Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Koko: px
Aloita esitys sivulta:

Download "Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen."

Transkriptio

1 Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on m n matriisi ja b R m, niin yhtälön Ax = b paras pienimman neliösumman (pns ratkaisu on ˆx R n siten, että b Aˆx b Ax, x R n Ratkaisu tähän lähtee huomiosta, että Ax on aina vektori A:n sarakevektoreiden virittämässä aliavaruudessa. Näistä vektoreista pitää siis valita optimaalinen Aˆx eli se, joka on lähinnä b:ta. Tälläisellä vektorilla täytyy olla se ominaisuus, että vektorin b Aˆx:n on oltava kohtisuorassa sarakeavaruutta vastaan. Niinpä on vaadittava, että A T (b Aˆx = 0, josta saadaan

2 Pienimmän neliösumman ratkaisu 2 Lause Yhtälön Ax = b pns ratkaisu ˆx on täsmälleen normaaliyhtälön A T Aˆx = A T b ratkaisu.

3 Pienimmän neliösumman ratkaisu 2 Lause Yhtälön Ax = b pns ratkaisu ˆx on täsmälleen normaaliyhtälön A T Aˆx = A T b ratkaisu. Esimerkki: Yhtälön Ax = b, jossa A = , b = 2 0 pns ratkaisua ˆx varten lasketaan ( A T 9 b = (, A T 7 A = 5 ( (, josta A T 5 A = Näillä ratkaistaan A T Ax = A T b ja saadaan ( A ˆx = A A T T b = ( 2. Lause Pns ratkaisu ˆx on yksikäsitteinen joss A T A on kääntyvä.

4 Symmetristen matriisien ominaisuuksia (Kr. 8., Lay 7. Lause Symmetrisen matriisin ( A T = A eri ominaisarvoihin liittyvät ominaisvektorit ovat kohtisuorassa. Tod.: Olkoon λ λ 2 ja v i, i =,2 vastaavat ominaisvektorit. Silloin pätee λ v v 2 = (λ v T v 2 = (Av T v 2 = (v TAT v 2 = v T (Av 2 = v T (λ 2v 2 = λ 2 v v 2 eli (λ λ 2 v v 2 = 0, josta seuraa kohtisuoruus. QED Jos ortonormaaleja ominaisvektoreita on riittävästi, voidaan niistä muodostaa (sarakkeina diagonalisointiin A = PDP tarvittava kannanmuuttomatriisi P. Tällön sanotaan, että matriisi A on ortogonaalisesti diagonalisoituva ja pätee siis A = PDP T. Jos näin on, pätee A T = (PDP T T = P TT D T P T = PDP T = A eli A on symmetrinen! Itse asiassa käänteinenkin pätee: Lause Neliömatriisi on ortogonaalisesti diagonalisoituva joss se on symmetrinen.

5 Symmetristen matriisien ominaisuuksia 2 Esimerkki: Matriisin A = karakteristinen yhtälö on (λ 7 2 (λ+2 eli Ortogonaalisuuslause edellä ei välittömästi anna ortogonaalista matriisia P. Arvoa λ = 2 vastaava ominaisvektori v = (, 2, T on kohtisuorassa molempia λ = 7 vastaavia ominaisvektoreita v = (,0, T ja v 2 = ( 2,,0 T vastaan. Mutta jälkimmäiset eivät ole keskenaan kohtisuorassa. Korjataan tämä Gram-Schmidtillä: z 2 = v 2 v v 2 v = v v Nyt {v,z 2,v } on R :n ortogonaalikanta. Normalisoimalla kukin vektoreista ja muodostamalla niistä ortogonaalisen muunnosmatriisin P sarakkeet saadaan P = joille siis pätee A = PDP T ja D = , 0 0 2

6 Spektraalihajotelma (Lay 7. Jos patee A = PDP T, jossa ortogonaalisen P:n sarakkeina ovat A:n normeeratut ominaisvektorit {u i } ja D:n diagonaalina ominaisarvot {λ,...,λ n } (eli A:n spektri, saadaan λ 0 u A = PDP T = (u u n T 0 λ n un T u T = (λ u λ n u n. u T n = λ u u T + +λ n u n u T n. Tämä on A:n spektraalihajotelma. n n matriisit u i u T i ovat rangia olevia projektiomatriiseja: (u i u T i x on vektorin x ortogonaaliprojektio vektorin u i virittämälle -ulotteiselle aliavaruudelle. Jos osa ominaisarvoista on hyvin pieniä, kertoo spektraalihajotelma, mitkä projektiot oleellisesti kuvaavat A:n.

7 Spektraalihajotelma 2 (Lay 7. Esimerkki: Symmetrisen matriisin A = ominaisarvot ovat λ = 6, λ 2 = ja λ = 2. Vastaavat ominaisvektorit ovat (2,,, (,, ja (0,,. Normalisoimalla nämä saadaan ( 2 u = 6, 6, T (, u 2 =, 6, T ( ja u = 0,, 2 2 T. A:n spektraalihajotelma on siten i= λ iu i u T i. Koska u T i on A k :n ominaisarvoon λ k i liittyvä ominaisarvo, nähdään, että A k = i= λk i u iu T i kaikille k =,2,... Huomaa, että λ = 6 on dominoiva ominaisarvo, koska 6 > λ i, i = 2,. Siten A k ( 6 k u u T = eli projektiomatriisi u u T kuvaa asymptoottisesti Ak :n geometrian venytystä vaille.

8 Spektraalihajotelma (Lay 7. Entä jos dominoiva ominaisarvo on monikertainen, kuten edeltävän esimerkin matriisilla B = , 4 2 jossa λ = 7 oli kaksinkertainen ja 2 yksinkertainen? Tämäkin tilanne ratkeaa heti spektraaliesityksestä ja voidaan laskea, että B k ( 7 k 2,0, = T ( 2,0, 4 9 2, ( +, , joka ei ole projektiomatriisi, vaikka onkin kahden sellaisen summa. T (, , 8

9 Spektraalilause (Lay 7. Symmetrisillä matriiseilla on paljon hyviä ominaisuuksia, joista useat voidaan tiivistää seuraavasti Lause Symmetrisellä n n-matriisilla A on n reaalista ominaisarvoa, k-kertaista ominaisarvoa vastaava ominaisavaruus on k-ulotteinen, erillisiä ominaisarvoja vastaavat ominaisaliavaruudet ovat kohtisuorassa, on ortogonaalinen diagonalisointi. (Osa näistä ominaisuuksista on johdettu edellä, osa taas vaatii huomattavasti lisätyötä/löytyy kirjallisuudesta.

10 Neliömuodot (Kr. 8.4, Lay 7.2 Määritelmä Neliömuoto Q A (x on kuvaus R n R, joka määrittyy n n matriisista A: Q A (x = x T Ax. Koska A ja 2 (A+AT määrittelevät saman neliömuodon, voidaan keskittyä symmetristen matriisien antamien neliömuotojen analyysiin. Kun A on selvä, merkitään yksinkertaisesti Q(x. n n matriisin neliömuoto on aina toisen asteen polynomi n:n muuttujan suhteen.

11 Neliömuodot (Kr. 8.4, Lay 7.2 Määritelmä Neliömuoto Q A (x on kuvaus R n R, joka määrittyy n n matriisista A: Q A (x = x T Ax. Koska A ja 2 (A+AT määrittelevät saman neliömuodon, voidaan keskittyä symmetristen matriisien antamien neliömuotojen analyysiin. Kun A on selvä, merkitään yksinkertaisesti Q(x. n n matriisin neliömuoto on aina toisen asteen polynomi n:n muuttujan suhteen. Esimerkki: Matriisi ( 2 A = 2 7 määrittää neliömuodon ( 2 Q A (x = (x,x ( x x 2 = x 2 4x x 2 +7x 2 2.

12 Neliömuodot 2 Kääntyvä n n matriisi P voidaan tulkita koordinaatiston muunnosmatriisiksi R n :lla: x = Py. Jos siirrytään alkuperäisistä x-koordinaateista y-koordinaatteihin, muuntuu neliömuodon esitys Q(x = x T Ax = (Py T A(Py = y T (P T APy ( eli uudessa kannassa matriisi on P T AP. Koska kuitenkin A voidaan aina olettaa symmetriseksi ja symmetriset matriisit ovat ortogonaalisesti diagonalisoituvia, on nyt tarjolla ortogonaalinen koordinaatistonmuunnos. Sitä vastaten Q saa yksinkertaisimman mahdollisen esityksen, pääakselimuodon: Q(y = y T Dy = n i= λ i y 2 i. (2 Geometrisesti ( ja (2 ovat tietenkin täsmälleen samoja kuvauksia Q : R n R!

13 Neliömuodot Neliömuodon geometria on helpointa hahmottaa pääakselimuodosta. Yksinkertaisimmillaan, tasossa, yhtälö x T Ax = c määrittää joko ellipsin, hyperbelin, suoraparin, pisteen tai on tyhjä joukko. Käyrän orientaatio selviää välittömästi (kohtisuorista ominaisvektoreista, jotka antavat akselien suunnat. Esimerkki: ( Q(x = 5x 2 4x x 2 +5x = 48 (x,x ( T u = 2, 2 ja u2 = jossa ( x x 2 = 48. Matriisin ominaisavot ovat ja 7, joita vastaavat ortonormaalit ominaisvektori ovat (, 2 2 T. Siten koordinaatiston muunnos on x = Py, ( 2 P = ja vastaava pääakselimuoto y T Dy = y 2 +7y2 2. Q = 48 vastaa ellipsiä, jonka akselit ovat 45 asteen kulmassa alkuperäisten R 2 :n koordinaattiakselien suhteen.

14 Neliömuodot 4 Määritelmä Neliömuoto Q on positiividefiniitti jos Q(x > 0, x 0, positiivisemidefiniitti jos Q(x 0, x ja on olemassa x 0 siten että Q(x = 0, negatiividefiniitti jos Q(x < 0, x 0, negatiivisemidefiniitti jos Q(x 0, x ja on olemassa x 0 siten että Q(x = 0, indefiniitti jos Q saa sekä pos. että neg. arvoja.

15 Neliömuodot 5 Lause Neliömuoto x T Ax, A symmetrinen, on positiividefiniitti joss A:n ominaisarvot ovat positiiviset, positiivisemidefiniitti joss A:n ominaisarvot ovat ei-negatiiviset ja on olemassa häviävä ominaisarvo, negatiividefiniitti joss A:n ominaisarvot ovat negatiiviset, negatiivisemidefiniitti joss A:n ominaisarvot ovat ei-positiiviset ja on olemassa häviävä ominaisarvo, indefiniitti joss A:lla on sekä pos. että neg. ominaisarvoja.

16 Neliömuodot 6 Esimerkki: Muoto Q(x = x 2 +2x2 2 +x2 +4x x 2 +4x 2 x näyttää positiiviselta, mutta ei ole sitä. Vastaavan symmetrisen matriisin spektri on {5, 2, }. Q on siis indefiniitti neliömuoto (joka siis saa myös negatiivisia arvoja. Geometrisesti tasa-arvopinnat Q = vakio ovat yksi- tai kaksivaippaisia elliptisiä hyperboloideja R :ssa.

17 Singulaariarvot (Lay 7.4 Vaikkei diagonalisointi A = PDP olekaan mahdollinen mielivaltaiselle m n matriisille A, osoittautuu, että hieman yleisempi hajotelma A = QDP onnistuu. Ensin kuitenkin hiukan neliömuotojen ääriarvoista. A T A on symmetrinen n n matriisi, joten se on ortogonaalisesti diagonalisoituva. Olkoot {µ,...,µ n } sen ominaisarvot ja {v,...,v n } ortonormaalit ominaisvektorit. Siten 0 Av i 2 = (Av i T Av i = v T i A T Av i = v T i µ i v i = µ i. ( Olkoot nämä arvot laskevassa järjestyksessä µ i µ i+. Niiden juuret σ i = µ i ovat A:n singulaariarvot. Singulaariarvot antavat ( nojalla vektoreiden Av i pituudet. Huomaa, että Ax 2 maksimoituu samalla x:lla kuin Ax.

18 Singulaariarvot 2 (Lay 7.4 Lause Symmetriselle B, jonka spektri on µ µ 2..., µ = max{x T Bx x = } ja maksimi saavutetaan µ :tä vastaavalla yksikköominaisvektorilla. Esimerkki: Olkoon ( 4 4 A = 8 7 2, joten A T A = jonka ominaisarvot ovat {60, 90, 0}, josta edelleen A:n singulaariarvot: {6 0, 0,0}. A T A:n yksikköominaisvektorit ovat ( v =, 2, 2 T (, v 2 = 2,, 2 T ( 2 ja v =, 2, T. Ax maksimoituu edellä olevan nojalla v :n suuntaan ja sen maksimiarvo yksikköpallolla on siis Av = σ = 6 0. Voidaan osoittaa, että Ax :n maksimi v :n ortogonaalikomplementissa saavutetaan v 2 :n suuntaan ja on suuruudeltaan σ 2. (Tämä yleistyy edelleen, katso Lay 7. Lause 7 ja 7.4 Lause 9.,

19 Singulaariarvot Myös AA T on symmetrinen (m m matriisi, joten se on ortogonaalisesti diagonalisoituva. Olkoot {λ,...,λ m } sen ominaisarvot ja {u,...,u m } ortonormaalit ominaisvektorit. Siten 0 A T u i 2 = (A T u i T A T u i = u T i AA T u i = u T i λ i u i = λ i. (2 Olkoot nämä arvot laskevassa järjestyksessä λ i λ i+. Koska A T Av i = µ i v i, saadaan kertomalla vasemmalta A:lla AA T (Av i = µ i (Av i, joten nähdään, että µ i ja Av i ovat AA T :n ominaisarvo ja -vektoripari. Siten AA T :n ja A T A:n nollasta eroavat ominaisarvot ovat samat. { Jos r on A:n rangi, niin σ 2 µ i = i, i =,...,r 0, i = r +,...,n josta edelleen Av i = { σi u i, i =,...,r 0, i = r +,...,m

20 Singulaariarvot 4 {u i } m ovat A:n vasemmat singulaarivektorit ja {v i} n oikeat singulaarivektorit. Edellisen nojalla niille voidaan siis kirjoittaa A(v v r v r+ v n = (u u r u r+ u m Σ, jossa Σ = ( D = σ σ σ r on m n matriisi, jonka ainoat nollasta eroavat alkiot ovat singulaariarvot r r diagonaalimatriisissa D, r min{n, m}.

21 Singulaariarvohajotelma (Lay 7.4 Edellä oleva kehittely on oleellisesti kaikki mitä tarvitaan todistamaan singulaariarvohajotelma (engl. singular value decomposition, SVD. Lause Olkoon A m n matriisi, jonka rangi on r. Silloin on olemassa Σ kuten edellä ja siinä matriisi D, jonka diagonaalina ovat A:n singulaariarvot. Samoin on olemassa m m U ja n n V, molemmat ortogonaalisia, siten että A = UΣV T. Huomioita:. Matriisit U ja V eivät ole yksikäsitteisiä. 2. Jos A on n n neliömatriisi, ovat Σ, U ja V samaa kokoa ja kaksi viimeistä ortogonaalimatriiseja. Jos A on vieläpä symmetrinen tiedetään aiemmasta, että se on ortogonaalisesti diagonalisoituva, A = PDP T, joten voidaan siis valita U = V.

22 Singulaariarvohajotelma 2 (Lay 7.4 Esimerkki: Konstruoidaan singulaarihajoitelma edellisen esimerkin matriisille Nyt siis m = 2, n =. ( 4 4 A = Diagonalisoidaan A T A ja ratkaistaan singulaariarvot σ i kuten edellä: {6 0, 0,0} (siis r = 2. Ortonormaalit ominaisvektorit v i : ( v =, 2, 2 T (, v 2 = 2,, 2 T ( 2 ja v =, 2, T. 2. Määritellään -matriisi V = (v v 2 v ja edelleen ( ( σ D = = 0 σ ( ja Σ =

23 Singulaariarvohajotelma 2 (Lay 7.4. U:n r ensimmäistä saraketta ovat Av,...,Av r normalisoituna. Nyt r = 2 ja u = σ Av = 6 0 ( 8 6 u 2 = Av 2 = ( σ ( = 0 0 ( = 0 0 jotka ovat R 2 :n kanta ja siten U = (u u 2. Siten A:n singulaariarvohajotelma on, UΣV T = ( ( NB. Jos kävisi niin, että {Av i } ei antaisi kantaa kuten yllä, vaan vain k < m vektoria, niin silloin etsitään ortogonaalikannan loput vektorit tämän joukon ortogonaalikomplementista Gram-Schmidtia ja normalisointia käyttäen.

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista Neliömuodoista matriisin ominaisarvoista ja avaruuden kierroista Marko Moisio 1 Neliömuodoista ja matriisin ominaisarvoista Tarkastellaan toisen asteen tasokäyrän määräävää yhtälöä a + by 2 + 2cxy = d

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

2, E = Määrää 3A, B 2A ja E + F. 2. Laske (mikäli mahdollista) AB, BA, A 2, BC, CB ja F = 1 0 0

2, E = Määrää 3A, B 2A ja E + F. 2. Laske (mikäli mahdollista) AB, BA, A 2, BC, CB ja F = 1 0 0 MATRIISIALGEBRA Harjoitustehtäviä syksy 2012 Tehtävissä 1-2 käytetään seuraavia matriiseja: A = 1 2 ( ) 0 5 1 2 4, B =, C = 1 2, E = 1 0 0 0 1 0 ja F = 1 0 0 0 1 0. 3 7 2 4 3 3 1 3 4 2 2 3 0 1. Määrää

Lisätiedot

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 Vaasan Yliopisto, 2003 Teknillinen tiedekunta Matemaattisten tieteiden laitos PL 700 (Wolffintie 34) 65101 VAASA Vaasan yliopisto Matemaattinen analyysi

Lisätiedot

Mat Matematiikan peruskurssi C2

Mat Matematiikan peruskurssi C2 Mat-1.110 Matematiikan peruskurssi C Petri Latvala 18. helmikuuta 007 Sisältö 1 Useamman muuttujan funktiot ja niiden differentiaalilasku 1.1 Useamman muuttujan funktion jatkuvuus ja derivoituvuus... 1.

Lisätiedot

LINEAARIALGEBRA, osat a ja b

LINEAARIALGEBRA, osat a ja b LINEAARIALGEBRA, osat a ja b Martti E. Pesonen Epsilon ry. huhtikuuta 06 LUKIJALLE Lineaarialgebran kursseja edeltäviksi opinnoiksi suositellaan jotain lukion matematiikkaa teoreettiselta kannalta täydentävää

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f,

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f, 7. Taso- ja avaruusintegraali 7.1. Tasointegraalin määrittely 205. Tarkastellaan funktiota f (x,y) = x+y neliössä {(x,y) 0 x 1, 0 y 1}. Neliö jaetaan suorilla x = a ja y = b neljään osasuorakulmioon; 0

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matriisilaskenta. Luentomoniste JOUNI SAMPO

Matriisilaskenta. Luentomoniste JOUNI SAMPO Matriisilaskenta Luentomoniste JOUNI SAMPO Kevät 2014 BM20A1601 Matriisilaskenta (4 op) Viikko 1 Lineaariset yhtälöryhmät ja matriisit, sovellustilanteita lämpöjakauma levyssä interpolaatiopolynomi numeerinen

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Jouni Sampo. 4. maaliskuuta 2013

Jouni Sampo. 4. maaliskuuta 2013 B2 Jouni Sampo 4. maaliskuuta 2013 Sisältö 1 Johdanto 2 1.1 Matriisin käsite.................................... 2 1.2 Mihin matriiseja tarvitaan?............................. 2 1.3 Matriiseihin liittyvät

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Joonas Kauppinen Matriisin singulaariarvohajotelman historia, teoria ja sovellukset tilastotieteessä

Joonas Kauppinen Matriisin singulaariarvohajotelman historia, teoria ja sovellukset tilastotieteessä PRO GRADU -TUTKIELMA Joonas Kauppinen Matriisin singulaariarvohajotelman historia, teoria ja sovellukset tilastotieteessä TAMPEREEN YLIOPISTO Matematiikan ja tilastotieteen laitos Tilastotiede Huhtikuu

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L26 Esimerkki 1 kvadraattinen 1 Haluamme ratkaista n 4x + y z = 2 x + 2y + z = 5 2x + 2y + 2z = 4 4 1 1 1 2 1 2 2 2 x 4 1 2 + y x y z 1 2 2 = + z 2 5 4 1 1 2 = 2 5 4

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Tehtävien ratkaisut. 77 cm Ratkaisu. Toisen kierron jälkeen syntyvä neliö on

Tehtävien ratkaisut. 77 cm Ratkaisu. Toisen kierron jälkeen syntyvä neliö on Solmu /00 Tehtävien ratkaisut Ratkaisu Toisen kierron jälkeen syntyvä neliö on peilikuva alkuperäisestä neliöstä pisteen P suhteen Jos P ei ole alkuperäisen neliön sisällä, niin peilikuvalla alkuperäisellä

Lisätiedot

800653S Matriisiteoria. Tero Vedenjuoksu

800653S Matriisiteoria. Tero Vedenjuoksu 800653S Matriisiteoria Tero Vedenjuoksu 19 toukokuuta 2010 Sisältö 1 Lineaarialgebraa 3 11 Merkintöjä 3 12 Perusominaisuuksia 5 13 Matriisien lohkomuodot 6 14 Vektoriavaruus ja aliavaruus 8 15 Aliavaruuksien

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

x = sinu z = sin2u sinv

x = sinu z = sin2u sinv 9. Toisen asteen käyrät ja pinnat 9.1. Käyrän ja pinnan käsitteet 371. Piirrä seuraavat käyrät: { x = cos3t a) y = sin5t, t [0,2π], b) x = cost t y = sint t, t 0. 372. Lausu napakoordinaattikäyrät a) r

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Sijoitus integraaliin

Sijoitus integraaliin 1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

a b c d

a b c d .. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 202 È ÖÙ Ö Ò ÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d. + + 2.. 4. 5. 6. + + + + + + + + + + P. Koska massojen suhteet (alkuperäinen timantti mukaan lukien) ovat : 4 : 7, niin

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia 10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1B. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1B. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1B Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen 2 Sisältö 1 Vektoriavaruudet 4 11 Määritelmä 4 12 Aliavaruudet 8 13 Virittäjät 9 14 Lineaarinen riippumattomuus

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2 S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot