollain k(m) niin määritellään funktion ϕ ja vaimennetun distribuution h tulo kaavalla (ϕh)(ψ) h(ϕψ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

5 Fourier-muunnos ja derivaatta Jos h S () niin Miksi? F(h) F(( i2πt)h), F(h ) (i2πt)f(h). Jaksollisen funktion Fourier-muunnos Jos s L 1 (/Z) niin s määrittelee myös funktion: C siten, että s(t) (1 + t ) 2 dt < ja silloin ŝ D k Z ŝ(k)δ k, F(h) (ψ) F(h)(ψ ) h(f(ψ )) h((i2πt)f(ψ)) (( i2πt)h)(f(ψ)) F(( i2πt)h)(ψ), missä ŝ(k) on s:n Fourier-kerroin ja δ τ (ψ) ψ(τ). ja F(h )(ψ) h (F(ψ)) h(f(ψ) ) h(f(( i2πt)ψ) F(h)((i2πt)ψ) ((i2πt)f(h))(ψ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Jaksollisen funktion Fourier-muunnos Määritelmän mukaan ŝ D (ψ) s(t) ˆψ(t) dt. Koska ˆψ S niin funktio ϕ(t) ˆψ( t + j) on jaksollinen ja äärettömän monta kertaa derivoituva. äin ollen se voidaan kirjoittaa Fourier-summana ϕ(t) k Z e i2πkt ˆϕ(k). Koska s on jaksollinen niin Jaksollisen funktion Fourier-muunnos, jatk. missä ŝ tarkoittaa jaksollisen funktion Fourier-muunnos. Toisaalta ˆϕ(k) äin ollen 1 e i2πkt ˆψ( t + j) dt e i2πkt ˆψ( t) dt ŝ D (ψ) k Z ŝ(k)ψ(k), e i2πkt ˆψ(t) dt ψ(k). s(t) ˆψ(t) dt j+1 j s(t)ψ(t) dt ˆϕ(m) k Z 1 1 s(t)ϕ( t) dt e i2πkt s(t) dt k Z ˆϕ(k)ŝ(k), eli ŝ D k Z ŝ(k)δ k. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

6 Aliasoituminen I Olkoon s jatkuva-aikainen signaali jonka Fourier-muunnos ŝ L 1 () jolloin s on ainakin jatkuva funktio siten, että lim t s(t). Jos nyt otetaan näytteitä s(k t), k Z, tästä signaalista niin Fourier-muunnoksen käänteiskaavan nojalla ne voidaan esittää Fourier-muunnoksen ŝ avulla seuraavasti: s(k t) e i2πk tν ŝ(ν) dν. Mutta funktio ν e i2πk tν on jaksollinen jaksolla ν 1 t joten jos nyt määritellään ŝ J, ν (ν) ŝ(ν j ν) niin s(k t) ν e i2πk tν ŝ J, ν (ν)dν ν 2 ν 2 e i2πk tν ŝ J, ν (ν)dν. äin funktio ŝ J, ν (ν) määrittää jonon s(k t) ja päinvastoin eikä jälkimmäisen jonon avulla ole mahdollista sanoa luvuista ŝ(ν j ν) muuta kuin niiden summa. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Aliasoituminen I, jatk. Toisaalta jos ŝ on nolla tietyn ν-pituisen välin ulkopuolella, niin silloin on mahdollista rekonstruida signaali lukujen s(k t) avulla Whittaker-Shannonin interpolointikaavan (modifikaation) avulla. Aliasoituminen II Tarkastellaan seuraavaksi mahdollisimman yksinkertainen signaali eli s(t) e i2πνt jonka taajuus on ν ja poikkeuksena edelliseen tapaukseen otetaan nyt vain näytettä q(k) s(t + k t), k, ämä näytteet määräytyvät yksikäsitteisesti tämän jonon diskreetistä Fourier-muunnoksesta ˆq(m) k mk i2π e s(t + k t) k mk i2π e e i2πν(t +k t) e i2πνt k e i2πk(ν t m ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Aliasoituminen II, jatk. Funktion e i2πt jaksollisuudesta ja geometrisen sarjan summakaavasta seuraa, että e i2πνt, jos e i2π(mod (ν t,1) m ) 1, ˆq(m) e i2πνt 1 ei2π(mod (ν t,1) m) 1 e i2π(mod (ν t,1) m ), muuten. äin ollen ainoa tieto taajuudesta joka saadaan diskreetistä Fourier-muunnoksesta ja siten myös jonosta s(t + k t) on mod (ν t, 1) ja se näkyy siten, että diskreetti Fourier-muunnos saa itseisarvoltaan suurimmat arvonsa kun m mod (ν t, 1). Muista myös, että jokainen vaimennettu distribuutio on trigonometristen polynomien raja-arvo (tosin aika heikossa mielessä), ja yllä oleva lasku on myös sovellettavissa niihin. Aikataajuudessa rajoitettu signaali on Ainoa funktio s L 1 () jolle on olemassa M < siten, että s(t) kun t M ja ŝ(ν) kun ν M on s. Aikataajuudessa rajoitettu signaali on Olkoon s tällainen funktio. Määritellään sen avulla funktio q(t) s(4mt + M) jolloin nähdään, että q(t) kun kun t 1 2 ja kun t. Seuraavaksi muodostetaan tämän funktion jaksollistus q J (t) q(t j) jolle siis pätee, että q J(t) kun t [, 1 2 ]. Koska ˆq(ν) e i2π ν 4 ŝ( ν 4M ) niin ˆq(ν) kun ν 4M2. Erityisesti tämä tarkoittaa sitä, että q J :llä on ainoastaan äärellisen monta nollasta poikkeavaa Fourier-kerrointa koska q J (k) ˆq(k). äin ollen q voidaan esittää Fourier-summana q(t) m k m e i2πkt ˆq(k), ja voimme olettaa, että ˆq( m) + ˆq(m) > jos s jolloin q. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

7 Aikataajuudessa rajoitettu signaali on, jatk. Koska Fourier-summa sisältää vain äärellisen monta termiä niin q on äärettömän monta kertaa jatkuvasti derivoituva ja koska q(t) kun < t < 1 2 niin myös kaikki sen derivaatat ovat tällä välillä ja jatkuvuuden nojalla myös pisteessä t eli q(j) () (i2πm) j m k m ( ) k j ˆq(k). m yt pätee lim j m 1 k m+1 ( k m) j ˆq(k)e i2πkt joten saadaan lim j (( 1) j ˆq( m) + ˆq(m)), josta seuraa, että ˆq( m) ˆq(m) ja s. Ikkunoitu Fourier-muunnos Jos s signaali ja w on ikkuna -funktio niin s:n w-ikkunoitu Fourier-muunnos on F (s, w)(τ, ν) e i2πνt s(t)w(t τ) dt. eli F (s, w)(τ, ν) F(sT τ w)(ν) ja oletetaan, että w on valittu siten, että signaalin s(t)t τ w(t) Fourier-muunnos on hyvin määritelty. (Useimmiten ikkunafunktio w reaalinen, esim w(t) e βt2 jolloin kompleksikonjugoinnilla ei ole merkitystä.) Miksi ikkunointia? Ikkunoitu Fourier-muunnos antaa jotakin informaatiota signaalin s sisältämistä taajuuksista lyhyellä aikavälillä mutta ei ole suinkaan ainoa korjausyritys Fourier-muunnoksen heikoimpiin puoliin, jotka liittyvät siihen, että sen arvo tietyssä pisteessä riippuu signaalin arvoista kaikissa pisteissä. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Miksi ikkunointia? Kuten Fourier-sarjojen kohdalla voidaan todeta, saadaan yleensä parempi tulos kun signaali rekonstruoidaan Fourier-kertoimista jos käytetään painotettu summa k k ŝ(k)ei2πkt kuin jos lasketaan k ŝ(k)ei2πkt. Tässä tapauksessa käytetään siis diskreettiä Esimerkki Alla olevassa kuvassa on esitetty signaalin s ikkunoidun Fourier-muunnoksen itseisarvo ikkunafunktiolla w(t) e 4t2 missä s(t) sin(2π5t) kun t 1, s(t) sin(2π1t) kun 1 t 2 ja s(t) muuten. ikkunafunktiota w(k) k. Toisin sanoen, kun lasketaan Fourier-muunnoksia ja käänteismuunnoksia voi olla hyvä idea käyttää ikkunointia kiinteällä τ:n arvolla (esim. ) ja valita ikkunafunktioksi esim. e ɛt2 missä ɛ on pieni positiivinen luku. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

8 Ikkunoidun Fourier-muunnoksen käänteismuunnos ja energia Jos w S() (mikä on järkevä valinta) ja sup t s(t) (1 + t ) m < jollain m niin Fourier-muunnoksen käänteismuunnoksella saadaan s(t) (w(t τ)) 1 ei2πνt F (s, w)(τ, ν) dν, jos w(t τ). Mutta jos sen sijaan, että käänteismuunnoskaavassa jaetaan w(t τ):llä kerrotaan w(t τ):lla ja integroidaan τ:n suhteen saadaan 1 s(t) e i2πνt F (s, w)(τ, ν)w(t τ) dν dτ w(τ) 2 dτ Koska ĥ(ν) 2 dν h(t) 2 dt ja ν F (s, w)(τ, ν) on Fourier-muunnos niin F (s, w)(τ, ν) 2 dν dτ s(t) 2 w(t τ) 2 dt dτ w(τ) 2 dτ s(t) 2 dt w(τ) 2 dτ ŝ(ν) 2 dν, eli ikkunoitu Fourier-muunnos jakaa signaalin energian toisella tavalla tasoon 2. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Ikkunoitu Fourier-muunnos konvoluutiona Määritelmän mukaan F (s, w)(τ, ν) e i2πνt s(t)w(t τ) dt. Oletetaan, että ikkuna-funktio w S(). Seuraavaksi esitetään funktio t e i2πνt w(t τ) Fourier-muunnoksena ja käänteismuunnoksen avulla todetaan, että e i2πνt w(t τ) e i2πνt e i2π(t τ)µ ŵ(µ) dµ e i2πt(µ+ν) e i2πτµ ŵ(µ) dµ µ + ν γ e i2πtγ e i2πτ(ν γ) ŵ(γ ν) dγ. yt ŵ(γ ν) ŵ(ν γ)ja näin ollen funktio t e i2πνt w(t τ) on funktion γ e i2πτ(ν γ) ŵ(ν γ) Fourier-muunnos. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Ikkunoitu Fourier-muunnos konvoluutiona, jatk. Kertolaskukaavan nojalla pätee F (s, w)(τ, ν) ŝ(γ)e i2πτ(ν γ) ŵ(ν γ) dγ (ŝ (M τ ŵ))(ν). missä siis M x ψ(t) e i2πxt ψ(t). Huomaa, että kertolaskukaavan käyttö kuten edellä edellyttää että esim s L 1 () tai s L 2 () mutta vaimennetun distribuution Fourier-muunnoksen määritelmä on sama kaava joten yllä oleva tulos pätee myös jos s on vaimennettu distrubuutio koska jos h S () ja ψ S() niin (h ψ)(x) on distribuution h arvo testifunktiolla t ψ(x t). Diskreetti konvoluutio Jos a : Z C ja b : Z C ovat esim. sellaisia, että a(j) < ja a(j) < niin niiden konvoluutio a b on (a b)(k) c(k) a(k j)b(j), k Z. Kun tällaisen signaalin Fourier-muunnos on niin pätee â(ν) e i2πνj a(j), â b(ν) â(ν)ˆb(ν). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

9 Diskreetti jaksollinen konvoluutio Jos signaalit a : Z C ja b : Z C ovat jaksollisia jaksolla niin niiden (jaksollinen) konvoluutio a J b on ja pätee Konvoluutio :ssa (a J b)(k) a(k j)b(j), â J b(m) â(m)ˆb(m), m Z. Jos a : Z C ja b : Z C ovat sellaisia että a(j) b(j) kun j < niin k (a b)(k) a(k j)b(j), k, ja (a b)(k) kun k < ja kaikilla k on laskettava ainoastaan äärellinen summa. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Konvoluution laskeminen Fourier-muunnoksen avulla Jos luvut a(j) ja b(j) tunnetaan kun j,..., 1 ja halutaan laskea (a b)(k) k a(k j)b(j), k,..., 1, niin voidaan menetellä seuraavalla tavalla: Määritellään { a(j), j,..., 1, a 2 (j) a 2 (j) a 2 (j + 2), j Z,, j,..., 2 1, { b(j), j,..., 1, b 2 (j) b 2 (j) b 2 (j + 2), j Z,, j,..., 2 1, Sitten lasketaan jolloin c F 1 2 (F 2(a 2 ) F 2 (b 2 )) c(k) (a b)(k), k,..., 1. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Miksi? Koska jaksollisten jononjen konvoluution diskreetti Fourier-muunnos on Fourier-muunnosten tulo niin c a 2 J b 2 eli c(k) 2 a 2 (k j)b 2 (j), k Z. Koska b 2 (j) b(j) kun j,..., 1 ja b 2 (j) kun j,..., 2 1 niin c(k) a 2 (k j)b(j), k Z. Mutta jos nyt k 1 ja k + 1 j 1 niin + 1 k j 1 jolloin + 1 k j josta seuraa, että a 2 (k j) a 2 (k j + 2). Koska lisäksi a 2 (k j) a(k j) kun j k 1 niin Miksi?, jatk. c(k) k a 2 (k j)b(j) k a(k j)b(j), k,..., 1. Jos lisäksi pätee a(j) b(j) kun j ja 1 k 2 1 niin c(k) a 2 (k j)b(j) jk +1 a(k j)b(j) k a(k j)b(j). ja saadaan kaikki konvoluution termit indekseillä k, 1,..., 2 1 (ja tässä tapauksessa konvoluutio on kun k 2 1). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa! Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla 4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu

Lisätiedot

Mat Matematiikan peruskurssi L4, osa I

Mat Matematiikan peruskurssi L4, osa I Fourier-sarjat..................... 3 Mat-.4 Matematiikan peruskurssi L4, osa I In matematics you don t understand tings. You just get used to tem. Jon von eumann G. Gripenberg Aalto-yliopisto 9. elmikuuta

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan

Lisätiedot

Ville Turunen: MS-C1420 Fourier-analyysi (5 opintopistettä)

Ville Turunen: MS-C1420 Fourier-analyysi (5 opintopistettä) Ville Turunen: MS-C142 Fourier-analyysi (5 opintopistettä) Esitiedot: Lineaarialgebra 1, Differentiaali- ja integraalilaskenta 1. 1 Johdanto Mitä Fourier-analyysi on? Fourier-analyysi on läsnä kaikkialla,

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt 8. marraskuuta 216 Laplace-muunnoksen määritelmä, olemassaolo ja perusom Integraalimuunnos Integraalimuunnos on yleisesti muotoa F(u) = K(t, u)f (t)dt missä K on integraalin ydin. Tässä K ja f ovat tunnettuja.

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0, Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät

A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos A! Modulaatioiden

Lisätiedot

Ville Turunen: ( ) MS-C1420 Fourier-analyysi (5 opintopistettä)

Ville Turunen: ( ) MS-C1420 Fourier-analyysi (5 opintopistettä) Ville Turunen: (3.9.215) MS-C142 Fourier-analyysi (5 opintopistettä) Esitiedot: Matriisilaskenta, Differentiaali- ja integraalilaskenta 1. 1 Johdanto Mitä Fourier-analyysi on? Fourier-analyysia on kaikkialla,

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0; 3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Tasainen suppeneminen ja sen sovellukset

Tasainen suppeneminen ja sen sovellukset Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n)

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n) FUNKTIONAALIANALYYSIN PERUSKURSSI 73 5. Fourier-sarjat Fourier esitti vuonna 1822 lämmönjohtamista koskevien tutkimusten yhteydessä kuuluisan menetelmänsä esittää mielivaltainen -jaksollinen funktio kehitelmänä

Lisätiedot

1 Tensoriavaruuksista..

1 Tensoriavaruuksista.. 1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

Nopeat Fourier-muunnokset

Nopeat Fourier-muunnokset opeat Fourier-muunnokset Timo ännikkö 1 Fourier-analyysin alkeita 1.1 Fourier-sarjat Olkoon f koko R:ssä määritelty kuvaus siten, että se on integroituva välillä ] π, π[ ja lisäksi -jaksollinen, ts. fx

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot