MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MATEMATIIKAN JA TILASTOTIETEEN LAITOS"

Transkriptio

1 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti ja ke 1.4.) ei ole luentoja eikä harjoituksia Jatkuu... *1. Olkoot (X, d) metrinen avaruus ja x 0 X kiinteä piste. Merkitään C b (X; R) := {f : X R f on jatkuva ja rajoitettu } f := sup{ f(y) y X}, kun f C b (X; R) Jokaiselle x X olkoon f x : X R, f x (y) := d(x, y) d(y, x 0 ). Osoita, että a) f x C b (X; R) kaikille x X; b) f x f z = d(x, z) kaikille x, z X; c) jokainen metrinen avaruus voidaan upottaa isometrisesti Banachin avaruuden tiheäksi osajoukoksi. *2. (Samaistaako vaiko eikö samaistaa?) Fréchet n ja Rieszin esityslauseen nojalla Hilbertin avaruus H ja sen duaali H voidaaan samaistaa: H = H, kun samaistetaan a H ja jatkuva lineaarifunktionaali ( a) H. Aina näin ei kuitenkaan voida tehdä. Kaikille s R asetetaan h s := {x = (x n ) n=1 n=1 n2s x n 2 < } sekä (x y) s := n=1 n2s x n y n, kun x = (x n ) n=1, y = (y n) n=1 hs. Tällöin (h s, ( ) s ) on Hilbertin avaruus. Lisäksi h 0 = l 2 ja ( ) 0 on l 2 :n tavallinen sisätulo. a) Osoita, että kaikille y = (y n ) n=1 h 1, kuvaus f 1,y : h 1 K, (x n ) n=1 n=1 x n y n, on jatkuva lineaarifunktionaali, jonka operaattorinormi on y 1. b) Olkoon f : h 1 K jatkuva lineaarifunktionaali. Osoita, että on olemassa y h 1 siten, että f = f 1,y. [Vihje: Aseta y j := f(e j ), kun j Z +, missä (e j ) j=1 on l2 :n standardikanta, sekä y = (y n ) n=1. Kun y(n) := (y 1, y 2,..., y n, 0, 0,...), on y (n) 2 1 = f( n j=1 j 2 y j e j ) f y (n) 1, joten y h 1. Lisäksi f(x) = f 1,y (x) kaikille x h 1.] c) Osoita yleisemmin, että kaikille y = (y n ) n=1 h s, kuvaus f s,y : h s K, (x n ) n=1 n=1 x n y n, on jatkuva lineaarifunktionaali, jonka opetaattorinormi on y s. Siis y f s,y on konjugaattilineaarinen isometria h s (h s ). d) Osoita, että jos f : h s K on jatkuva lineaarifunktionaali, niin on olemassa y h s siten, että f = f s,y. Tässä esimerkissä siis (h 0 ) = h 0 = l 2, mutta kun s 0, niin duaali (h s ) samaistuu avaruuteen h s ; samaistetaan ( y h s ja f s,y (h s ). Jos asetetaan f y (xn ) n=1) := n=1 n2s x n y n, kun x = (x n ) n=1 hr ja y = (y n ) n=1 h 2s r, niin kuvaus y f y : h 2s r (h r ) on konjugaattilineaarinen isometria. Tällöin voidaan samaistaa (h s ) = h s, jolloin (l 2 ) = (h 0 ) = h 2s. *3. Olkoot E ja F normiavaruuksia, D E aliavaruus ja T : E F lineaarikuvaus. Osoita, että T :n kuvaaja Gr(T ) on suljettu, jos ja vain jos ehdoista x n D, n Z +, x n x E ja T x n y F seuraa, että x D ja T x = y.

2 ... jatkuu 2 *4. Olkoon z l 2 vektori, jolle (z e j ) 0 äärettömän monelle j Z +. Olkoot D := {z} {e j j Z + } ja T : D l 2, T (x 0 z + ) x j e j := x 0 z. j Z + Osoita, että T on lineaarikuvaus. Perustele aluksi, miksi T on hyvin määritelty. (Huomaa, että kun x 0 z + j Z + x j e j D, summassa vain äärellisen monta x j 0.) Osoita, että a) T :n kuvaaja ei ole suljettu; b) T :n kuvaajan sulkeuma Gr(T ) ei ole minkään lineaarikuvauksen kuvaaja. [Vihje: Osoita, että (z, z) Gr(T ) ja (z, 0) Gr(T ).] Tehtävän opetus? Ensin määritelmä: Rajoittamaton operaattori on sulkeutuva, jos sen kuvaajan sulkeuma on jonkin rajoittamattoman operaattorin kuvaaja. Jos T on sulkeutuva ja S on operaattori, jolle Gr(T ) = Gr(S), on S rajoittamattoman operaattorin T sulkeuma. Tehtävä siis sanoo, että kaikki rajoittamattomat operaattorit eivät ole sulkeutuvia. *5. Olkoon (E n ) n=1 avaruuden L2 Hilbertin kanta. Olkoot D := C c (R) kompkatikantajaisten C -funktioiden joukko ja T : D L 2 (R), T f := f(n) e n. n=1 Osoita, että T on hyvin määritelty lineaarikuvaus. Seuraavassa hahmotellaan todistusta sille, että rajoittamattoman operaattorin T adjungaatin T määrittelyjoukko D = {0}. Valitse g L 2 (R), g 0. Osoitetaan, että lineaarimuoto f (T f g) ei tällöin ole jatkuva: Koska g 0, on (g e N ) 0 jollekin N Z +. Valitse f k D siten, että supp f k [N 1 2, N ], f k(n) = 1 ja f k 2 0, kun k. Osoita, että (T f k g) 0, kun k, vaikka f k 2 0. *6. Olkoon x = (x n ) n Z C siten, että n Z x n < (t.s. x l 1 (Z)). Osoita, että sarja n Z x n e i n t suppenee itseisesti ja tasaisesti, ja sen summa f(t) on siis jatkuva, 2πjaksoinen funktio f : R C. [Vihje: Weierstrassin M-testi.] *7. Olkoon x = (x n ) n Z C siten, että n Z n x n < (t.s. (n x n ) n Z l 1 (Z)). Osoita, että sarja n Z x n e i n t suppenee itseisesti ja tasaisesti, ja sen summa f(t) on jatkuvasti derivoituva, 2π-jaksoinen funktio f : R C. [Vihje: idem.] *8. Olkoon x = (x n ) n Z C siten, että n Z n 2s x n 2 < jollekin s > 1/2 (t.s. ( n s x n ) n Z l 2 (Z)). Osoita, että sarja n Z x n e i n t suppenee itseisesti ja tasaisesti, ja sen summa f(t) on jatkuva, 2π-jaksoinen funktio f : R C. [Vihje: CSB, yliharmoninen sarja ja Weierstrassin M-testi.] *9. Olkoon x = (x n ) n Z C siten, että n Z n 2s+2 x n 2 < jollekin s > 1/2 (t.s. ( n s n x n ) n Z l 2 (Z)). Osoita, että sarja n Z x n e i n t suppenee itseisesti ja tasaisesti, ja sen summa f(t) on jatkuvasti derivoituva, 2π-jaksoinen funktio f : R C. [Vihje: idem.]

3 Sobolevin avaruuksien jonoversio. Kaikille s R asetetaan... jatkuu 3 h s := { x = (x k ) k Z x 2 π,s = k Z(1 + k 2 ) s x k 2 < }, (x y) π,s := k Z(1 + k 2 ) s x k y k, kun x = (x k ) k Z h s ja y = (y k ) k Z h s. Huomaa, että h 0 = l 2 (Z) ja π,0 = 2. *10. Osoita, että kuvaus I s : h s l 2 (Z), I s x := ((1 + k 2 ) s/2 x k ) k Z, kun x = (x k ) k Z h s, on isometrinen lineaarinen bijektio. Päättele tämän avulla, että (h s, ( ) π,s ) on Hilbertin avaruus. *11. Kaikille s, r R asetetaan I s,r : h s h r, I s,r x := ((1 + k 2 ) (s r)/2 x k ) k Z, kun x = (x k ) k Z h s. Osoita, että I s,r on isometrinen lineaarinen bijektio. Osoita lisäksi, että I s,r I r,t = I s,t ja I s,r I r = I s. *12. Olkoon D π,1 : h 1 l 2 (Z), D π,1 x := (k x k ) k Z, kun x = (x k ) k Z h 1. Osoita, että kuvaus D π,1 on jatkuva lineaarikuvaus, ja x 2 π,1 := x D π,1x 2 2. *13. Kun n N, olkoon D π,n : h n l 2 (Z), D π,n x := (k n x k ) k Z, kun x = (x k ) k Z h n. Osoita, että kuvaus D π,n on jatkuva lineaarikuvaus. Osoita lisäksi, että x ( x D π,nx 2 2 on normi h n :ssä, ja että se on ekvivalentti normin π,n kanssa. *14. Olkoot D := s R hs ja D π : D D, D π x := (k x k ) k Z, kun x = (x k ) k Z D. Kun j N, olkoon Dπ j : D D, Dπx j := (k j x k ) k Z, kun x = (x k ) k Z D. Huomaa, että D π h 1 = D π,1 ja Dπ n h n = D π,n. Olkoon n N. Osoita, että h n = {x l 2 (Z) Dπx j l 2 (Z) kaikille j = 1,..., n}. Osoita lisäksi, että x ( x n j=1 Dj πx 2 1/2 2) on normi h n :ssä, ja että se on ekvivalentti normin π,n kanssa. *15. a) Olkoot y = (y k ) k Z l 2 ja λ > 0. Osoita, että yhtälöllä D π,2 x + λ x = y on tasan yksi ratkaisu x h 2. b) Olkoot y = (y k ) k Z D ja λ > 0. Osoita, että yhtälöllä D 2 πx + λ x = y on tasan yksi ratkaisu x D. Osoita myös, että jos y h s, niin x h s+2. *16. Osoita, että kun s > r, on h s h r vektorialiavaruutena. Asetetaan kaikille s, r R, joille s r, U s,r : h s h r, U s,r x := x (upotus). Osoita, että U s,r on jatkuva. *17. Osoita, että kun s > 0, on h s tiheä l 2 (Z):n aliavaruus. [Vihje: f := {x = (x n ) n Z x n 0 vain äärellisen monelle n} h s kaikille s R.] *18. Osoita, että kun s > r, on h s tiheä h r :n aliavaruus. *19. Kaikille x = (x k ) k Z h s, y = (y k ) k Z h s asetetaan f y : h s C, f y (x) := k Z x ky k. Osoita, että f y (h s ), ja että kuvaus h s (h s ), y f y on lineaarinen isometria, vieläpä isomorfismi. Huomaa, että tässä ei ole kyse Fréchet n ja Rieszin lauseen isomorfiasta Hilbertin avaruuden ja sen duaalin välillä. Tässä l 2 (Z):n duaali samastetaan itseensä, jolloin h s :n duaali tulee samastumaan avaruuden h s kanssa. Ks. tehtävää *2, Samaistaako vaiko eikö samaistaa? ) 1/2

4 ... jatkuu 4 *20. ( Sobolevin upotuslause ) Olkoon C 2π kaikkien 2π-jaksoisten jatkuvien funktioiden f : R C muodostama Banachin avaruus, normina f := sup{ f(t) t R}. Kun s > 1/2, olkoon S s : h s C 2π, (S s x)(t) := n Z x ne i n t, kun x = (x n ) n Z. Osoita, että kuvaus on hyvinmääritelty ja jatkuva. *21. Kun k N, olkoon C k 2π := {f C 2π f (j) on jatkuva kaikille j = 1,..., k}, missä f (j) := f:n j. derivaatta. Olkoon f k, := k j=0 f (j), missä f (0) := f. Olkoon s > k + 1/2. Osoita, että S s x C k 2π, kun x hs, ja että S s : h s C k 2π on jatkuva. *22. (Vastaisen varalle, kun on opiskeltu kompakteja operaattoreita; vrt. moniste, luku IX, Kompaktit operaattorit.) Olkoot λ = (λ k ) k Z l (Z) ja T : l 2 (Z) l 2 (Z), T x := (λ k x k ) k Z, kun x = (x k ) k Z l 2 (Z). Tällöin T on jatkuva lineaarikuvaus. Lisäksi T on kompakti, jos ja vain jos λ c 0 (Z), t.s. λ k 0, kun k. *23. ( Rellichin lemma ) Olkoon s > 0. Osoita, että upotus U s,0 : h s l 2 (Z), x x, on kompakti. [Vihje: U s,0 Is 1 : l 2 (Z) l 2 (Z) on edellisen tehtävän perusteella helppo osoittaa kompatiksi. Muista, että kuvaus I s : h s l 2 (Z) on isometrinen isomorfismi.] *24. Olkoon s > r. Osoita, että upotus U s,r : h s h r, x x, on kompakti. [Vihje: I r U s,r Is 1 : l 2 (Z) l 2 (Z) on helppo osoittaa kompatiksi.] Selityksiä: Rieszin ja Fisherin lauseen nojalla funktion f L 2 ([ π, π]) Fourier-kertoimien jono x k = 1 π 2π π f(t) e i k t dt, kuuluu avaruuteen l 2 (Z), ja kääntäen jos (x k ) k Z l 2 (Z), niin on olemassa f L 2 ([ π, π]) s.e. x k = 1 π 2π π f(t) e i k t dt, f(t) = k Z x k e ikt. Muodollisesti termeittäin derivoimalla saadaan f (t) = k Z i k x k e i k t. Siis derivaattaa vastaa kerrointa i lukuunottamatta jono (k x k ) k Z. Jotta derivaatta f L 2 ([ π, π]), on siis oletettava, että (k x k ) k Z l 2 (Z). Ehdot f L 2 ([ π, π]), f L 2 ([ π, π]), voidaan Fourierkertoimille x k korvata yhdellä ehdolla (x k ) k Z π,1 <. Koska funktion f L 2 ([ π, π]) Fourier-kertoimien jono (x k ) k Z l 2 (Z), on x k 0, kun k. Olkoon f C 1 2π. Näytä osittaisintegroimalla y k := 1 π 2π π f (t) e i k t dt, että y k = i k x k. Näytä edelleen, että (k x k ) k Z l 2 (Z) sekä (x k ) k Z h 1 1. Lisäksi 2π f 2 1,2 = (x k ) k Z 2 π,1, missä f 2 1,2 = π π ( f 2 + f 2 ) dt. Käyttämällä Cauchyn jonoja päättele, että 1 2π f 2 1,2 = (x k) k Z 2 π,1 kaikille f H1,2 π := C 1 2π :n täydentymä normin 1,2 suhteen. Kuvaus D π,1 vastaa Fourier-kertoimille Sobolevin avaruuden Hπ 1,2 heikkoa derivaattaa (tekijää i lukuunottamatta). Vastaavasti, jos f on n kertaa jatkuvasti derivoituva, saadaan osittaisintegroinnilla π π f (n) (t) e i k t dt = (i k) n x k, ja (x k ) k Z h n. Operaattori D π,n vastaa Fourier-kertoimille 1 2π Sobolevin avaruuden H n,2 π heikkoa n. kertaluvun derivaattaa, kun H n,2 π := C n 2π :n täydentymä normin n,2 suhteen, missä f 2 n,2 = π n π j=0 f (j) 2 dt. Jaksollisten funktioiden tilanteessa ei ole eri avaruuksia H 1,2 ja H 1,2 0, koska 2π-jaksoiset funktiot voidaan samastaa yksikköympyrän kehän funktioiden kanssa, ja yksikköympyrän kehällä ei ole reunaa. Avaruuksien h s leikkaus h s = { ( (x k ) k Z (1 + k 2 ) s/2 ) x k k Z l (Z) kaikille s R } s R vastaa C 2π -funktioita: Jos (x n) n Z s R hs, niin t n Z x ne i n t on 2π-jaksoinen, C - funktio.

5 ... jatkuu 5 Yhdiste D = h s = { ( (x k ) k Z (1 + k 2 ) s/2 ) x k k Z l (Z) jollekin s R } s R vastaa 2π-jaksoisten distribuutioiden joukkoa ja D π distribuutioderivaattaa. Yhtälö D π,2 x + λ x = y vastaa yhtälöä f + λ f = g. Myös tässä tilanteessa operaattorilla D π,2 on ominaisarvoja. Mitkä? Mitkä ovat vastaavat ominaisvektorit? Aliavaruus f (=jonot (x n ) n Z, joille x n 0 vain äärellisen monelle n) vastaa trigonometristen polynomien joukkoa. Seuraavissa tehtävissä E, F ja G ovat normiavaruuksia, U E avoin ja x 0 U. *25. määritelmä: Kuvaus f : U F on differentioituva pisteessä x 0, jos on olemassa A B(E; F ) siten, että (D) f(x 0 + h) f(x 0 ) = Ah + h ε(h), missä ε f,x0 (h) = ε(h) 0, kun h 0. Lineaarikuvaus A on kuvauksen f derivaatta pisteessä x 0 ja sitä merkitään Df(x 0 ). Kuvaus f on differentioituva, jos se on differentioituva jokaisessa pisteessä x U. Differentioituva kuvaus f : U F on jatkuvasti differentioituva, jos derivaatta Df : U B(E; F ) on jatkuva. *26. Osoita, että ehto (D) määrää derivaatan A yksikäsitteisesti. *27. Olkoot U E avoin, x 0 U ja f : U F annettu kuvaus. Osoita, että jos f on differentioituva pisteessä x 0, niin f on jatkuva pisteessä x 0. *28. Olkoot U E avoin, F = F 1 F m normiavaruuksien tulo ja f = (f 1,..., f m ): U F annettu kuvaus. Osoita, että f on differentioituva pisteessä x 0 U, jos ja vain jos jokainen f j on differentioituva pisteessä x 0 ; tällöin on Df(x 0 ) = (Df 1 (x 0 ),..., Df m (x 0 )). 1 *29. Olkoon B : E F G jatkuva bilineaarikuvaus. Osoita, että B on differentioituva ja DB(x, y)(u, v) = B(x, v) + B(u, y). *30. (Ketjusääntö) Olkoot U E avoin, V F avoin, f : U V differentioituva pisteessä x 0 U ja g : V G differentioituva pisteessä y 0 := f(x 0 ) V. Osoita, että g f : U G on differentioituva pisteessä x 0 ja D(g f)(x 0 ) = Dg(y 0 ) Df(x 0 ). *31. Olkoot U E avoin ja f : U R differentioituva. Osoita, että jos funktiolla f on pisteessä a U lokaali ääriarvo (määrittele), niin Df(a) = 0. *32. Olkoot E Banachin avaruus ja U := {A B(E; E) A on kääntyvä ja A 1 B(E; E)}. Osoita, että U on Banachin avaruuden B(E; E) avoin osajoukko. [Ks. H 3/T 7.] Olkoon I: U B(E; E), I(A) := A 1. Osoita, että I on differentioituva ja DI(A)H = A 1 H A 1 kaikille H B(E; E). 1 Väitetyssä kaavassa B(E; F ) samaistetaan tulon L(E; F 1 ) L(E; F m ) kanssa seuraavasti: Kun A B(E; F ) on annettu, asetetaan A j := p j A B(E; F j ), missä p j : F F j on projektio. Tällöin Au = (A 1 u,..., A m u) kaikille u E. Kääntäen, kun A j B(E; F j ), 1 j m, on annettu, määrittelee Au := (A 1 u,..., A m u) jatkuvan lineaarikuvauksen E F.

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja 1. Dirichlet n periaatteesta 1.1. Periaate I. Dirichlet n periaate pohjautuu fysikaaliseen minimienergiaperiaatteeseen ja luo pohjaa osittaisdifferentiaaliyhtälöiden ja variaatiolaskennan välille). Yksinkertaisesti

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,... HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

6. Lineaariset operaattorit

6. Lineaariset operaattorit 96 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että Fourier-sarjat suppenevat L 2 -normissa (kts. Seuraus 5.8 sivulla 80). Osoitimme myös, että kun f on jatkuva ja

Lisätiedot

9. Dualiteetti. Todistus. Väite seuraa suoraan Lauseesta 6.6, koska skalaarikunta K on täydellinen.

9. Dualiteetti. Todistus. Väite seuraa suoraan Lauseesta 6.6, koska skalaarikunta K on täydellinen. 128 FUNKTIONAALIANALYYSIN PERUSKURSSI 9. Dualiteetti Jos E on vektoriavaruus, niin merkintä E = L(E, K) tarkoittaa avaruuden E algebrallista duaalia. Duaalin E ovat avaruuden E lineaarisia muotoja. Jos

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0; 3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin. Matematiikan ja tilastotieteen laitos Topologia I 1. kurssikoe 26.2.2013 Malliratkaisut ja tehtävien tarkastamiset Tehtävät 1 ja 2 Henrik Wirzenius Tehtävät 3 ja 4 Teemu Saksala Jos sinulla on kysyttävää

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Funktionaalianalyysi Harjoitukset 1,

JYVÄSKYLÄN YLIOPISTO. Funktionaalianalyysi Harjoitukset 1, f ( ) Fuktioaaliaalyysi Harjoitukset 1, 19.1.2005 Jatkuu... Tähdellä merkityt tehtävät ovat ylimääräisiä. 1. Olkoot X epätyhjä joukko, F b (X, R) := {f : X R f o rajoitettu}, f := sup x X f(x) ja d(f,

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo.

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo. f ( n n 6. Sobolevin avaruudet 1 Monisteen [7, 15.4 ja määritelmä 15.26] mukaan Banachin avaruus H 1,p (0, 1 on normiavaruuden C 1 p(0, 1 = {f C 1 (0, 1 f, f L p (0, 1} täydentymä, kun normina on f f p

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä . Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v.

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v. FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 2006 ja kevät 2008 Kari Astala ja Petteri Piiroinen (v. 2006) Hans-Olav Tylli (v. 2008 hienosäätöä)

Lisätiedot

Tasainen suppeneminen ja sen sovellukset

Tasainen suppeneminen ja sen sovellukset Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

f(k)e ikx = lim S n (f; x) kaikilla x?

f(k)e ikx = lim S n (f; x) kaikilla x? 102 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että jos f L 2, niin vastaavan Fourier-sarjan osasummat suppenevat kohti f:ää L 2 -normissa (kts. Seuraus 5.8 sivulla

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n)

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n) FUNKTIONAALIANALYYSIN PERUSKURSSI 73 5. Fourier-sarjat Fourier esitti vuonna 1822 lämmönjohtamista koskevien tutkimusten yhteydessä kuuluisan menetelmänsä esittää mielivaltainen -jaksollinen funktio kehitelmänä

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 7

FUNKTIONAALIANALYYSIN PERUSKURSSI 7 FUNKTIONAALIANALYYSIN PERUSKURSSI 7 2. Normi ja normiavaruus Olkoon E vektoriavaruus (eli lineaariavaruus) skalaarikuntana K = R tai K = C. Kurssilla Lineaarialgebra I määriteltiin vain R-kertoimiset vektoriavaruudet,

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

FUNKTIONAALIANALYYSI 2017

FUNKTIONAALIANALYYSI 2017 FUNKTIONAALIANALYYSI 2017 JOUNI PARKKONEN Nämä ovat muistiinpanoni funktionaalianalyysin kurssille kevätlukukaudella 2017. Tekstiä ei ole luettu äärimmäisen huolella puhtaaksi eikä sitä ole viilattu julkaisemista

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause

Lisätiedot

Vuoristosolalause. Eero Ruosteenoja. Pro gradu -tutkielma

Vuoristosolalause. Eero Ruosteenoja. Pro gradu -tutkielma Vuoristosolalause Eero Ruosteenoja Pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2013 Sisältö Johdanto 1 Luku 1. Vuoristosolalauseen versioita 3 1. Vuoristosolalauseen

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Lidskiin lause trace-luokan operaattoreille. Joona Lindström

Lidskiin lause trace-luokan operaattoreille. Joona Lindström Lidskiin lause trace-luokan operaattoreille Joona Lindström HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 26. huhtikuuta 2017 Pekka Salmi Hilbertin avaruudet 26. huhtikuuta 2017 1 / 115 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L),

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

2. Normi ja normiavaruus

2. Normi ja normiavaruus 8 FUNKTIONAALIANALYYSIN PERUSKURSSI 2. Normi ja normiavaruus Olkoon E vektoriavaruus (eli lineaariavaruus) skalaarikuntana K = R tai K = C. Kurssilla Lineaarialgebra I määriteltiin vain R-kertoimiset vektoriavaruudet,

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Kalle

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

4. Hilbertin avaruudet

4. Hilbertin avaruudet FUNKTIONAALIANALYYSIN PERUSKURSSI 51 4. Hilbertin avaruudet Hilbertin avaruudet ovat ääretönulotteisista normiavaruuksista ominaisuuksiltaan kaikkein lähinnä kotiavaruutta R n tai C n. Tästä syystä niiden

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Metriset avaruudet 2017

Metriset avaruudet 2017 Metriset avaruudet 2017 Jouni Parkkonen Merkintöjä N = {0, 1, 2,... } luonnolliset luvut #(A) N { } joukon A alkioiden lukumäärä A B = {a A : a / B} joukkojen A ja B erotus. A B on joukkojen A ja B erillinen

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

Monistot LUKU 4. (P ): on olemassa avoin, pisteen x sisältävä joukko U R n, avoin joukko W

Monistot LUKU 4. (P ): on olemassa avoin, pisteen x sisältävä joukko U R n, avoin joukko W LUKU 4 Monistot Muistettakoon, että avointen joukkojen U, V R n välinen diffeomorfismi h: U V on C 1 -kuvaus, jolle myös käänteiskuvaus h 1 on C 1. Jatkossa oletetaan, että tarkasteltavat kuvaukset ovat

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

p-laplacen operaattorin ominaisarvo-ongelmasta

p-laplacen operaattorin ominaisarvo-ongelmasta p-laplacen operaattorin ominaisarvo-ongelmasta Jarkko Siltakoski Pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 R N x alue B(x 0, r) E E E int E E U E Merkintöjä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matematiikka B1 - TUDI

Matematiikka B1 - TUDI Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin

Lisätiedot

Kompaktisuus ja filtterit

Kompaktisuus ja filtterit Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L

Lisätiedot

5. Fourier-sarjat. f(x)e inx dx. c n (cos(nx) + i sin(nx)), n= N. 2π f(x)e inx dx = 1 2π. k= N. e inx, n Z. 2π f(x)e inx dx = 1 (f e n ) 2π

5. Fourier-sarjat. f(x)e inx dx. c n (cos(nx) + i sin(nx)), n= N. 2π f(x)e inx dx = 1 2π. k= N. e inx, n Z. 2π f(x)e inx dx = 1 (f e n ) 2π 78 FUNKTIONAALIANALYYSIN PERUSKURSSI 5. Fourier-sarjat Fourier esitti vuonna 1822 lämmönjohtamista koskevien tutkimusten yhteydessä kuuluisan menetelmänsä esittää mielivaltainen -jaksollinen funktio kehitelmänä

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Differentiaalimuodot

Differentiaalimuodot LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot 2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2 LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot