Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Koko: px
Aloita esitys sivulta:

Download "Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)"

Transkriptio

1 Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4)

2 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori OA x1i y1 a pisteen B paikkavektori OB xi y AB AO OB OA OB ( x1i y1 ) ( xiy ) ( x x ) i( y y ) 1 1

3 K5. Summa: a b (5i1 ) ( i7 ) 5ii1 7 4i5 Erotus: a b (5i1 ) ( i7 ) 5i1 i7 6i19 a 5 ( 1) i1 a a 5 i 1 a 1 1 1

4 K6. a) Vektorit a a b ovat yhdensuuntaiset, os on olemassa luku t, siten, että a tb. a tb 1i8 5 k t( 6i4 k) 1i8 5k 6ti4t tk Vektoreiden komponentteihin aon yksikäsitteisyyden perusteella saadaan yhtälöryhmä, osta ratkaistaan t. 1 6 t : ( 6) 8 4 t : 4 5 t : ( ) t t t 5 Ei ole olemassa sellaista vakiota t, että ole yhdensuuntaiset. a tb. Vektorit a a b eivät

5 b) Vektorit a a b ovat yhdensuuntaiset, os on olemassa luku t, siten, että a tb. a tb ri 8 t( i 5 ) ri 8 ti 5t Vektoreiden komponentteihin aon yksikäsitteisyyden perusteella saadaan yhtälöryhmä, osta ratkaistaan r. r t 85t Alemmasta yhtälöstä saadaan t 8. 5 Sioitetaan tämä ylempään yhtälöön. r Vektorit a a b ovat vastakkaissuuntaiset, koska kerroin negatiivinen. t 8 on 5

6 K7. Merkitään pistettä, ohon päädytään, kiraimella A. Muodostetaan pisteen A paikkavektori OA. Pisteen P paikkavektori on OP i 0 k i k. Kun pisteestä P edetään 6 yksikköä vektorin u suuntaan, edetään 6 0 vektorin u yksikkövektoria, eli 6 u. Määritetään vektorin u yksikkövektori. u 4 ( 1) i 8k u u 4 i 1 8 k 0 u Kun edetään 5 yksikköä vektorille v vastakkaiseen suuntaan, edetään 5 0 vektorin v yksikkövektorin vastavektoria, eli 5 v. Määritetään vektorin v yksikkövektori. ( 14) ( ) 5 15 v 0 14i 5k v v 14 i 5 k 0 v Muodostetaan pisteen A paikkavektori. 0 0 OA OP 6u 5v ik 6 i k 5 i k ik 4 i 6 48 k 70 i 10 5 k i 8 i 70 i 10 k 16 k 5 k 4i 8 Päädytään pisteeseen (4,,0).

7 K8. Jaetaan vektori w komponentteihin, w sutv. wsutv i 5 s( i) t( i) i 5 sistit i 5 ( st) i( st) Vektoreiden komponentteihin aon yksikäsitteisyyden perusteella saadaan yhtälöpari, osta ratkaistaan s a t. st 1 s t 5 s 4 : s Sioitetaan s = ylempään yhtälöön s + t = 1. + t = 1 t = wuv Piirretään kuva.

8 K9. a) ai5k abi 4k Lasketaan pistetulo a b. ab ( 1) ( 5) ( 1) b) ak abi ab 0 ()1 10 K10. Vektorit ovat kohtisuorassa toisiaan vastaan, os niiden pistetulo on 0. Lasketaan vektorien a a b pistetulo. ab Pistetulo on 0, oten vektorit a a b ovat kohtisuorassa toisiaan vastaan.

9 K11. Piirretään kuva. Kulma A on kolmion sivuvektoreiden AB a AC välinen kulma a kulma C vektoreiden CA a CB välinen kulma. Määritetään kolmion sivuvektorit AB a AC sekä CA a CB. AB (6 ( 1)) i ( 1 ( )) 7i AC ( ( 1)) i (1 ( )) i CA AC i CB (6 ) i ( 11) 4i Määritetään kulma A. cos A AB AC 71 4 AB AC A 6,86... A 6,9 Määritetään kulma C. 4 () cosc CACB 6 CA CB ( ) ( ) 4 ( ) 18 0 C 108,4... C 108,4 Kolmion kulmien summa on 180. Määritetään kulma B. B = 180 6,86 108,4 = 4,69 4,7 A = 6,9, B = 4,7 a C = 108,4

10 K1. Vektoreiden välinen kulma on suora, os niiden pistetulo on 0. Lasketaan pistetulo u v. uvr1 ( ) ( 4) 1r 8 Ratkaistaan r, kun pistetulo on 0. 1r 8 0 1r 8 r 8 1 Piirretään vektorit u i a v 1i 4, a mitataan niiden välinen kulma.

11 K1. a) x y z x y z 7 x yz 4 Ratkaistaan x kahdesta viimeisestä yhtälöstä. x y z x yz 74 x : x 1 Sioitetaan x = 1 kahteen ylempään yhtälöön a ratkaistaan z. 1 y z y z 7 z 9 z 6 : z Sioitetaan z = yhtälöön 1 + y + z = a ratkaistaan y. 1 + y + = y = x = 1, y = a z =

12 b) x yz x y 4z x y6z 4 Vähennetään kaksi ylintä yhtälöä toisistaan a ratkaistaan z. x yz x y4z z 1 :( ) z 1 Sioitetaan z = 1 kahteen alimpaan yhtälöön a ratkaistaan x. 4 1 x y 6 1 x y 4 x y x y4 4x 17 4x 8 : 4 x Sioitetaan z = 1 a x = yhtälöön x y + z = a ratkaistaan y. y + 1 = y = 1 : ( 1) y = 1 x =, y = 1 a z = 1

13 K14. a) r 15 6r 6 r 1 Ratkaistaan r kaikista yhtälöistä. r 4 : r 6r 8 : 6 r r 4 : r Yhtälöllä ei ole ratkaisua. b) tr1 t 4r 1 tr 1 Ratkaistaan t a ylimmästä yhtälöstä a sioitetaan keskimmäiseen. t = 1 + r (1 + r) 4r = 1 + r 4r = 1 r = : (-1) r = Tällöin t = 1 + =. Sioitetaan r = a t = alimpaan yhtälöön t + r = 1. + = = 1 Luvut r = a t = toteuttavat myös alimman yhtälön, oten ne ovat yhtälöryhmän ratkaisu.

14 K15. xyz 5 xyz 7 Ratkaistaan ylimmästä yhtälöstä x. x = y z + 5 Sioitetaan tämä alempaan yhtälöön. ( y z + 5) y + z = 7 5y + z = Tästä on helpointa ratkaista z. z = 5y + Sioitetaan saatu z aiemmin saatuun x:n yhtälöön. x = y (5y + ) + 5 x = y 5y + 5 x = 8y + Yhtälön ratkaisu on esimerkiksi x8y z 5y y.

15 K16. Yhden litran purkkea on x kpl, kolmen litran y kpl a kymmenen litran z kpl. Kiroitetaan yhtälöt, kun tunnetaan maalin yhteismäärä, kokonaishinta a purkkien lukumäärä. xy10z 65 8x19y49z 77 x y z 18 Ratkaistaan yhtälöryhmä symbolisen laskennan ohelmalla. x = 5, y = 10 a z = Yhden litran purkkea on 5 kpl, kolmen litran 10 kpl a kymmenen litran kpl. K17. a) AB (151) i (76) ( 5 ( 4)) k i k Muodostetaan suoran vektorimuotoinen yhtälö, eli suoran pisteen P = (x, y, z) paikkavektori. OP OA t AB xi y zk 1i6 4 k t( i k) xi y zk (1 t) i(6 t) (4 t) k Muodostetaan suoran parametrimuotoinen yhtälö. x 1 t y 6 t, missä t z 4t

16 b) Piste on suoralla, os se toteuttaa suoran yhtälön. Sioitetaan pisteen (, 1, 1) koordinaatit suoran yhtälöön. 1t 1 6 t 14t Ratkaistaan kaikista t. 10 t : 5 t 5 t : ( 1) t 5 t 5 t 5 Kaikista yhtälöistä ratkaistu t on sama, oten piste (, 1, 1) on suoralla. K18. Muodostetaan tason yhtälö normaalivektorin a pisteen P avulla. (x 7) + (y 0) 5(z ( )) = 0 x + y 5z = 0 x + y 5z + 4 = 0 Piste on tasossa, os se toteuttaa tason yhtälön. Sioitetaan pisteen (1, 5, ) koordinaatit tason yhtälöön = = 0 Koska tulos ei ole 0, piste ei toteuta tason yhtälöä, eikä siis ole tasossa.

17 K19. a) Muodostetaan pisteen P kautta kulkevan suoran parametrimuotoinen yhtälö. x1t y 5 t ( t ) z 76t yz-tason pisteiden x-koordinaatti on 0. Pisteen P kautta kulkeva suora leikkaa yz-tason pisteessä, onka x- koordinaatti on 0. Saadaan x = 1 + t = 0, osta t = 1. y 5t z 76t yz-tason leikkauspiste on (0, 1, 10).

18 b) Muodostetaan pisteiden A a B kautta kulkevan suoran yhtälö. Suoran suuntavektori on AB. AB (1) i ( 7 ( 9)) ( ) k i 5k Pisteiden A a B kautta kulkevan suoran yhtälö on: x s y 9 s z 5 s. Ratkaistaan, leikkaavatko suorat. 1t s 5t 9s 76t 5s s = 7 a t = 5 Koska löytyi sellaiset s a t, että kaikki yhtälöt toteutuvat, suorat leikkaavat toisensa. Lasketaan suorien leikkauspiste. Sioitetaan s = 7 suoran AB yhtälöön. x ( 7) 79 y 9 ( 7) 9 14 z 5 ( 7) 5 7 Leikkauspiste on (9,, 7).

19 K0. Muodostetaan pisteiden A a B kautta kulkevan suoran parametrimuotoinen yhtälö. Suoran suuntavektori on. AB AB (87) i ( 1 ( 10)) ( 4 ( )) k i k Suoran AB yhtälö on: x7 t y 10 t ( t ) z t Määritetään suoran AB a tason x y + z = 0 leikkauspiste. (7 + t) ( 10 t) + ( t) = t t t = 0 t = 18 : t = 6 Sioitetaan t = 6 suoran yhtälöön. x 761 y 10 ( 6) 10 1 z ( 6) 9 Leikkauspiste on (1,, ). Tason x y + z = 0 normaalivektori on n i k. Lasketaan suoran AB suuntavektorin a tason normaalivektorin välinen kulma. 1 ( )( 1) ( 1)1 cos AB n 1 AB n 1 ( ) ( 1) ( 1) Suoran a tason välinen kulma on = 0.

20 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. a) Piste C. xy-tasossa pisteen z-koordinaatti on 0. b) AB (11 ( 5)) i ( ) (57) k 16i 5 k BC ( 11) i ( ( )) (0 5) k 9i 6 5k CA ( 5 ) i ( ) (7 0) k 7i 7k c) AB BC CA AC CA AA 0. Nelikulmio on suunnikas, os sen vastakkaiset sivut ovat yhtä pitkät a yhden suuntaiset. Pitää siis osoittaa, että AB DC a AD BC. AB (0 5) i (5 ( 5)) 15i 10 DC (10 ( 5)) i (10 0) 15i 10 AD ( 55) i (0 ( 5)) 10i 5 BC (10 0) i (10 5) 10i 5 Koska AB DC a AD BC, nelikulmio on suunnikas.

21 . Määritetään pisteen P koordinaatit paikkavektorin avulla. OP OA AP Koska AP : PB = :, on AP AB. 5 AB (4 ) i ( ( 1)) (6 ) k i 4 k OP OA AP OA AB 5 i k (i 4 k) 5 i k 4 i 8 6 k i 1 k Piste P on 14,, 1 4,,

22 4. a) tasakylkinen a suorakulmainen Kolmion kaksi sivua ovat yhtä pitkät a kohtisuorassa toisiaan vastaan. b) suorakulmainen Käänteinen Pythagoraan lause toteutuu kolmion sivuen pituuksille. c) tasasivuinen Kolmion kolmas sivu on vektori ovat yhtä pitkiä. a b. Kolmion kaikki kolme sivua d) tylppäkulmainen Jos vektoreiden pistetulo on negatiivinen, vektoreiden välinen kulma on tylppä.

23 5. Vektori a on yhdensuuntainen vektorin i kanssa, oten a ti ollakin t:n arvolla. a b i ti b i b i ti b ( t) i Vektoreiden a a b pistetulo on nolla. Ratkaistaan t. ab t( t) 0 tt t t0 94 ( 1) ( ) t 1 ( 1) t 1 tai t 4 a i a b ( 1) i i tai a i a b ( ) i i

24 6. Piirretään kuva. Merkitään säteiden leikkauspiste P. Muodostetaan pisteen P paikkavektori kahdella eri tavalla: pisteen A kautta a pisteen B kautta. OP OA t(4i ) i t(4i ) ( 4 t) i ( t) OP OB s( i ) 40i 9 s( i ) (40 s) i (9 s) ( 4 ti ) ( t) (40 si ) (9 s ) Saadaan yhtälöpari, osta ratkaistaan t. t t 4t 40s t 9s 4 s8 : s6 : ts19 ts t 1 : t 7 OP ( 4 t) i ( t) ( 47) i (7) 0i 4 Piste P on (0, 4). Säteet kohtaavat korkeudella 4 m.

25 7. Piirretään kuva. Koska nelikulmio on suunnikas DC AB a a BC AD b. Kiroitetaan vektori AF kahdella eri tavalla. AF t AE t( AD DE) t( AD DC) t( b a) ta tb AF AB BF AB sbd AB s( BA AD) a s( a b) (1 sa ) sb Saadaan yhtälöpari, osta ratkaistaan t. t 1s 4 t s t 1t 4 7 t 1 : t 4 7 AF ta tb 4 a 4 b a 4 b

26 8. Piirretään kuva. Piste P on analla BC, oten BP tbc Halutaan tietää, mikä t on. BA (1 ( 1)) i ( 4) i BC (5 ( 1)) i ( 4) 6i Kiroitetaan vektori BP kahdella eri tavalla. BP t BC t(6i ) 6ti t BP BA s( i ) i s( i ) ( s) i ( s) Saadaan yhtälöpari, osta ratkaistaan t. 6t s t s ( ) 6t s 4t 4s 10t 6 :10 t BP BC, oten piste P akaa anan BC suhteessa :. 5 Ratkaistaan pisteen P koordinaatit paikkavektorin avulla. OP OB BP i 4 (6i ) i 4 18 i 6 1 i Piste P on ,,

27 9. a) Vektorit u a v ovat toisiaan vastaan kohtisuorassa, os pistetulo u v on 0. u v 1 p1 ( ) ( ) 6 p 1 p15 p 15 0 p 15 b) Vektorit u a v ovat yhdensuuntaiset, os on olemassa luku t siten, että v tu. v tu pi 6 k t( i k) pi 6k ti t tk) Saadaan yhtälöryhmä, osta ratkaistaan p. t p t t 6 Kun t = on myös p =. Tällöin myös yhtälö t = 6 toteutuu. p =

28 10. Kolmion OAB kolmas sivuvektori on AB AOOB OAOB ab. Kolmio on tasakylkinen, os Lasketaan AB. AB ab a b ( a b) ( a b) a( a b) b ( a b) aa ab ab b b aa abb b ababb b b b b OA OB tai OA AB tai OB AB. On siis voimassa AB OB oten myös AB OB. Kolmion OAB sivut OB a AB ovat yhtä pitkät, oten kolmio on tasakylkinen.

29 APUVÄLINEET SALLITTU 11. a) Kolmio on suorakulmainen, os sen oidenkin sivuvektorien pistetulo on 0. Kuvan perusteella vektorit BA a BC näyttäisivät olevan kohtisuorassa. BA (15 ( 5)) i (10 5) 0i 5 BC (5 15) i ( 0 10) 10i 40 BA BC ( 40) Kolmio on suorakulmainen. b) Kolmion kolmas sivuvektori on a b 10i 18 (70i 7 ) 60i 11. Lasketaan kolmannen sivun pituus. a b ( 60) 11 61

30 1. a) Piirretään kuva. Merkitään lävistäien leikkauspiste P. C = (, 6) a lävistäien välinen kulma on 4,5. b) Koska ABCD on suunnikas, sen vastakkaiset sivut ovat yhtä pitkät a yhdensuuntaiset. Tällöin DC AB. Ratkaistaan piste C paikkavektorin avulla. OC OD DC OA AD AB i 7i 5 i i 6 Piste C on (, 6). Lävistäien välinen kulma on vektorien PA a PB välinen kulma. Suunnikkaan lävistäät puolittavat toisensa, oten PA 1 CA 1 (( ( )) i (0 6) ) i. PB 1 DB 1 ( DA AB) 1 ( AD AB) 1 (7 i 5 i ) 5 i 5 ()() cos( PA, PB) PA PB 16 PA PB ( ) 5 ( ) 77 ( PA, PB) 4, ,5

31 1. a) Mediaanien leikkauspiste on (1, 1) a kulma A on 6,9. b) Merkitään mediaanien leikkauspiste P. Ja sivun BC keskipiste D. D 1, 11 (,0) Mediaanilauseen perusteella piste P akaa mediaanin suhteessa : 1 kärestä lukien. Tällöin AP AD. AD ( ( 1)) i (0 ( )) i Määritetään piste P paikkavektorin avulla. OP OA AP OA AD i (i ) i Piste P on (1, 1). Kulma A on vektorien AB a AC välinen kulma. AB ( ( 1)) i ( 1 ( )) 4i AC (1 ( 1)) i (1 ( )) i 4 cos( AB, AC) AB AC AB AC ( AB, AC) 6, ,9

32 14. a) Pisteen Q etäisyys pisteestä P on vektorin PQ pituus. PQ (11 7) i (0 4) ( 4 ) k 4i 4 7k PQ 4 ( 4) ( 7) b) Etäisyys xy-tasosta on pisteen p z-koordinaatti. c) Etäisyys x-akselista on pisteen P a pisteen (7, 0, 0) etäisyys d) Tason a pisteen P etäisyys on tasolla olevan proektiopisteen P a pisteen P etäisyys. Proektiopiste on pisteen P kautta kulkevan tason normaalin a tason leikkauspiste. Tason normaali on vektorin i 6k suuntainen. Normaalin yhtälö on x7t y 4 t ( t ) z 6 t. Ratkaistaan tason a normaalin leikkauspiste. (7 + t) (4 t) + 6( + 6t) + 17 = 0 49t = 147 t = x = 7 6 = 1, y = = 1 a z = 18 = 15 Leikkauspiste on P = (1, 1, 15). PP ' (17) i (14) ( 15) 6i 9 18k PP ' ( 6) 9 ( 18) 1

33 15. a) Tason yhtälö on 9x y + 8z 14,5 = 0 a leikkauspiste (0; 0; 1,8). b) Janan AB keskipiste on ,,, 1,1 C. Vektori AB on tason normaalivektori. AB (5 ( 4)) i ( 0) (5 ( )) k 9i 8k Muodostetaan tason yhtälö. 9 x 1 ( y( 1)) 8( z1) 0 9x4 1 y8z80 9xy8z z-akselin leikkauspisteessä x = 0 a y = z z 14 1 z Leikkauspiste on 0, 0,

34 16. u ra sb tc 7 k r( i k) s( i k) t( i k) 7 k ( r st) i ( rs) ( rst) k Saadaan yhtälöryhmä, osta ratkaistaan r, s a t. rst 0 rs7 rst r =, s = 4 a t = 5 u a 4b 5c 17. Opiskelia sioittaa osakkeisiin x, oukkovelkakiroihin y a korkotilille z. Tehtävänannon perusteella saadaan seuraavat yhtälöt, oista ratkaistaan x, y a z. x y z z x y ,07x0,05y0,0z 800 x = 757,14, y = 14,857 a z = Opiskelia sioittaa osakkeisiin 757, oukkovelkakiroihin 14 a korkotilille

35 18. Särmiö on suorakulmainen, os sen sivusärmät ovat kohtisuorassa toisiaan vastaan. Vektorit a, b a c ovat kohtisuorassa toisiaan vastaan os niiden pistetulo on 0. ab x1 a c 4 y z b c x yz x 0 y z40 x yz 0 Ratkaistaan x, y a z. x1, y 7 a z 1 Lasketaan särmiön särmien pituudet. a ( 1) 1 6 b i k b ( 1) 1 11 c i 7 1 k 7 1 c ( ) ( ) ( ) 66 V a b c

36 19. Pitää esittää a u v. Koska u b, on u tb. Koska v b on v b 0. a u v, oten v a u. v b ( a u) b ( a tb) b ab tb b 451 ( ) t(11 ( )) 9t 9t = 0 9t = : ( 9) t = 1 u 1 b 1 (i k) i 1 k v a u 4i 5 k ( i 1 k) 4 i 4 1 k

37 0. Taso leikkaa xy-tason pitkin suoraa i t( i ). Suoran yhtälöstä voidaan päätellä, että piste (, 1, 0) on suoralla a suoran suuntavektori on s i. Tason normaalivektori on n ai b ck. Tason normaalivektori on kohtisuorassa vektoria s vastaan, oten ns 0. Pisteet (, 1, 0) a ( 7,, ) siaitsevat molemmat tasossa. Näiden pisteiden välinen vektori a on myös kohtisuorassa vektoria n vastaan a an 0. a ( 7 ( )) i ( 1) (0) k 5i 4 k Saadaan yhtälöpari. ns a1bc00 na a( 5) b( 4) c0 ab b b cb Eräs yhtälöryhmän toteuttava ratkaisu on a =, b = 1 a c =, olloin n i k. Tason yhtälö on x + y z + d = 0. Koska piste ( 7,, ) on tasossa, piste toteuttaa tason yhtälön. ( 7) () + d = d = 0 d = 5 Tason yhtälö on x + y z 5 = 0.

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC Laudatur 5 MAA5 ratkaisut kertausharjoituksiin Peruskäsitteitä 8. CA CB + BA BC AB b a a b DA DB + BA ( BC) + ( AB) b a a b Vastaus: CA a b, DA a b 8. DC DA + AC BA + AC BA BC AC ( BC AC ) + AC AC CB Vastaus:

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

3 Vektorin kertominen reaaliluvulla

3 Vektorin kertominen reaaliluvulla 3 Vektorin kertominen reaaliluvulla Summalla a + a + a tarkoitetaan lausekkeessa esiintyvän vektorin a kanssa samansuuntaista, mutta pituudeltaan tähän nähden kolminkertaista vektoria. Tätä summaa on tarkoituksenmukaista

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48

Päähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48 Trigonometriset funktiot 169. Muutetaan asteet radiaaneiksi. 180 astetta on radiaaneina π eli 180 = π rad Tällöin 1 rad. 180 45 1 a) 45 180 4 4 65 1 b) 65 180 6 10 c) 10 180 5 5 d) 5 180 4 40 7 e) 40 180

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Geometriaa kuvauksin. Siirto eli translaatio

Geometriaa kuvauksin. Siirto eli translaatio Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Suora. Hannu Lehto. Lahden Lyseon lukio

Suora. Hannu Lehto. Lahden Lyseon lukio Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin

Lisätiedot

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä???? MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Harjoitustehtävät, syyskuu Helpommat

Harjoitustehtävät, syyskuu Helpommat Harjoitustehtävät, syyskuu 2011. Helpommat Ratkaisuja 1. Ratkaise yhtälö a a + x = x. Ratkaisu. Ratkaistaan yhtälö reaalilukujen joukossa. Jos yhtälöllä onratkaisux, niin x 0. Jos a =0,yhtälöllä onratkaisux

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2008

Preliminäärikoe Pitkä Matematiikka 5.2.2008 Preliminäärikoe Pitkä Matematiikka 5..008 Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. Ratkaise

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia 10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Trigonometria Ennakkotehtävät. a) Mäessä korkeus kasvaa metriä jokaista vaakasuunnassa edettyä 0 metriä kohden eli jyrkkyys prosentteina on : 0 = 0, = 0 %. b) Hahmotellaan tilannetta kuvan avulla. Kun

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Matematiikan olympiavalmennus 2015 helmikuun helpommat

Matematiikan olympiavalmennus 2015 helmikuun helpommat Matematiikan olympiavalmennus 05 helmikuun helpommat tehtävät Ratkaisuja. Määritä kolmiot, joiden kulmille α, β, γ pätee cos α cos β +sinαsin β sin γ =. Ratkaisu. Koska 0 < sin γ, täytyy olla cos(α β)

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Pyramidi 3 Geometria tehtävien ratkaisut sivu a)

Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Pyramidi 3 Geometria tehtävien ratkaisut sivu 8 501 a) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näiden sivujen väliset kulmat ovat yhtä suuret, joten kolmiot ovat yhtenevät yhtenevyyslauseen

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

2 = 31415,92... 2 31 000 m

2 = 31415,92... 2 31 000 m Pyamidi Geometia tehtävien atkaisut sivu 6 40 Ympyän halkaisija d 00 m ja säde 00 m. a) kehän pituus p π d d 00 m π 68,... 60 ( m) b) pinta-ala π 00 m π 00 45,9... 40 a) ( ) 000 m a) kehän pituus 60 m

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Sanna Hassinen. Katariina Hemmo. Timo Taskinen SIGMA. Matemaattisia malleja III. Opettajan opas. Kustannusosakeyhtiö TAMMI

Sanna Hassinen. Katariina Hemmo. Timo Taskinen SIGMA. Matemaattisia malleja III. Opettajan opas. Kustannusosakeyhtiö TAMMI L u k i o n l y h y t m a t e m a t i i k k a Sanna Hassinen Katariina Hemmo Timo Taskinen SIGMA 8 Matemaattisia malleja III Opettajan opas Kustannusosakeyhtiö TAMMI Helsinki 1. 2. painos Tekijät ja Kustannusosakeyhtiö

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta) MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

302 Nelikulmion kulmien summa on ( 4 2) 301 a) Ainakin yksi kulma yli 180. , joten nelikulmio on olemassa. a) = 280 < 360

302 Nelikulmion kulmien summa on ( 4 2) 301 a) Ainakin yksi kulma yli 180. , joten nelikulmio on olemassa. a) = 280 < 360 Pyramidi Geometria tetävien ratkaisut sivu 01 a) Ainakin yksi kulma yli 180. 0 Nelikulmion kulmien summa on ( 4 ) 180 = 60. a) 90 + 190 = 80 < 60, joten nelikulmio on olemassa. Hamotellaan kuvaaja, joon

Lisätiedot

a b c d + + + + + + +

a b c d + + + + + + + 11. 11. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÖ Ø ÙØ 014 È ÖÙ Ö ÒÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d 1. +. 3. 4. 5. 6. + + + + + + + + P1. Junan nopeus (liikkeellä) on aluksi v 0 ja matka-aika T 0. Matkan pituus s on

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Lukion matematiikkakilpailun avoimen sarjan ensimmäinen kierros 2014

Lukion matematiikkakilpailun avoimen sarjan ensimmäinen kierros 2014 Lukion matematiikkakilpailun avoimen sarjan ensimmäinen kierros 2014 Ratkaisuja Sulkeissa oleva nimi osoittaa, että kyseinen ratkaisu perustuu asianomaisen henkilön kilpailuvastaukseen. 1. Oletetaan, että

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

a b c d

a b c d .. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 202 È ÖÙ Ö Ò ÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d. + + 2.. 4. 5. 6. + + + + + + + + + + P. Koska massojen suhteet (alkuperäinen timantti mukaan lukien) ovat : 4 : 7, niin

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2. Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Toukokuun 2012 helpommat valmennustehtävät ratkaisuja 1 Määritä sellaisen kolmion ala, jonka kaksi kulmaa ovat 60 ja 45 ja jonka pisimmän sivun pituus on 1 Ratkaisu Olkoon

Lisätiedot

Trigonometriaa: kolmioita ja kaavoja

Trigonometriaa: kolmioita ja kaavoja Trigonometriaa: kolmioita ja kaavoja Trigonometriset funktiot voidaan määritellä eri tavoin Yksikköympyrään x + y 1 perustuva määritelmä on yleensä selkeä Jos A 1, 0) ja t 0 on reaaliluku, on olemassa

Lisätiedot

3 Ympyrä ja kolmion merkilliset pisteet

3 Ympyrä ja kolmion merkilliset pisteet 3 Ympyrä ja kolmion merkilliset pisteet Ennakkotehtävät. a) Matkapuhelimen etäisyys tukiasemasta A on 5 km. Piirretään ympyrä, jonka keskipiste on tukiasema A ja säde 5 km (5 ruudun sivua). Matkapuhelin

Lisätiedot

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1 Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään

Lisätiedot

MAA5. HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit a) AB

MAA5. HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit a) AB MAA5 HARJOITUKSIA 1 Olkn ABCD mielivaltainen nelikulmi Merkitse siihen vektrit a) AB, b) CA ja DB 2 Neljäkäs eli vinneliö n suunnikkaan erikistapaus Mitkä seuraavista väitteistä vat tsia neljäkkäässä ABCD:

Lisätiedot

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille! 5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot