Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.
|
|
- Urho Mikkola
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 49 3 VEKTORIT 3.1 VEKTORIN KÄSITE Vektori on suure, jolla suuruuden lisäksi on myös suunta (esim. kiihtyvyys). Skalaari puolestaan on suure, jolla on vain suuruus (esim. tiheys). Vektori graafisesti: Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts. ABC tai ABC
2 Painetussa tekstissä vektori esitetään tavallisesti lihavoidulla symbolilla ja käsin kirjoitetussa yläviivalla tai ylänuolella. Koordinaatistossa vektori voidaan spesifioida esim. antamalla vektorin koordinaattiakseleilla olevien projektioiden pituudet (merkki huomioiden): A ( A, A, A ) Projektiot ovat vektorin ns. koordinaatteja tai komponentteja. 50 Kaikki vektorit voidaan siirtää koordinaatiston origoon (paikalla ei ole merkitystä), jolloin vektoria kuvaa sen kärjen koordinaatit. Kääntäen, mitä tahansa avaruuden pistettä voidaan pitää origosta lähtevän vektorin kärkenä. Puhutaan ns. paikka- eli radiusvektorista.
3 51 Esim. Massapisteen paikkaa avaruudessa voidaan kuvata paikkavektorilla r ( xyz,, ). Jos piste liikkuu, sen koordinaatit x, y ja z ovat ajan funktioita ja paikkavektorin kärki liikkuu ajan myötä: rr () t ( xt (), yt (), zt ()) Liikkuvan pisteen nopeus v määräytyy koordinaattien muutosnopeuksista xt (), yt () ja zt (), ts. v ja voidaan kirjoittaa ( t) ( xt ( ), yt ( ), zt ( )) v () t r() t, kun sovitaan, että vektori derivoidaan derivoimalla sen komponentit.
4 Vektoreiden yhtäsuuruus: Vektorit a ( ax, ay, az) ja b ( bx, by, bz) ovat yhtäsuuria, a b, jos ja vain jos vastinkomponentit ovat yhtäsuuria, ts. ax bx, ay by ja az bz. 52 Nollavektori: 0 (0,0,0) Vektorin suuruus - on sama kuin vektorin pituus Vektorin A ( A, A, A ) pituus A on Pythagoraan lauseen mukaan A A A A Vektorin symboli ilman vektorimerkintää tarkoittaa tavallisesti vektorin pituutta, ts. A A A. On selvää, että A 0 jos ja vain jos A 0. Tämän vuoksi vektorimerkintä jätetään usein pois nollavektorista.
5 53 Esimerkki: Vektorin a alkupiste on ( 2, 3) ja kärki (4,2). Määritä vektorin komponentit ja laske pituus. Ratkaisu: Projektion pituus x-akselilla on 4 ( 2) 6 ja y-akselilla 2 ( 3) 5, joten a (6,5) ja a VEKTORIALGEBRA Skalaarilla kertominen Jos A ( A, A, A ) ja reaalinen vakio, niin A ( A, A, A ). Skalaarilla kerrottaessa vektori säilyttää suuntansa, jos 0 ja kääntyy vastakkaissuuntaiseksi, jos 0. Pituus muuttuu kuten A A
6 54 Yhteen ja vähennyslasku Vektoreiden A ( Ax, Ay, Az) ja B ( Bx, By, Bz) summa (ns. resultanttivektori) määritellään kuten AB ( A B, A B, A B ) x x y y z z ja erotus ABA( B ) ( A B, A B, A B ) Graafisesti: x x y y z z Esimerkki: On annettu vektorit a ( 2,2) ja b (3,4) Piirrä samaan koordinaatistoon origosta alkaen vektorit a, b, a b ja ab. Ratkaisu: a ( 2,2) b (3,4) ab (1,6) ab ( 5, 2) Graafisesti:
7 55 Laskutoimitusten ominaisuuksia Yhteenlasku on kommutatiivinen ABBA ja assosiatiivinen A( BC) ( AB) C Skalaarilla kertominen on distributiivinen ( AB) AB Yksikkövektorit Yksikkövektorin pituus on yksi. Esimerkki. Määritä vektorin A (5,3, 2) suuntainen yksikkövektori. Ratkaisu: Vektorin A pituus on A A 5 3 ( 2) jolloin vektori aˆ A (5,3, 2),, A on A:n suuntainen ja sen pituus on aˆ A A A1 A A A Huomaa merkintä â
8 56 Koordinaattiakseleiden suuntaiset yksikkövektorit eli yksikkökoordinaattivektorit ovat ns. kantavektoreita. e eˆ iˆi (1,0,0) x x e eˆ jˆj (0,1,0) y y e eˆ k k ˆ (0,0,1) z z Vektori voidaan aina kirjoittaa kuten A ( A, A, A ) ( A,0,0) (0, A,0) (0,0, A ) A (1,0,0) A (0,1,0) A (0,0,1) joten sille saadaan komponenttiesitys A Aeˆ A eˆ Aeˆ AˆiA ˆjAkˆ x x y y z z Esimerkki. Määritä vektorille a3ˆi4ˆj vastakkaissuuntainen vektori b, jonka pituus on 10. Ratkaisu: Vektorin a pituus on 2 2 a 3 ( 4) 25 5, joten 10 b( 1) (3 ˆ i4 ˆ j) 6 ˆ i8 ˆ j 5
9 Esimerkki: Määritä luku x siten, että vektorit a 2i xj ja b (2 x) i 3xj ovat yhdensuuntaiset. Ratkaisu: Nyt a 0, joten a ja b ovat yhdensuuntaiset, jos löytyy luku t ( 0) siten, että b ta. Lasketaan (2 x) i 3xj 2ti xtj, josta 2 x 2 t ja 3x xt. Jälkimmäisestä x 0 tai t 3. Kun t 3 sijoitetaan edelliseen, saadaan x 4. Siis vastaus x 0 tai x VEKTOREIDEN TULOT Pistetulo Vektoreiden A ( Ax, Ay, Az) ja B ( Bx, By, Bz) pistetulo eli skalaaritulo määritellään AB AB AB AB 2 A tarkoittaa x x y y z z Merkintä A AA Ax Ay Az A, joten vektorin pituus on A A 2
10 58 Pistetulo on - kommutatiivinen AB BA - distributiivinen A( BC) AB AC ja kerrottaessa skalaarilla toteuttaa relaatiot ( AB) ( A) BA( B ) Cauchy-Schwartzin epäyhtälö Voidaan osoittaa (katso esim. 2palsta.pdf), että AB AB. Jos jompi kumpi tai molemmat ovat nollavektoreita, yhtälö on voimassa yhtäsuuruutena. Esimerkki: Osoita, että Cauchy-Schwartzin epäyhtälö on voimassa yhtäsuuruutena, jos B A. 2 2 Ratkaisu: AA A A AA Esimerkki: Olkoon a (3, 5,0) ja b ( 1,3,4). Osoita, että Cauchy-Schwartzin epäyhtälö pätee. Ratkaisu ab a b ( 5) ( 1) Nyt ab ,7 eli 18
11 Esimerkki: Kolmioepäyhtälö. Osoita, että kolmiossa kahden sivun summa on aina suurempi tai yhtäsuuri kuin kolmas sivu. Ratkaisu: Vektorit A, B ja niiden summa A+B muodostavat kolmion, jonka sivujen pituudet ovat A, B ja A B. Nyt on AB ( AB) ( AB) A 2AB B A 2 AB B A 2 A B B ( A B ) CS eli AB A B mikä oli osoitettava. 59 Pistetulon geometrinen merkitys Tarkastellaan vektoreiden A, B ja A B muodostamaa kolmiota. Sivun A B pituuden neliö on AB ( AB) ( AB) A B 2AB Toisaalta, viereisen kuvan perusteella (Pythagoras) h A A cos ja edelleen Pythagoraan lausetta soveltaen
12 AB h ( BAcos ) A A cos B A cos 2ABcos 2 2 A B 2ABcos. Vertaamalla aikaisempaan näemme, että AB ABcos Kuvasta tulkitaan edelleen: Pistetulo AB on - vektorin A projektion pituus vektorilla B kertaa vektorin B pituus tai - vektorin B projektion pituus vektorilla A kertaa vektorin A pituus Vektoreiden A ja B välinen kulma lasketaan cos A B AB ja vektorit ovat kohtisuorassa toisiaan vastaan, jos AB 0 ja yhdensuuntaisia, jos AB AB Erikoisesti kantavektorit i, j ja k ovat kohtisuorassa toisiaan vastaan (ortogonaalisia) ja niille pätee ijik jk 0. Koska edelleen ii jjkk 1, sanotaan, että kantavektorit ovat ortonormaalisia.
13 61 Suuntakulmat (suuntakosinit). Kirjoitetaan vektori A komponenttimuodossa A AxiAyj Azk. Kantavektoreiden ortonormaalisuuden perusteella Ai Axii Ayji Azki Ax Aj A y Ak A z Ai Ax ja esimerkiksi cos Ai A ja A voidaan kirjoittaa suuntakulmien avulla A A(cos,cos,cos ). Projektion laskeminen Olkoon a A:n suuntainen yksikkövektori, ts. 1 a A A Vektorin B projektio p vektorin A suuntaan voidaan laskea 1 p ABaB A
14 Esimerkki: Laske vektorin Ai2jk projektio vektorille B4i4j7k. Ratkaisu: Lasketaan ensin vektorin B suuntainen yksikkövektori: B 4i4j7k 4i4j7k b i j k B ( 4) Vektorin A projektio p tähän suuntaan on PbA Esimerkki: Laske voiman F2ijk tekemä työ, kun se siirtää kappaletta vektorin r3i2j5k kannasta kärkeen. Ratkaisu: Määritelmän mukaan voiman tekemä työ on siirroksen suuntainen voima kerrottuna siirroksen pituudella. Kuvan perusteella voiman F tekemä työ on W ( Fcos ) r, joka pistetulon avulla saa muodon W Fr Tässä tapauksesssa 62
15 W (2 ijk) (3i2j5 k ) (2)(3) ( 1)(2) ( 1)( 5) Esimerkki: Tason yhtälö. Määritä vektoria A2i3j6k vastaan kohtisuorassa olevan ja vektorin Bi5j3k kärjen kautta kulkevan tason yhtälö. Ratkaisu: Jos r-vektori osoittaa tason johonkin pisteeseen, niin B r on tasossa, ts. kohtisuorassa A:ta vastaan. Saadaan ehto ( Br) A 0. Kirjoitetaan r xi yjzk ja lasketaan 0 ((1 x) i(5 y) j(3 z) k) (2i3j6 k ) (1 x)(2) (5 y)(3) (3 z)(6) 2x3y6z x3y6z 35 Kysytyn tason yhtälö on siis 2x3y6z 35 63
16 Ristitulo Vektoreiden A ( Ax, Ay, Az) ja B ( Bx, By, Bz) ristitulo eli vektoritulo määritellään kuten AB( AB AB, AB AB, AB AB). y z z y z x x z x y y x Vektoritulon muistamista helpottaa determinantin avulla kirjoitettu muistisääntö i j k AB A A A, B B B joka kannattaa kehittää ylärivin mukaan A A A A A A i B B j B B k B B y z x z x y y z x z x y i( AB AB) j( AB AB) k ( AB AB) y z z y x z z x x y y x Tulos on sama kuin määritelmässä yllä. Determinantin ominaisuuksista: - merkki vaihtuu vaihdettaessa kaksi vaakariviä (tai pystyriviä) keskenään - arvo on nolla, jos sen kaksi vaakariviä (tai pystyriviä) ovat samoja.
17 65 Ominaisuuksia: Ristitulo ei ole kommutatiivinen, sillä ABBA. Vektorin ristitulo itsensä kanssa on nolla AA 0. Ristitulo on distributiivinen A( BC) ABAC. Skalaarilla kertominen ( AB) ( A) BA( B ). Yksikkövektorit i j k ij i(0) j(0) k(1) k ja samoin muut: ijk jk i ki j Huomaa syklisyys. Koordinaatisto, jossa ym. relaatiot ovat voimassa on ns. oikeakätinen koordinaatisto. Oikean käden kolmisormisääntö: i on peukalo, j on etusormi ja k on keskisormi
18 66 Ristitulon geometrinen merkitys Voidaan osoittaa, että ristitulon pituudelle pätee AB ABsin, missä on vektoreiden A ja B välinen kulma. Esimerkiksi näin: AB 2 ( AB AB ) ( AB AB) y z z y 2 z x x z 2 ( AB AB) x y y x =...(pitkähkö, mutta suoraviivainen lasku)... ( A A A )( B B B ) ( A B A B A B ) x x y y z z AB ( AB ) AB AB cos A B (1cos ) ( ABsin ) Vektoreiden AB ja A pistetulo on A( AB ) Ax( AB y z AB z y) Ay( AB z x AB x z) Az( AB x y AB y x) 0 ja samoin B( AB ) 0. Siis: Vektori AB on kohtisuorassa molempia tekijöitään vastaan eli on kohtisuorassa tekijävektoreiden virittämää tasoa vastaan.
19 Edelleen ristitulo voidaan kirjoittaa AB( ABsin ) n, missä n on vektoreiden virittämää tasoa vastaan kohtisuorassa oleva yksikkövektori, siten että kolmikko A, B ja n muodostavat (tässä järjestyksessä) oikeakätisen systeemin. 67 Kolmisormisääntö: A on peukalo, B on etusormi ja n on keskisormi. Kuvassa vektoreiden A ja B virittämän kolmion korkeus on Bsin, jos kantana on vektori A. Tämän kolmion pinta-ala on 1 2 ABsin, joten ristitulo on suuruudeltaan tekijävektoreiden virittämän suunnikkaan pinta-ala.
20 Esimerkki: On annettu vektorit A2i3jk ja Bi4j2k. Laske AB, B A ja ( AB) ( AB ). Ratkaisu: i j k AB i(6 4) j( 4 1) k (8 3) = 10i3j11k BAAB10i3j11k ( AB) ( AB) A( AB) B( AB ) AAABBABB 0ABAB02AB 20i6j22k 68
21 69 Esimerkkejä ristitulon käytöstä: Vääntömomentti: Voiman F vääntömomentti M pisteen P suhteen on suuruudeltaan F kertaa P:n kohtisuora etäisyys voiman vaikutussuorasta: M Fr sin rf Suuntasopimus: Pisteeseen P asetettu oikeakätinen ruuvi etenee M-vektorin suuntaan, kun voima F kiertää sitä. On siis MrF Esimerkki: Laske voiman vääntömomentti pisteen P suhteen, kun F 48 N ja väli PQ on 75 cm seuraavissa tapauksissa a) ja b):
22 70 Ratkaisu: Tässä r-vektori on PQ, joten sen ja F- vektorin välinen kulma on a) kohdassa 60 ja b) kohdassa 135. Vääntömomentin suuruus on M rf rf sin a) M (0.75m)(48N)sin Nm. Suunta paperiin päin. b) M (0.75m)(48N)sin Nm. Suunta paperiin päin. Ratanopeus ympyräradalla: Piste P pyörii kulmanopeudella origon O kautta kulkevan akselin ympäri (kuva). Pisteen paikkavektori on r ja ratanopeus (lineaarinen nopeus) v on radan tangentin suuntainen. Ympyräradan säde on (katkoviiva) r sin, joten rata-nopeuden suuruuden ja kulmanopeuden suuruuden vä-lille saadaan relaatio v r sin. Myös kulmanopeus on vektori, joka on akselin suuntainen siten, että sen suuntaan katsottaessa piste
23 pyörii myötäpäivään. Suunnat huomioiden voidaan kirjoittaa v r (tai v r) Kolmitulot Skalaarikolmitulo Muotoa A( BC ) oleva kolmen vektorin tulo on skalaari (siitä nimi). Sen geometrinen merkitys nähdään kuvasta: Vektoreiden muodostaman suuntaissärmiön tilavuus on pohjasuunnikkaan pinta-ala BC kertaa korkeus h. Korkeus h taas on vektorin A projektio vektorille BC, eli A( BC) h A cos BC missä on vektoreiden A ja Särmiön tilavuus on siis V hbc A( BC ) BC välinen kulma.
24 Komponenttimuodossa skalaarikolmitulo on i j k A( BC) ( Ai A j Ak ) B B B C C C B B B B B B A A A eli siis y z x z x y Cy Cz Cx C C z x Cy A( BC ) A A A B B B C C C A A A B B B C C C Kun kaksi vaakariviä vaihdetaan keskenään, determinantti vaihtaa merkkinsä: C C C C C C A( BC) B B B A A A C( AB) A A A B B B ja koska pistetulo on kommutatiivinen, saadaan A( BC) ( AB) C, ts. skalaarikolmitulossa pisteen ja ristin paikka voidaan vaihtaa. 72
25 73 Vektorikolmitulo - on muotoa A( BC ) tai ( AB) C. Jakamalla tulot komponentteihin voidaan johtaa seuraavat laskukaavat A( BC) ( ACB ) ( ABC ) ( AB) C( ACB ) ( BCA ) Esimerkki: On annettu vektorit a i 2 j k, b i 2 j k ja c 2i j k. Laske a( b c) ensin suoraan ja sitten ylläannetulla kaavalla. Ratkaisu: Suoraan: i j k bc i( 1) j(3) k(5) i j k a( bc) i(13) j(6) k( 1) On siis a( bc) 13i 6j k
26 Kaavalla: a( bc) ( acb ) ( abc ) (221) b(141) c 5b4c 5i 10 j 5k 8i 4 j4k 13i 6 j k 74
Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori
Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
Lisätiedot0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.
Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotMAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotVEKTORIT paikkavektori OA
paikkavektori OA Piste A = (2, -1) Paikkavektori OA = 2i j 3D: kuvan piirtäminen hankalaa Piste A = (2, -3, 4) Paikkavektori OA = 2i 3j + 4k Piste A = (a 1, a 2, a 3 ) Paikkavektori OA = a 1 i + a 2 j
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotTekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotTekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotSuora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotPistetulo eli skalaaritulo
Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotOta tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
Lisätiedot1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotTekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
Lisätiedot3 Yhtälöryhmä ja pistetulo
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5..06 Yhtälöryhmä ja pistetulo Ennakkotehtävät. z = x y, x y + z = 6 ja 4x + y + z = Sijoitetaan z = x y muihin yhtälöihin. x y + x y =
LisätiedotA-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
LisätiedotLineaarialgebra 5 op
Lineaarialgebra 5 op Vektorit osa1 Peruslaskutoimitukset Komponenttiesitys Vektorin pituus Jana vektorimuodossa Koordinaatistopisteen paikkavektori Vektorit Vektoreita tarvitaan mekaniikassa ja fysiikassa
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotKJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
Lisätiedot1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
LisätiedotSuorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
LisätiedotTÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
LisätiedotSuorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3
Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
LisätiedotPäähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48
Trigonometriset funktiot 169. Muutetaan asteet radiaaneiksi. 180 astetta on radiaaneina π eli 180 = π rad Tällöin 1 rad. 180 45 1 a) 45 180 4 4 65 1 b) 65 180 6 10 c) 10 180 5 5 d) 5 180 4 40 7 e) 40 180
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotJuuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Vektorit. Vektori LUVUN. YDINTEHTÄVÄT 0. Piste P jakaa janan BC suhteessa : eli kahteen yhtä suureen osaan. Siten CP CB u ja DP DC CP DC CBv u u v. Vastaavasti DQ DA AQ DA ABu v. 7 7 0. a) Pisteen koordinaatit
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
Lisätiedot169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus
5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................
LisätiedotLineaarialgebran laskumoniste Osa1 : vektorit
Lineaarialgebran laskumoniste Osa1 : vektorit A. Sinin, kosinin ja tangentin laajennetut määritelmät 1. Määritä ao. yksikköympyrän avulla a) sin(120 o ) b) cos(180 o ) (piirrä kulman kylki, ja lue kuvasta
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotSuora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste
Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
LisätiedotVastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin
1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä
LisätiedotTASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
LisätiedotTalousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo
Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2
Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
LisätiedotTaso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
LisätiedotPythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
Lisätiedotc) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d.
Tekijä Pitkä matematiikka 4 9.12.2016 20 a) Vektorin a kanssa samansuuntaisia ovat vektorit b ja d. b) Vektorit ovat erisuuntaiset, jos ne eivät ole yhdensuuntaiset (samansuuntaiset tai vastakkaissuuntaiset).
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
LisätiedotRistitulo ja skalaarikolmitulo
Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden
LisätiedotParaabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
LisätiedotAnna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
LisätiedotSuorien ja tasojen geometriaa Suorien ja tasojen yhtälöt
6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran
Lisätiedot2.3 Voiman jakaminen komponentteihin
Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
LisätiedotAvaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät
11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotHARJOITUSTEHTÄVIÄ. Millä vektorin c arvoilla voidaan vektoreita a + b, a + c ja b +2 c siirtelemällä muodostaa kolmio?
Pitkäranta: Calculus Fennicus II.2. Tason vektorit Koska ilmeisesti pätee v 1, v 2 W v 1 + v 2 W, v W λ v W λ R, on W itsekin vektoriavaruus. Sen kantaan tarvitaan vain yksi vektori, esim a, joten dim
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
Lisätiedot