Social Network Analysis Centrality And Prestige

Koko: px
Aloita esitys sivulta:

Download "Social Network Analysis Centrality And Prestige"

Transkriptio

1 Hypermedian jatko-opintoseminaari Social Network Analysis Centrality And Prestige Sosiaalisten verkostojen analyysi Keskeisyys ja arvostus Thumas Miilumäki thumas.miilumaki@tut.fi

2 Sisältö 2 Suunnattujen verkostojen toimijoiden arvostuksen tunnusluvut Erilaisten arvostusta kuvaavien tunnuslukujen vertailua esimerkin kautta Taustalla pääosin Wassermanin ja Faustin (1994) kirjassaan esittämät keskeisyyden ja arvostuksen teoriat Laajennuksia Knoken ja Yangin (2008) teoksesta Kuvat tehty Pajek ohjelmistolla ellei muuta ole mainittu

3 Tavoitteet 3 Syvennetään keskeisyyden käsitettä kattamaan suuntaamattomien verkostojen lisäksi myös suunnatut verkostot Pyritään ymmärtämään verkoston rakennetta ja sen toimijoita paremmin tunnuslukujen avulla Tiedetään, kuinka tunnusluvut voidaan määrittää verkostodatasta luodusta sosiomatriisista matriisilaskennan avulla

4 Taustaa 4 Suuntaamattomille verkostoille ja sen toimijoille voidaan määrittää erilaisia keskeisyyksiä (centrality) Keskeisyysaste (degree centrality) Läheisyys (closeness centrality) Välillisyys (betweenness centrality) Informaatiokeskeisyys (information centrality) Keskeisyys ei riipu verkoston yhteyksien suunnasta, vaan ainoastaan tarkasteltavasta toimijasta ja siihen liittyneistä yhteyksistä ja/tai koko verkostosta yleensä Suunnatuissa verkostoissa keskeisyyden tilalla käytetään käsitettä arvostus (prestige), joka huomioi yhteyksien suunnan Erotetaan toisistaan käsitteet olla arvostettu ja arvostaa Arvostuksen tunnusluvuissa tarkastellaan nimenomaan yhteyksien vastaanottamista eli arvostuksen kohteena olemista

5 Arvostus 5 Kuten keskeisyyttä, niin myös arvostusta voidaan tarkastella eri tavoin Verkoston toimijoille voidaan määrittää seuraavat arvostukset Arvostusaste (actor degree prestige) Arvostusläheisyys (actor proximity prestige) Arvoasema (actor status prestige, actor rank prestige) Koko verkoston tasolla voidaan määrittää verkostoa kuvaavia arvostuksen tunnuslukuja arvioimalla kunkin arvostuksen keskiarvoja ja variansseja Näistä keskiarvostusläheisyys ja arvostusläheisyyden varianssi ovat mielekkäimpiä tarkasteltavia verkostoanalyysin kannalta

6 Arvostusaste 6 Toimijan n i arvostusaste P D (n i ) määritellään yksinkertaisesti toimijaan kohdistuneiden yhteyksien summana Vertaa suuntaamattoman verkoston toimijan n i keskeisyysaste, joka määritellään toimijaa kuvaavan solmun astelukuna d(n i ) Arvostusaste määritellään formaalisti P D (n i ) = d I (n i ) = Σ j x ij = x +i, missä d I (n i ) on solmun n i tuontiluku ja x +i on verkoston sosiomatriisin X sarakesumma sarakkeesta i Jotta arvostusasteet eri verkostojen välillä olisivat verrattavissa keskenään, määritellään normeerattu arvostusaste P D (n i ) x +i P D (n i ) =, missä g on verkoston toimijoiden lukumäärä g 1 Normeerattu arvostusaste saa arvoja väliltä [0,1] Sitä arvostetumpi toimija on, mitä suurempi on sen arvostusaste

7 Vaikutusjoukko 7 Toimijan n i vaikutusjoukko (influence domain) koostuu niistä toimijoista n j, joista toimija n i on saavutettavissa Saavutettavuudella (reachability) tarkoitetaan sitä, että onko joidenkin verkoston kahden solmun välillä kulku Saavutettavuusmatriisissa (a reachability matrix) X [R] [R] alkio x on ij yksi, jos solmujen n i ja n j välillä on kulku, nolla muulloin Sosiomatriisin X potenssit X 2, X 3,, X g-1 ilmoittavat solmujen välisten erimittaisten kulkujen lukumäärät Näiden summamatriisi X [Σ] ilmoittaa kaikkien erimittaisten kulkujen lukumäärät solmuparien välillä Tästä summamatriisista X [Σ] saadaan saavutettavuusmatriisi X [R], kun matriisin X [Σ] nollasta poikkeavat alkiot merkitään ykkösiksi (Miilumäki 2009, 13.) Toimijalle n i voidaan määrittää luku I i, joka ilmoittaa, kuinka moni toimija n j voi saavuttaa toimijan n i Luku I i saadaan toimijalle n i yksinkertaisesti saavutettavuusmatriisin X [R] sarakesummana sarakkeesta i

8 Arvostusläheisyys 8 Toimijan n i vaikutusjoukon toimijoiden lukumäärän I i avulla voidaan määrittää vaikutusjoukon toimijoiden keskimääräinen etäisyys toimijasta n i d(n j,n i ) ave = Σ j d(n j,n i ) / I i Toimijan n i arvostusläheisyys P P (n i ) määritellään vaikutusjoukon osuuden koko verkoston toimijajoukosta suhteena vaikutusjoukon toimijoiden keskimääräiseen etäisyyteen toimijasta n i, eli ts. I i / (g 1) P P (n i ) = Σ j d(n j,n i ) / I i Arvostusläheisyys saa arvoja välillä [0,1] Jos toimijalla n i on suora yhteys jokaiseen verkoston muuhun toimijaan, saa arvostusläheisyys arvon yksi Jos toimijaan n i ei kohdistu yhtään suoraa yhteyttä, vaikutusjoukon toimijoiden lukumäärä on I i nolla ja arvostusläheisyys määritellään nollaksi

9 Verkoston arvostusläheisyys 9 Yleisesti erilaisia arvostusindeksejä on vaikea yleistää kuvaamaan koko verkostoa, eli sitä millä tasolla toimijoiden välinen arvostus verkoston sisällä on Arvostusläheisyydestä voidaan kuitenkin yksinkertaisesti määrittää verkostotason tunnuslukuja arvostukseen liittyen Keskiarvostusläheisyys kuvaa yleisesti sitä, kuinka läheisesti toimijat arvostavat toinen toistaan verkoston sisällä Verkostossa, jossa on g toimijaa, keskiarvostusläheisyys P P määritellään P P = Edelleen verkoston arvostusläheisyyksien varianssi on koko verkostoa kuvaava tunnusluku 2 S = P g P P (n i ) Σ i=1 g g (P P (n i ) P P ) Σ 2 i=1 g

10 Arvoasema 10 Edellä esitellyt arvostuksen tunnusluvut huomioivat vain toimijoita ja niihin kohdistuvia yhteyksiä Toimijan n i arvoasema on riippuvainen häneen päin yhteydessä olevien toimijoiden n j arvoasemista Edelleen taas toimijoiden n j arvoasemat ovat riippuvaisia näihin päin yhteydessä olevien toimijoiden n k arvoasemista jne. Arvoaseman määrittelyn taustalla on ajatus siitä, että toimijan n i arvoasema on häneen päin suoraan yhteydessä olevien toimijoiden arvoasemien funktio Sosiomatriisin X sarakkeessa on merkitty luvulla yksi, jos riviä kuvaava toimija on yhteydessä saraketta kuvaavaan toimijaan, ja nollalla, jos yhteyttä ei ole Täten verkostossa, jossa on g toimijaa, toimijan n i arvoasema voidaan esittää sosiomatriisin X toimijaa kuvaavan sarakkeen alkioiden ja niitä vastaavien toimijoiden arvoasemien lineaarikombinaationa, ts. P R (n i ) = x 1i P R (n 1 ) + x 2i P R (n 2 ) + + x gi P R (n g )

11 Arvoasema 11 Matemaattisesti koko verkoston toimijoiden arvoasemat voidaan esittää matriisiyhtälönä p = X p, missä p = (P R (n 1 ), P R (n 2 ),, P R (n g )) (pystyvektori) ja X on sosiomatriisi (ja X sen transpoosi) Tästä matriisiyhtälöstä tulee siis ratkaista arvoasemavektori p Matriisiyhtälö voidaan esittää muodossa (I X ) p = 0, missä I on identiteettimatriisi ja 0 g -pituinen vakio pystyvektori, jonka alkiot ovat nollia Tämä yhtälö on identtinen nk. karakteristisen yhtälön kanssa Karakteristista yhtälöä käytetään matriisien ominaisarvojen etsimiseen Yhtälön ratkaisu vaatii syvempää tietämystä ominaisarvoongelman ratkaisemisesta matriisilaskennan avulla Ratkaisumalleja on useita, eikä niitä tässä esitellä tarkemmin

12 Esimerkki Valtioiden kauppaverkosto 12 Seuraavassa on esitetty 24 valtion kauppaverkosto

13 Esimerkki Valtioiden kauppaverkosto 13 Verkostosta määritetyt arvostuksen tunnusluvut (g = 24) i COUNTRY d I (n i ) d O (n i ) P ' (n i ) P ' (n i ) P ' (n i ) D P R Algeria Argentina Brazil China Czechoslovakia Ecuador Egypt Ethiopia Finland Honduras Indonesia Israel Japan Liberia Madagascar New Zealand Pakistan Spain Switzerland Syria Thailand United Kingdom United States Yugoslavia ,565 0,435 0,478 0,652 0,565 0,391 0,522 0,435 0,652 0,391 0,609 0,435 0,739 0,391 0,261 0,609 0,609 0,739 0,652 0,522 0,652 0,696 0,826 0,652 0,661 0,599 0,619 0,710 0,661 0,581 0,639 0,599 0,710 0,581 0,685 0,599 0,767 0,601 0,533 0,685 0,685 0,767 0,710 0,658 0,710 0,738 0,834 0,710 0,222 0,805 1,000 0,711 0,818 0,183 0,482 0,131 0,758 0,072 0,617 0,682 0,680 0,000 0,106 0,461 0,525 0,673 0,765 0,000 0,589 0,633 0,644 0,680 MEAN VARIANCE 12,917 9,993 13,292 67,955 0,562 0,018 0,668 0,005 0,510 0,085

14 Lopuksi 14 On siis selvää, että arvostuksen tunnusluvut tuovat verkostosta esiin seikkoja, joita ei tulisi huomanneeksi pelkästään verkoston graafia tai muunlaista mallia tarkastelemalla Keskeisyyden ja arvostuksen tunnusluvut tarjoavat monipuolista tietoa verkoston toiminnasta ja antavat viitteitä siitä, kuinka verkostoa tulisi kehittää, oli sitten kyse tehokkuuden lisäämisestä tai esim. rakenteen parantamisesta Tunnuslukuja ei saa kuitenkaan pitää ainoina mittareina verkoston toiminnasta Toimijoiden keskeisyydet ja arvostukset ovat vain osa suurempaa kuvaa Muutosten jälkeen tulee tarkastella verkostoa uudelleen, tulkita tunnusluvut uudelleen ja tarkastella oliko muutos hyvä vai huono

15 Lähteet 15 Knoke, D. & Yang, S Social Network Analysis. Second Edition. Los Angeles: Sage Publications. Miilumäki, T Matrices in Social Network Analysis And Modeling. Matriisit sosiaalisten verkostojen mallintamisessa. Tampere: Tampereen teknillinen yliopisto, luentoesitys. Wasserman, S. & Faust, K Social Network Analysis: Methods and Applications. New York: Cambridge University Press,

Verkostoanalyysin peruskäsitteitä ja visualisointia. Graafit ja matriisit, keskeisyys ja arvostus

Verkostoanalyysin peruskäsitteitä ja visualisointia. Graafit ja matriisit, keskeisyys ja arvostus Verkostoanalyysi 2011, TTY 1 Verkostoanalyysin peruskäsitteitä ja visualisointia Graafit ja matriisit, keskeisyys ja arvostus Thumas Miilumäki thumas.miilumaki@tut.fi Tampereen teknillinen yliopisto Hypermedialaboratorio

Lisätiedot

Centrality and Prestige Keskeisyys ja arvostus

Centrality and Prestige Keskeisyys ja arvostus 1 Hypermedian jatko-opintoseminaari 2008-2009 Centrality and Prestige Keskeisyys ja arvostus 21.1.2009 Jari Jussila jari.j.jussila@tut.fi 2 Tärkeys Yksi graafiteorian pääkäyttökohteista sosiaalisten verkostojen

Lisätiedot

Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä

Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä Hypermedian jatko-opintoseminaari 2008-2009 20.3.2009 Jaakko Salonen TTY / Hypermedialaboratorio jaakko.salonen@tut.fi

Lisätiedot

Hypermedian jatko-opintoseminaari

Hypermedian jatko-opintoseminaari Matematiika laitos & Hypermedialaboratorio Thumas Miilumäki SNA Matriisit verkostoje mallitamisessa 9..29 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 Hypermedia jatko-opitosemiaari 28 29 Matrices i Social Network

Lisätiedot

Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla

Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla Hypermedian jatko-opintoseminaari 2008-2009 12.12.2008 Jaakko Salonen jaakko.salonen@tut.fi TTY / Hypermedialaboratorio

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea. Arvostus Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 8..0 in idea on määrittää verkoston solmuille arvostusta kuvaavat tunnusluvut. Voidaan ajatella

Lisätiedot

Hypermedian jatko-opintoseminaari. MATHM-6750x. 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät

Hypermedian jatko-opintoseminaari. MATHM-6750x. 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät 1 Hypermedian jatko-opintoseminaari MATHM-6750x 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät 26.10.2008 Modernissa yhteiskunnassa ovat sekä yhteisöjen että laitteistojen muodostamat verkostot muodostuneet

Lisätiedot

Graphs in Social Network Analysis And Modeling. Graafit sosiaalisten verkostojen mallintamisessa

Graphs in Social Network Analysis And Modeling. Graafit sosiaalisten verkostojen mallintamisessa Hypermedian jatko-opintoseminaari 2008 2009 1 Graphs in Social Network Analysis And Modeling Graafit sosiaalisten verkostojen mallintamisessa 28.11.2008 Thumas Miilumäki thumas.miilumaki@tut.fi Sisältö

Lisätiedot

Jäsenyysverkostot ominaisuudet, toimijoiden ja tapahtumien samanaikainen analyysi. Sisältö ja tavoitteet. Osallistujien ja tapahtumien ominaisuudet

Jäsenyysverkostot ominaisuudet, toimijoiden ja tapahtumien samanaikainen analyysi. Sisältö ja tavoitteet. Osallistujien ja tapahtumien ominaisuudet Jäsenyysverkostot, toimijoiden ja tapahtumien samanaikainen anal Hypermedian jatko-opintoseminaari 2008-2009 3.4.2009 Antti Syvänen TaY / antti.syvanen@uta.fi 1 Sisältö ja tavoitteet Esitellään jäsenyysverkostojen,

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Koheesiiviset alaryhmät

Koheesiiviset alaryhmät 1 Koheesiiviset alaryhmät Hypermedian jatko-opintoseminaari 2008-09 11. luento - 6.3.2009 Joonas Meriläinen TTY / Hypermedialaboratorio http://eclectic.ss.uci.edu/~drwhite/cases/transparencies/clique.gif

Lisätiedot

Jarno Marttila Datalähtöinen sosiaalisten verkostojen analyysi: tapaus Suomen Lasten Parlamentti. Diplomityö

Jarno Marttila Datalähtöinen sosiaalisten verkostojen analyysi: tapaus Suomen Lasten Parlamentti. Diplomityö Jarno Marttila Datalähtöinen sosiaalisten verkostojen analyysi: tapaus Suomen Lasten Parlamentti Diplomityö Tarkastajat: Prof. Seppo Pohjolainen (TTY) ja tutkija Jukka Huhtamäki (TTY) Tarkastajat ja aihe

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

Sisällys. 1. Energiatehokkuudesta. 2. Energiatehokkuusindikaattorit kansantalouden makrotasolla

Sisällys. 1. Energiatehokkuudesta. 2. Energiatehokkuusindikaattorit kansantalouden makrotasolla Sisällys 1. Energiatehokkuudesta. Energiatehokkuusindikaattorit kansantalouden makrotasolla 3. Hiilidioksidipäästöihin vaikuttavia tekijöitä dekompositioanalyysi 4. Päätelmiä Energiatehokkuudesta Energiatehokkuuden

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Sosiaalisten verkostojen datan notaatio. Notation for Social Network Data

Sosiaalisten verkostojen datan notaatio. Notation for Social Network Data Sosiaalisten verkostojen datan notaatio Notation for Social Network Data Jari Jussila 14.11.2008 2 Notaatio Notaatiota tarvitaan / auttaa kuvaamaan: toimijat tai toimijoiden muodostamat joukot, toimijoiden

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea. Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

Rakenteellinen tasapaino ja transitiivisyys

Rakenteellinen tasapaino ja transitiivisyys 1 Hypermedian jatko-opintoseminaari 2008-2009 Rakenteellinen tasapaino ja transitiivisyys 20.2.2009 Seppo Pohjolainen 2 Rakenteellinen tasapaino Käsitteitä: Arvotettu graafi (signed graph) (+ tai - ) Suuntaamaton

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

KA107 Erasmus+ globaali liikkuvuus myönnöt korkeakouluittain, hakukierros 2019

KA107 Erasmus+ globaali liikkuvuus myönnöt korkeakouluittain, hakukierros 2019 2019-1-FI01-KA107-060676 AALTO KORKEAKOULUSAATIO SR Juncker Horn of Africa Window Kenya H4 67730,00 31140,00 46,0 % Juncker Horn of Africa Window Kenya H1 14127,00 4787,00 33,9 % Juncker Horn of Africa

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 / MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Verkostoanalyysi 2011 Jatko-opintoseminaari Case: Verkostot ja muutos Statsterverkkopalvelussa

Verkostoanalyysi 2011 Jatko-opintoseminaari Case: Verkostot ja muutos Statsterverkkopalvelussa Verkostoanalyysi 2011 Jatko-opintoseminaari 1.4.2011 Case: Verkostot ja muutos Statsterverkkopalvelussa Tutkija Teemo Anton Tebest teemo.tebest@tut.fi Tampereen teknillinen yliopisto Teemo Tebest Tietotekniikan

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Gaussin ja Jordanin eliminointimenetelmä

Gaussin ja Jordanin eliminointimenetelmä 1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,

Lisätiedot

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4 BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

MS-A0003/A Matriisilaskenta Laskuharjoitus 6 MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

Sosiaalisten verkostojen tutkimusmenetelmät - historiallisia ja teoreettisia perusteita sekä peruskäsitteitä

Sosiaalisten verkostojen tutkimusmenetelmät - historiallisia ja teoreettisia perusteita sekä peruskäsitteitä Sosiaalisten verkostojen tutkimusmenetelmät - historiallisia ja teoreettisia perusteita sekä peruskäsitteitä Stanley Wasserman and Katherine Faust: Social Network Analysis, Methods and Applications Sosiaalisten

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017 Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Mainosvuosi 2015 TNS

Mainosvuosi 2015 TNS Mainosvuosi 2015 TNS Kansainvälinen mediamainonnan määrän kehitys Kaikki mediat Euroopassa mainonnan kasvu on ollut vielä vaatimatonta. Ainoastaan Itä-Euroopassa, erityisesti Unkarissa, on päästy jo hieman

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Globaalit matkavakuutusohjelmat Mahdollisuudet ja haasteet. Ifin matkapäivä 18.10.2012. Heini Heideman Kristian Ignatius

Globaalit matkavakuutusohjelmat Mahdollisuudet ja haasteet. Ifin matkapäivä 18.10.2012. Heini Heideman Kristian Ignatius Globaalit matkavakuutusohjelmat Mahdollisuudet ja haasteet Ifin matkapäivä 18.10.2012 Heini Heideman Kristian Ignatius Esityksen sisältö Matkustamisen riskejä Globaalin matkavakuutusohjelman tavoitteet

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

ICC Open Market Index 2013. Ennakkotiedot 10.5.2013 ICC OPEN MARKET 2013 INDEX

ICC Open Market Index 2013. Ennakkotiedot 10.5.2013 ICC OPEN MARKET 2013 INDEX ICC Open Market Index 2013 Ennakkotiedot 10.5.2013 ICC OPEN MARKET 2013 INDEX ICC OPEN MARKET INDEX INTRO ICC OPEN MARKET INDEX 2013 Tausta Talouden taantumassa yrityselämässä koettiin huolta markkinoilla

Lisätiedot

Sosiaalisten verkostojen data

Sosiaalisten verkostojen data Sosiaalisten verkostojen data Hypermedian jatko-opintoseminaari 2008-09 2. luento - 17.10.2008 Antti Kortemaa, TTY/Hlab Wasserman, S. & Faust, K.: Social Network Analysis. Methods and Applications. 1 Mitä

Lisätiedot

5 DIFFERENTIAALIYHTÄLÖRYHMÄT

5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Ensimmäisen kl:n DY-ryhmät Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Useimmat voidaan mallintaa ensimmäisen kertaluvun DY-ryhmien avulla. Ensimmäisen kl:n

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.3 Lineaarisen koodin dekoodaus Oletetaan, että lähetettäessä kanavaan sana c saadaan sana r = c + e, missä e on häiriön aiheuttama

Lisätiedot

Yhteistyökumppaniksi Toyota Tsusho Nordic/ Toyota Tsusho Corporationille?

Yhteistyökumppaniksi Toyota Tsusho Nordic/ Toyota Tsusho Corporationille? Yhteistyökumppaniksi Toyota Tsusho Nordic/ Toyota Tsusho Corporationille? 10/2013 www.ttnordic.fi www.toyota-tsusho.com/english Toyota Tsusho Nordic ja Toyota Tsusho Corporation (TTC) lyhyesti Toiminta

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Lihavuuden kustannuksia. Markku Pekurinen, osastojohtaja, tutkimusprofessori

Lihavuuden kustannuksia. Markku Pekurinen, osastojohtaja, tutkimusprofessori Lihavuuden kustannuksia Markku Pekurinen, osastojohtaja, tutkimusprofessori Lihavuus Monien sairauksien riskitekijä Väestötasolla nopeasti yleistyvä ongelma Taloudellisista vaikutuksista lisääntyvästi

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

Ominaisarvot ja ominaisvektorit 140 / 170

Ominaisarvot ja ominaisvektorit 140 / 170 Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Kokonaislukuoptimointi hissiryhmän ohjauksessa

Kokonaislukuoptimointi hissiryhmän ohjauksessa Kokonaislukuoptimointi hissiryhmän ohjauksessa Systeemianalyysin laboratorio Teknillinen Korkeakoulu, TKK 3 Maaliskuuta 2008 Sisällys 1 Johdanto Taustaa Ongelman kuvaus 2 PACE-graafi Graafin muodostaminen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot