Verkostoanalyysin peruskäsitteitä ja visualisointia. Graafit ja matriisit, keskeisyys ja arvostus

Koko: px
Aloita esitys sivulta:

Download "Verkostoanalyysin peruskäsitteitä ja visualisointia. Graafit ja matriisit, keskeisyys ja arvostus"

Transkriptio

1 Verkostoanalyysi 2011, TTY 1 Verkostoanalyysin peruskäsitteitä ja visualisointia Graafit ja matriisit, keskeisyys ja arvostus Thumas Miilumäki thumas.miilumaki@tut.fi Tampereen teknillinen yliopisto Hypermedialaboratorio Matematiikan laitos

2 Sisältö 2 SNA-graafit ja niiden ominaisuudet SNA-matriisit ja niiden ominaisuudet Suuntaamattomien verkostojen keskeisyyden tunnusluvut Suunnattujen verkostojen toimijoiden arvostuksen tunnusluvut Taustalla pääosin Wassermanin ja Faustin Social Network Analysis: Methods and Applications (1994) teokessa esitetyt SNA-teoriat Laajennuksia Ruohosen Graafiteoria (2006) opetusmonisteesta sekä Knoken ja Yangin (2008) ja Scottin (2000) teoksista Termistön suomennokset pohjautuvat Ruohosen (2006), Johanssonin et al. (1995) ja Miilumäki (2010) teoksissa käytettyihin suomennoksiin Esitysaineisto noudattaa sisällöltään pitkälti aiempia seminaariesityksiä (Miilumäki, 2008; 2009a ; 2009b)

3 3 SNA-graafit Taustat Määritelmät Ominaisuudet

4 Taustaa 4 Tapoja sosiaalisten verkostojen mallintamiseen on useita Käytettävät menetelmät riippuvat mallinnuksen kohteesta, näkökulmasta ja tavoitteesta Esimerkiksi monet tilastolliset mallinnusmenetelmät ovat sovellettavissa sosiaalisten verkostojen mallinnuksessa, mikäli verkostodata on valittuun tarkoitukseen relevanttia Edelleen monet diagrammit ja kaaviot ovat sovellettavissa sosiaalisen verkoston datan käsittelyyn Graafeilla pyritään luomaan mahdollisimman todenmukainen visualisointi, ikään kuin valokuva, tarkasteltavasta verkostosta, jossa toimijat ja niiden väliset yhteydet on esitetty selkeästi Graafin ja todellisuuden yhteensovittaminen on haasteellista, sillä graafi luodaan usein diskreetistä ja rajallisesta määrästä verkostodataa

5 Perusteluja graafien käytölle 5 SNA:ssa (Social Network Analysis) graafien käytölle on useita perusteita Graafiteoreettinen sanasto soveltuu sosiaalisten rakenteiden kuvaamiseen ja merkitsemiseen Useimmat sosiaalisten rakenteiden ja ominaisuuksien kvantitatiiviset tunnusluvut ovat laskettavissa graafiteoreorian sisältämien matemaattisten menetelmien avulla Graafiteoreettinen notaatio ja sanasto sekä sen sisältämä matematiikka tarjoavat mahdollisuuden erilaisten graafeja koskevien teoreemien todistamiseen, ja siten myös sosiaalisia rakenteita koskevat väitteet ovat todistettavissa (Wasserman & Faust 1994, 93.) Graafiteoria tarjoaa mahdollisuuden sosiaalisen verkoston mallintamiseen Graafi on esitys tarkasteltavasta verkosta Reaalimaailman toimijat esitetään graafissa solmuina / (kärki)pisteinä (a node, nodes / a vertex, vertices) ja niiden väliset yhteydet solmuja yhdistävinä kaarina (an edge, edges) tai nuolina (an arc, arcs)

6 Historiaa graafeista ja niiden käytöstä SNA:ssa 6 Jacob Levy Moreno esitteli jo 1930-luvulla sosiogrammin (sociogram), joka on edelleen pohjana graafiteoreettisessa SNA:ssa ja verkostojen visualisoinnissa (Moreno, 1953) Graafiteoria on ollut voimakkaasti käytössä Antropologiassa Kommunikaatiotutkimuksissa Elinkeino- ja liiketaloustutkimuksissa Organisaatiotutkimuksissa Maantieteissä (Wasserman & Faust 1994, 94.) Piiriteoriassa ja -analyysissa Kaikissa em. tieteen- ja tutkimuksenaloilla on aina jollain tapaa ja jollain asteella mukana ihmisten muodostama sosiaalinen verkosto, jota graafiteoreettisin menetelmin on hyvä lähestyä ja analysoida

7 Graafit 7 Seuraavassa esitellään suuntaamaton (undirected) ja kaksiarvoinen (dichotomous) graafi verkoston mallina Suuntaamattomassa graafissa verkoston toimijoiden väliset yhteydet ovat aina kaksisuuntaisia Kaksiarvoisessa graafissa yhteyksien voimakkuutta ei oteta huomioon vaan ainoastaan yhteyden olemassaoloon otetaan kantaa, ts. yhteys joko on olemassa tai ei ole

8 Suuntaamaton graafi 8 Suuntaamaton graafi G Toimijoita kuvaava solmujen joukko N koostuu kahdesta joukosta: Yhteyksiä kuvaava kaarien (viivojen) joukko L = {n 1,n 2,,n g } (a set of nodes) = {l 1,l 2,,l L } (a set of lines) Graafissa G (N, L ) on siis yhteensä g solmua ja solmuja yhdistäviä kaaria yhteensä L kappaletta Suuntaamattomassa graafissa jokainen kaari on kahden erillisen solmun n i ja n j ei-järjestetty pari, ts. kaari l k = (n i,n j ) = (n j,n i ) Kaarta, jonka alku- ja päätepisteenä on yksi ja sama solmu n i, sanotaan silmukaksi (a loop) tai sisä-/refleksiivisidokseksi (a reflexive tie) Silmukoita ei useinkaan käytetä sosiogrammeissa Sosiogrammit yksinkertaisia (simple) graafeja Arvotetuilla/painotetuilla (valued, weighted) graafeilla silmukoita voidaan hyödyntää kuvaamaan itseisiä toimintoja ja niiden määriä Voidaan merkitä graafiin kaaren sijasta solmun kokoa muuttaen

9 Perusmääritelmiä 9 Kaksi solmua n i ja n j ovat vierekkäiset (adjacent), jos kaari l k =(n i,n j ) on joukossa L ts. l k = (n i,n j ) L Solmu n i on liittynyt (incident) kaareen l k, jos se on toinen solmuista, jotka muodostavat kaaren l k määrittelevän järjestämättömän parin l k =(n i,n j ) Graafia, jossa on vain yksi solmu, sanotaan triviaaliksi (trivial) Tyhjässä (empty) graafissa ei ole yhtään kaarta solmujen välissä, ts. G (N, L ): N ={n 1,n 2,,n g }, L =Ø

10 Solmun aste 10 Suuntaamattomassa graafissa solmun aste (degree) d(n i ) kertoo solmuun n i liittyneiden kaarien lukumäärän Kun graafissa G on g solmua, kullakin solmulla on aste, joka voi olla Minimissään 0, jolloin solmuun n i ei ole liittynyt yhtään kaarta Maksimissaan g-1, jolloin kaikki muut graafin solmut ovat liittyneet suoraan erillisillä kaarilla solmuun n i Graafin G, jossa on g solmua ja L kaarta, solmujen asteiden keskiaste (mean degree) määritellään g i= 1 d( ni ) 2L d = = g g Edelleen astelukujen varianssi (variance of degrees) S ( d( ni ) d g g 2 2 i= 1 ) D =

11 Graafin tiheys 11 Graafin G (N, L ) tiheys (density) on graafin kaarien osuus graafin kaikista mahdollisista kaarista Yksinkertaisessa (ei silmukoita, eikä rinnakkaisia (parallel) kaaria) graafissa, jossa on g solmua, on kaaria maksimissaan g = 2 g ( g 1) 2 Jos graafissa G (N, L ) on L kaarta, saadaan graafin tiheydelle määritelmä Δ = L 2L = g( g 1) / 2 g( g 1) Tiheys voi olla Minimissään 0, jos graafissa ei ole lainkaan kaaria (L = 0) Maksimissaan 1, jos graafi on täydellinen (complete) eli graafin kaikki mahdolliset kaaret ovat edustettuina (L = g(g-1)/2) Täydellistä graafia, jossa on g solmua, merkitään K g

12 Graafin tiheys 12 Suuntaamattomassa g solmun graafissa kaikkien solmujen asteiden summa on 2L, mikä antaa keskiasteeksi 2L/g Täten tiheys voidaan kirjoittaa muodossa Δ = 2L g( g 1) = d ( g 1)

13 Suunnattu graafi eli digraafi 13 Jos verkoston yhteydet tulkitaan suunnatuiksi, on nuoli (an arc) l k kahden solmun n i ja n j järjestetty pari se., l k = <n i,n j > <n j,n i > (Wasserman & Faust, 1994.) Mikäli yhteys tomijaparin välillä vaikuttaa molempiin suuntiin, on digraafissa tällöin rinnakkaiset vastakkaissuuntaiset nuolet solmuparin välillä Digraafilla on käytännössä samat perusominaisuudet kuin graafilla Muistettava on kuitenkin, että digraafissa nuolia voi olla kaksi kertaa enemmän verrattuna vastaavan toimijajoukon graafin kaarien lukumäärään Yhteyden tulkinnassa on ero Yksityiskohtaisemmat määritelmät esim. digraafin tiheydelle on esitetty teoksessa Miilumäki (2010) Thumas Miilumäki Keskeisyys ja arvostus, matriisit ja graafit

14 Kulku, reitti ja polku 14 Kulku (a walk, walks) on graafin G (N, L ) solmujen ja kaarien äärellinen jakso W = n i0, l j0, n i1, l j1,, l jk, n ik Kulku alkaa aina solmusta ja päättyy solmuun Mikäli kulun alkusolmu n i0 ja loppusolmu n ik ovat yksi ja sama solmu n, on kulku suljettu (closed) Kulku voi sisältää saman kaaren ja solmun useammin kuin kerran jaksossa Kulun pituus (length) on kulun sisältämien kaarien lukumäärä Jos jokin kaari on kulussa useampaan kertaan lasketaan ne erillisinä kaarina kulun pituuteen Kulun vastakulku W -1 on itse kulku käänteisessä järjestyksessä Reitti (a trail, trails) on kulku, jossa kukin kaari esiintyy vain kerran Polku (a path, paths) on kulku, jossa kukin solmu ja kaari esiintyy vain kerran

15 Geodeesi, etäisyys, halkaisija ja eksentrisyys 15 Geodeesi (a geodesic, geodesics) on lyhin polku graafin kahden solmun välillä Geodeettinen etäisyys (geodesic distance), yksinkertaisemmin etäisyys (distance), kahden solmun välillä määritellään solmujen geodeesin pituutena Etäisyyttä solmujen n i ja n j välillä merkitään d(i,j) Solmujen n i ja n j välinen etäisyys on minkä tahansa geodeesin pituus ko. solmujen välillä Mikäli solmuparin välillä ei ole polkua, on ko. solmujen välinen etäisyys ääretön (tai määrittämätön) Suuntaamattomilla graafeilla d(i,j) = d(j,i) Graafin halkaisija (diameter) on yhtä suuri kuin graafin minkä tahansa solmuparin suurin geodeettinen etäisyys Solmun n i eksentrisyys (eccentricity) eli epäkeskisyys (myös ns. suhdeluku (association number)) on suurin geodeettinen etäisyys solmun n i ja minkä tahansa graafin muun solmun n j kanssa

16 16 SNA-matriisit Määritelmät Ominaisuudet

17 Sosiomatriisi 17 Verkoston toimijat ja eri toimijaparien väliset suunnatut / suuntaamattomat yhteydet voidaan esittää yhtenä matriisina Jos verkosto koostuu g toimijasta, joiden välillä joko on yhteys tai yhteys puuttuu, voidaan toimijoiden väliset yhteydet kuvata taulukkona, jossa kullekin toimijalle on merkitty oma vaakarivi ja vastaava pystysarake Taulukkoon merkitään binääriluvuilla 0 ja 1 toimijoiden välisen yhteyden olemassa olo se., alkio saa arvon 0, jos yhteyttä ei ole, ja arvon 1, jos toimijoiden välillä on yhteys Koska silmukoita ei sallita verkostossa, taulukon lävistäjän alkiot jätetään määrittelemättä n 1 n 2 n 3 n 4 n n n n

18 Sosiomatriisi 18 Taulukko on g x g vieruspistematriisi (an adjacency matrix) X, joka alkiot x ij määritellään 0, lk = ( ni, n j ) ei ole olemassa xij = 1, lk = ( ni, n j ) on olemassa Tätä vieruspistematriisia nimitetään SNA:ssa sosiomatriisiksi (a sociomatrix, sociomatrices) Edellä esitetystä taulukosta saadaan siis sosiomatriisi X n 1 n 2 n 3 n n n X = n n

19 Sosiomatriisin ominaisuuksia 19 Sosiomatriisi on yleisesti asymmetrinen (asymmetric) suuntaamattomille graafeille, mutta aina symmetrinen (symmetric) suuntaamattomille graafeille Täydellisen K g -graafin sosiomatriisin jokainen diagonaalialkiosta poikkeava alkio on arvoltaan 1 Vastaavasti tyhjää graafia vastaa sosiomatriisi, jossa jokainen (diagonaalialkiosta poikkeava) alkio on arvoltaan 0 Arvotetuille graafeille sosiomatriisin alkiot ovat reaalilukuja, jotka vastaavat toimijoiden välisten yhteyksien arvoja v k

20 Insidenssimatriisi 20 Insidenssimatriisissa (an incidence matrix) on esitetty tieto siitä, mitkä graafin (verkoston) solmut ovat johtuvia (incident) minkin graafin (verkoston) kaaren suhteen Insidenssimatriisissa kutakin solmua vastaa yksi matriisin rivi ja kutakin kaarta yksi sarake Jos siis verkostossa on g solmua ja L kaarta, on insidenssimatriisi I g x L matriisi Insidenssimatriisin alkiot I ij ovat binäärisiä se., jos solmu n i on liittynyt kaareen l j, on I ij = 1, ja mikäli taas solmu n i ei ole liittynyt kaareen l j, on I ij = 0 Insidenssimatriisin jokaisessa sarakkeessa on täsmälleen kaksi ykköstä niillä riveillä, jotka edustavat kyseisen kaaren päätepisteitä

21 Insidenssimatriisi 21 l 1 l 2 l 3 l 4 l 5 n n n n I = Insidenssimatriisia I vastaava graafi

22 Kulku 22 Sosiomatriisin X alkiot x ij kertovat, onko solmujen n i ja n j välillä kulku n i n j Sosiomatriisin X neliön X 2 alkio x ij määritellään x [ 2] ij = k = Tämän summan yksi termi x ik x kj = 1 vain, jos molemmat yhteydet (n i,n k ) ja (n k,n j ) ovat olemassa Summa laskee siis kulkujen, joiden pituus on kaksi, lukumäärän solmusta n i solmuun n j g 1 x ik x kj Sosiomatriisin X neliön X 2 alkiot ilmoittavat verkostossa olevien kulkujen, joiden pituus on kaksi, lukumäärän solmusta n i solmuun n j Edelleen matriisin X p alkiot ilmoittavat solmujen välisien kulkujen, joiden pituus on p, lukumäärän x ij [ 2]

23 Saavutettavuus 23 Saavutettavuudella (reachability) tarkoitetaan sitä, että onko joidenkin verkoston kahden solmun välillä kulku Saavutettavuusmatriisissa (a reachability matrix) [ R] alkio X on yksi, jos solmujen n i ja n j välillä on kulku, nolla muulloin Verkostossa kulku voi olla pituudeltaan korkeintaan g-1 Sosiomatriisin X potenssit X 2, X 3,, X g-1 ilmoittavat solmujen välisten erimittaisten kulkujen lukumäärät [ Σ] Näiden summamatriisi X [ Σ] g 1 i 2 3 g 1 X = X = X + X + X X i= 1 ilmoittaa kaikkien erimittaisten kulkujen lukumäärät solmuparien välillä [ Σ] Tästä summamatriisista X saadaan saavutettavuusmatriisi [ R] [ Σ] X, kun matriisin X nollasta poikkeavat alkiot merkitään ykkösiksi Saavutettavuusmatriisi on määritettävissä myös Warshallin algoritmilla laskentatehokkaammin suurille verkostoille [ R] x ij

24 Geodeesi ja etäisyys 24 Geodeesit eli solmujen lyhimmät etäisyydet esitetään usein etäisyysmatriisin (a distance matrix) avulla Etäisyysmatriisin alkiot d(i,j) ilmoittavat solmujen n i ja n j välisen lyhimmän etäisyyden pituuden Lyhimmät etäisyydet löytyvät tarkastelemalla sosiomatriisia X ja sen potenssimatriiseja X 2, X 3,, X g-1 se., d [ ] ( i, j p ) = min > 0 p x ij Verkoston halkaisija on yhtä suuri kuin suurin verkostosta löytyvä geodeettinen etäisyys, eli ts. halkaisijan arvo on yhtä suuri kuin etäisyysmatriisin alkioiden maksimi (max [d(i,j)])

25 Solmujen asteluvut 25 Suuntaamattomille verkostoille solmujen asteluvut ovat helposti laskettavissa sosiomatriisin X tai insidenssimatriisin I avulla Insidenssimatriisissa rivillä on merkitty 1:llä, jos kaari on liittynyt solmuun ja 0:lla, jos kaari ei ole liittynyt solmuun Nyt siis solmun n i asteluku d(n i ) saadaan insidenssimatriisin rivisummana, eli L d( n i ) = I ij j= 1 Sosiomatriisissa rivillä on merkitty 1:llä, jos saraketta vastaava solmu on liittynyt kaarella riviä vastaavaan solmuun Nyt siis solmun n i asteluku d(n i ) saadaan sosiomatriisin rivisummana tai sarakesummana, koska matriisi on symmetrinen, eli ts. g g d ( ni ) = xij = xij = xi+ = x+ j j= 1 i= 1

26 Solmujen vienti- ja tuontiluvut 26 Suunnatuille verkostoille solmujen vienti- ja tuontiluvut (outdegree, indegree) ovat helposti laskettavissa sosiomatriisin X avulla Sosiomatriisissa rivillä on merkitty 1:llä, jos riviä vastaavasta solmusta lähtee nuoli saraketta vastaavaan solmuun Nyt siis solmun n i vientiluku d O (n i ) saadaan sosiomatriisin rivisummana, eli d O i g ( n ) = x = xi j= 1 ij Sosiomatriisissa sarakkeessa on merkitty 1:llä, jos saraketta vastaavaan solmuun tulee nuoli riviä vastaavasta solmusta + Nyt siis solmun n i tuontiluku d I (n i ) saadaan sosiomatriisin sarakesummana, eli g d I ( ni ) = x ji = x+ i j= 1

27 Tiheys 27 Verkoston tiheys määriteltiin verkostossa olemassa olevien solmujen välisten yhteyksien summan ja verkoston kaikkien mahdollisten solmujen välisten yhteyksien summan välisenä suhteena Verkostossa, jossa on g toimijaa, voi olla enintään g(g-1) toimijaparien välistä suoraa yhteyttä Verkoston sosiomatriisissa on merkitty 1:llä, mikäli toimijaparin välillä vallitsee yhteys ja 0:lla, jos toimiparin väliltä puuttuu yhteys Nyt siis olemassa olevien yhteyksien summa saadaan yksinkertaisesti sosiomatriisin kaikkien alkioiden summana, eli tiheys määritellään g g Σi= 1Σ j= 1x Δ = ij g( g 1) Tämä tiheyden määritelmä pätee myös arvotetuille verkostoille

28 28 SNA-tunnusluvut Keskeisyys Arvostus

29 Yleisesti keskeisyydestä ja arvostuksesta 29 Suuntaamattomille verkostoille ja sen toimijoille voidaan määrittää erilaisia keskeisyyden (centrality) tunnuslukuja Keskeisyys ei riipu verkoston yhteyksien suunnasta, vaan ainoastaan tarkasteltavasta toimijasta ja siihen liittyneistä yhteyksistä ja/tai koko verkostosta yleensä Suunnatuissa verkostoissa keskeisyyden tilalla käytetään käsitettä arvostus (prestige), joka huomioi yhteyksien suunnan Erotetaan toisistaan käsitteet olla arvostettu ja arvostaa Arvostuksen tunnusluvuissa tarkastellaan nimenomaan yhteyksien vastaanottamista eli arvostuksen kohteena olemista

30 Keskeisyys 30 Keskeisyyden käsite määritellään suuntaamattomille verkostoille Keskeisyyttä voidaan kuvata seuraavilla tunnusluvuilla Keskeisyysaste (degree centrality) Läheisyys (closeness centrality) Välillisyys (betweenness centrality) Informaatiokeskeisyys (information centrality) Suuntaamattomissa verkostoissa keskeinen toimija on osallisena monissa yhteyksissä Keskeisyyden kannalta ei ole väliä, onko toimija lähettänyt vai vastaanottanut yhteyden Keskeisyys on verkoston toimijaa n i kuvaava tunnusluku, kun taas koko verkostolle yhteisesti voidaan määrittää keskittyneisyys (centralization), joka on verkostosta toiseen vertailtava tunnusluku Keskittyneisyyden avulla voidaan kuvata, missä määrin yksittäiset toimijat hallitsevat muiden välistä kanssakäymistä yleisesti koko verkoston tasolla

31 Keskeisyysaste 31 Toimijan n i keskeisyysaste C D (n i ) kertoo, kuinka monta suoraa yhteyttä toimijalla on muihin toimijoihin (= asteluku d(n i )) Toimijan aste ei itsessään ole kuitenkaan yleisesti vertailtava tunnusluku Kun asteluku skaalataan verkoston tasolla, voidaan toimijoiden keskeisyysasteita vertailla eri verkostojen välillä Normeerattu keskeisyysaste C D(n i ) määritellään d(n C D(n i ) = i ), missä g on verkoston toimijoiden lukumäärä g 1 Keskeisyysaste määritellään myös suunnatuille verkostoille, jolloin käsitellään erikseen vientikeskeisyyttä (outdegree centrality) ja tuontikeskeisyyttä (indegree centrality)

32 Läheisyys ja välillisyys 32 Läheisyys on toimijan n i lyhyimpien polkujen (geodeesien) summa c i kaikkiin verkoston muihin toimijoihin n j Itsessään summa ei ole vertailtava tunnusluku eri verkostojen välillä Verkostojen kesken vertailukelpoinen normeerattu läheisyys määritellään g 1 C C(n i ) =, missä g on verkoston toimijoiden lukumäärä c i Toimijan välillisyys puolestaan mittaa, kuinka monen toimijaparin välisen lyhyimmän polun varrelle toimija sijoittuu Toimijan välillisyys on merkityksellinen tunnusluku mm. tutkittaessa verkoston toiminnan tehokkuutta

33 Arvostus 33 Kuten keskeisyyttä, niin myös arvostusta voidaan tarkastella eri tavoin Verkoston toimijoille voidaan määrittää seuraavat arvostukset Arvostusaste (actor degree prestige) Arvostusläheisyys (actor proximity prestige) Arvoasema (actor status prestige, actor rank prestige) Koko verkoston tasolla voidaan määrittää verkostoa kuvaavia arvostuksen tunnuslukuja arvioimalla kunkin arvostuksen keskiarvoja ja variansseja Näistä keskiarvostusläheisyys ja arvostusläheisyyden varianssi ovat mielekkäimpiä tarkasteltavia verkostoanalyysin kannalta

34 Arvostusaste 34 Toimijan n i arvostusaste P D (n i ) määritellään yksinkertaisesti toimijaan kohdistuneiden yhteyksien summana Vertaa suuntaamattoman verkoston toimijan n i keskeisyysaste, joka määritellään toimijaa kuvaavan solmun astelukuna d(n i ) Arvostusaste määritellään formaalisti P D (n i ) = d I (n i ) = Σ j x ij = x +i, missä d I (n i ) on solmun n i tuontiluku ja x +i on verkoston sosiomatriisin X sarakesumma sarakkeesta i Jotta arvostusasteet eri verkostojen välillä olisivat verrattavissa keskenään, määritellään normeerattu arvostusaste P D(n i ) x +i P D(n i ) =, missä g on verkoston toimijoiden lukumäärä g 1

35 Arvostusläheisyys 35 Toimijalle n i voidaan määrittää luku I i, joka ilmoittaa, kuinka moni toimija n j voi saavuttaa toimijan n i Tämän toimijan n i vaikutusjoukon toimijoiden lukumäärän I i avulla voidaan määrittää vaikutusjoukon toimijoiden keskimääräinen etäisyys toimijasta n i Toimijan n i arvostusläheisyys P P (n i ) määritellään vaikutusjoukon osuuden koko verkoston toimijajoukosta suhteena vaikutusjoukon toimijoiden keskimääräiseen etäisyyteen toimijasta n i Arvostusläheisyys saa muiden normeerattujen tunnuslukujen tavoin arvoja välillä [0,1] Jos toimijalla n i on suora yhteys jokaiseen verkoston muuhun toimijaan, saa arvostusläheisyys arvon yksi Jos toimija n i on isolaatti (an isolate, isolates), vaikutusjoukon toimijoiden lukumäärä I i nolla, ja arvostusläheisyys määritellään nollaksi

36 Arvoasema 36 Edellä esitellyt arvostuksen tunnusluvut huomioivat vain toimijoita ja niihin kohdistuvia yhteyksiä Toimijan n i arvoasema P R (n i ) on riippuvainen häneen päin yhteydessä olevien toimijoiden n j arvoasemista P R (n j ) Edelleen taas toimijoiden n j arvoasemat ovat riippuvaisia näihin päin yhteydessä olevien toimijoiden n k arvoasemista jne. Arvoaseman määrittelyn taustalla on ajatus siitä, että toimijan n i arvoasema on häneen päin suoraan yhteydessä olevien toimijoiden arvoasemien funktio Verkostossa, jossa on g toimijaa, toimijan n i arvoasema voidaan esittää sosiomatriisin X toimijaa kuvaavan sarakkeen alkioiden ja niitä vastaavien toimijoiden arvoasemien lineaarikombinaationa, ts. P R (n i ) = x 1i P R (n 1 ) + x 2i P R (n 2 ) + + x gi P R (n g ) Arvoaseman määrittäminen vaatii syvällisempää ymmärrystä mm. matriisin ominaisarvoprobleeman ratkaisusta Myöhemmissä esityksissä perehdytään algoritmeihin, joilla verkoston toimijoiden arvoasemat voidaan määrittää erilaisissa verkostoissa

37 Esimerkki Valtioiden kauppaverkosto 37 Seuraavassa on esitetty 24 valtion kauppaverkosto (Wasserman & Faust 1994)

38 Esimerkki Valtioiden kauppaverkosto 38 Verkostosta määritetyt arvostuksen tunnusluvut (g = 24) i VALTIO d I (n i ) d O (n i ) P ' (n i ) P ' (n i ) P ' (n i ) D P R Algeria Argentina Brazil China Czechoslovakia Ecuador Egypt Ethiopia Finland Honduras Indonesia Israel Japan Liberia Madagascar New Zealand Pakistan Spain Switzerland Syria Thailand United Kingdom United States Yugoslavia ,565 0,435 0,478 0,652 0,565 0,391 0,522 0,435 0,652 0,391 0,609 0,435 0,739 0,391 0,261 0,609 0,609 0,739 0,652 0,522 0,652 0,696 0,826 0,652 0,661 0,599 0,619 0,710 0,661 0,581 0,639 0,599 0,710 0,581 0,685 0,599 0,767 0,601 0,533 0,685 0,685 0,767 0,710 0,658 0,710 0,738 0,834 0,710 0,222 0,805 1,000 0,711 0,818 0,183 0,482 0,131 0,758 0,072 0,617 0,682 0,680 0,000 0,106 0,461 0,525 0,673 0,765 0,000 0,589 0,633 0,644 0,680 MEAN VARIANCE 12,917 9,993 13,292 67,955 0,562 0,018 0,668 0,005 0,510 0,085

39 Huomioitavaa 39 On selvää, että keskeisyyden ja arvostuksen tunnusluvut tuovat verkostosta esiin seikkoja, joita ei tulisi huomanneeksi pelkästään verkoston graafia, matriisia tai muunlaista mallia tarkastelemalla Keskeisyyden ja arvostuksen tunnusluvut tarjoavat monipuolista tietoa verkoston toiminnasta ja antavat viitteitä siitä, kuinka verkostoa tulisi kehittää, oli sitten kyse tehokkuuden lisäämisestä tai esim. rakenteen parantamisesta Tunnuslukuja ei saa kuitenkaan pitää ainoina mittareina verkoston toiminnasta Graafit visualisointeina tarjoavat paljon hyödyllistä tietoa verkoston rakenteesta ja toiminnasta (aikasarjat, DNA Dynamic Network Analysis) Toimijoiden keskeisyydet ja arvostukset ovat vain osa suurempaa kuvaa Muutosten jälkeen tulee tarkastella verkostoa uudelleen, tulkita tunnusluvut uudelleen ja tarkastella oliko muutos hyvä vai huono

40 Lähteet 40 Johansson, J-E., Mattila, M. & Uusikylä, P. (1995). Johdatus verkostoanalyysiin. Helsinki: Kuluttajatutkimuskeskus. (Viitattu ) Knoke, D. & Yang, S Social Network Analysis. Second Edition. Los Angeles: Sage Publications. Miilumäki, T. (2008). Graphs in Social Network Analysis And Modeling. Graafit sosiaalisten verkostojen mallintamisessa. Tampere: Tampereen teknillinen yliopisto, luentoesitys. _Graafit_sosiaalisten_verkostojen_mallintamisessa.pdf (Viitattu ) Miilumäki, T. (2009a). Matrices in Social Network Analysis And Modeling. Matriisit sosiaalisten verkostojen mallintamisessa. Tampere: Tampereen teknillinen yliopisto, luentoesitys. _Matriisit_sosiaalisten_verkostojen_mallintamisessa.pdf (Viitattu ) Miilumäki, T. (2009b). Social Network Analysis Centrality And Prestige. Sosiaalisten verkostojen analyysi Keskeisyys ja arvostus. Tampere: Tampereen teknillinen yliopisto, luentoesitys. (Viitattu ) Miilumäki, T. (2010). Web-pohjaisten sosiaalisten verkostojen analyysimenetelmät. Diplomityö. Tampere: Tampereen teknillinen yliopisto. Moreno, J.L. (1953). Who Shall Survive? Beacon, New York: Beacon House Inc. Ruohonen, K. (2006). Graafiteoria. Tampere: Tampereen teknillisen yliopiston opetusmoniste no. 5, uusi sarja. Scott, J. (2000). Social Network Analysis. A Handbook. Second Edition. London: Sage Publications. Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. New York: Cambridge University Press.

41 Verkostoanalyysi 2011, TTY 41 Kiitos mielenkiinnostanne. Kysymyksiä?

Social Network Analysis Centrality And Prestige

Social Network Analysis Centrality And Prestige Hypermedian jatko-opintoseminaari 2008 2009 1 Social Network Analysis Centrality And Prestige Sosiaalisten verkostojen analyysi Keskeisyys ja arvostus 6.2.2009 Thumas Miilumäki thumas.miilumaki@tut.fi

Lisätiedot

Graphs in Social Network Analysis And Modeling. Graafit sosiaalisten verkostojen mallintamisessa

Graphs in Social Network Analysis And Modeling. Graafit sosiaalisten verkostojen mallintamisessa Hypermedian jatko-opintoseminaari 2008 2009 1 Graphs in Social Network Analysis And Modeling Graafit sosiaalisten verkostojen mallintamisessa 28.11.2008 Thumas Miilumäki thumas.miilumaki@tut.fi Sisältö

Lisätiedot

Hypermedian jatko-opintoseminaari

Hypermedian jatko-opintoseminaari Matematiika laitos & Hypermedialaboratorio Thumas Miilumäki SNA Matriisit verkostoje mallitamisessa 9..29 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 Hypermedia jatko-opitosemiaari 28 29 Matrices i Social Network

Lisätiedot

Centrality and Prestige Keskeisyys ja arvostus

Centrality and Prestige Keskeisyys ja arvostus 1 Hypermedian jatko-opintoseminaari 2008-2009 Centrality and Prestige Keskeisyys ja arvostus 21.1.2009 Jari Jussila jari.j.jussila@tut.fi 2 Tärkeys Yksi graafiteorian pääkäyttökohteista sosiaalisten verkostojen

Lisätiedot

Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla

Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla Hypermedian jatko-opintoseminaari 2008-2009 12.12.2008 Jaakko Salonen jaakko.salonen@tut.fi TTY / Hypermedialaboratorio

Lisätiedot

Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä

Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä Hypermedian jatko-opintoseminaari 2008-2009 20.3.2009 Jaakko Salonen TTY / Hypermedialaboratorio jaakko.salonen@tut.fi

Lisätiedot

Sosiaalisten verkostojen datan notaatio. Notation for Social Network Data

Sosiaalisten verkostojen datan notaatio. Notation for Social Network Data Sosiaalisten verkostojen datan notaatio Notation for Social Network Data Jari Jussila 14.11.2008 2 Notaatio Notaatiota tarvitaan / auttaa kuvaamaan: toimijat tai toimijoiden muodostamat joukot, toimijoiden

Lisätiedot

Koheesiiviset alaryhmät

Koheesiiviset alaryhmät 1 Koheesiiviset alaryhmät Hypermedian jatko-opintoseminaari 2008-09 11. luento - 6.3.2009 Joonas Meriläinen TTY / Hypermedialaboratorio http://eclectic.ss.uci.edu/~drwhite/cases/transparencies/clique.gif

Lisätiedot

0 v i v j / E, M ij = 1 v i v j E.

0 v i v j / E, M ij = 1 v i v j E. Vieruspistematriisi Graafi esitetään tietokoneessa useimmiten matriisin avulla. Graafin G = (V, E), V = {v 1, v 2,..., v n } vieruspistematriisi (adjacency matrix)on n n matriisi M = (M ij ), missä n on

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Rakenteellinen tasapaino ja transitiivisyys

Rakenteellinen tasapaino ja transitiivisyys 1 Hypermedian jatko-opintoseminaari 2008-2009 Rakenteellinen tasapaino ja transitiivisyys 20.2.2009 Seppo Pohjolainen 2 Rakenteellinen tasapaino Käsitteitä: Arvotettu graafi (signed graph) (+ tai - ) Suuntaamaton

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT VERKOT ELI GRAAFIT Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) HISTORIAA Verkko- eli graafiteorian historia on saanut

Lisätiedot

Jäsenyysverkostot ominaisuudet, toimijoiden ja tapahtumien samanaikainen analyysi. Sisältö ja tavoitteet. Osallistujien ja tapahtumien ominaisuudet

Jäsenyysverkostot ominaisuudet, toimijoiden ja tapahtumien samanaikainen analyysi. Sisältö ja tavoitteet. Osallistujien ja tapahtumien ominaisuudet Jäsenyysverkostot, toimijoiden ja tapahtumien samanaikainen anal Hypermedian jatko-opintoseminaari 2008-2009 3.4.2009 Antti Syvänen TaY / antti.syvanen@uta.fi 1 Sisältö ja tavoitteet Esitellään jäsenyysverkostojen,

Lisätiedot

Jarno Marttila Datalähtöinen sosiaalisten verkostojen analyysi: tapaus Suomen Lasten Parlamentti. Diplomityö

Jarno Marttila Datalähtöinen sosiaalisten verkostojen analyysi: tapaus Suomen Lasten Parlamentti. Diplomityö Jarno Marttila Datalähtöinen sosiaalisten verkostojen analyysi: tapaus Suomen Lasten Parlamentti Diplomityö Tarkastajat: Prof. Seppo Pohjolainen (TTY) ja tutkija Jukka Huhtamäki (TTY) Tarkastajat ja aihe

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea. Arvostus Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 8..0 in idea on määrittää verkoston solmuille arvostusta kuvaavat tunnusluvut. Voidaan ajatella

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 166 Luku 4 Erilaisia graafeja 4.1 Eulerin graafi 4.2 Hamiltonin graafi 4.3 Tasograafi 4.4 Graafin värittäminen

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea. Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

Hypermedian jatko-opintoseminaari. MATHM-6750x. 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät

Hypermedian jatko-opintoseminaari. MATHM-6750x. 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät 1 Hypermedian jatko-opintoseminaari MATHM-6750x 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät 26.10.2008 Modernissa yhteiskunnassa ovat sekä yhteisöjen että laitteistojen muodostamat verkostot muodostuneet

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 4 3.4.017 Tehtävä 1 Tarkastellaan harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Johdatus verkkoteoriaan luento Netspace

Johdatus verkkoteoriaan luento Netspace Johdatus verkkoteoriaan luento 20.3.18 Netspace Kurssin sijainti muussa suunnitellussa kokonaisuudessa Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot, verkon

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5 Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Graafiteoria matematiikkaako?

Graafiteoria matematiikkaako? Koostanut: Elina Viro, Juho Lauri Opettajalle Graafiteoria matematiikkaako? Kohderyhmä: 7.-9.-luokkalaiset Esitiedot: - Taustalla oleva matematiikka: Graafiteoria, looginen ajattelu Ajankäyttö: Varsinainen

Lisätiedot

Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista

Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista 8. Verkkomallit Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista (P. D. Seymour, Journal of Combinatorial Theory (B),

Lisätiedot

4. Kokonaislukutehtävän ja LP:n yhteyksiä

4. Kokonaislukutehtävän ja LP:n yhteyksiä 8 4. Kokonaislukutehtävän ja LP:n yhteyksiä Minkowskin esityslauseen avulla voidaan osoittaa, että jos P on rationaalinen monitahokas ja S sen sisällä olevien kokonaislukupisteiden joukko, niin co(s) on

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Sosiaalisten verkostojen tutkimusmenetelmät - historiallisia ja teoreettisia perusteita sekä peruskäsitteitä

Sosiaalisten verkostojen tutkimusmenetelmät - historiallisia ja teoreettisia perusteita sekä peruskäsitteitä Sosiaalisten verkostojen tutkimusmenetelmät - historiallisia ja teoreettisia perusteita sekä peruskäsitteitä Stanley Wasserman and Katherine Faust: Social Network Analysis, Methods and Applications Sosiaalisten

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 2 521475S Tietokonealgoritmien rinnakkaisuuden analysointi Algoritmi on proseduuri, joka koostuu äärellisestä joukosta yksiselitteisiä sääntöjä jotka muodostavat operaatiosekvenssin,

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on

Lisätiedot

TIE Tietorakenteet ja algoritmit 261

TIE Tietorakenteet ja algoritmit 261 TIE-20100 Tietorakenteet ja algoritmit 261 12 Graafit Seuraavaksi tutustutaan tietorakenteeseen, jonka muodostavat pisteet ja niiden välille muodostetut yhteydet graafiin. Keskitymme myös tyypillisimpiin

Lisätiedot

Keskeiset ladonta-algoritmit verkostoanalyysityössä

Keskeiset ladonta-algoritmit verkostoanalyysityössä Keskeiset ladonta-algoritmit verkostoanalyysityössä Verkostoanalyysi 2011 TTY Jarno Marttila Tampereen teknillinen yliopisto Hypermedialaboratorio TUT / HLAB 1 Sisällys Graafien piirtämisestä Ladonnasta

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

Verkostoanalyysi 2011 Jatko-opintoseminaari Case: Verkostot ja muutos Statsterverkkopalvelussa

Verkostoanalyysi 2011 Jatko-opintoseminaari Case: Verkostot ja muutos Statsterverkkopalvelussa Verkostoanalyysi 2011 Jatko-opintoseminaari 1.4.2011 Case: Verkostot ja muutos Statsterverkkopalvelussa Tutkija Teemo Anton Tebest teemo.tebest@tut.fi Tampereen teknillinen yliopisto Teemo Tebest Tietotekniikan

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Johdatus verkkoteoriaan luento Netspace

Johdatus verkkoteoriaan luento Netspace Johdatus verkkoteoriaan luento 10.4.18 Netspace Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot, verkon duaali, verkon upottaminen, verkon genus, verkon komplementti,

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

9. Graafit. 9.1. Graafin abstrakti tietotyyppi

9. Graafit. 9.1. Graafin abstrakti tietotyyppi 9. Graafit Graafeilla eli verkoilla esitetään yhteystietoja. Esimerkkejä niistä ovat kaupunkikartan kadut ja tietoverkon tietokoneet. Tämä luku tarkastelee verkkojen perusasioita. 9.1. Graafin abstrakti

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl.

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl. iskreetti matematiikka, syksy 00 arjoitus, ratkaisuista. seta 8 nollaa ja 8 ykköstä renkaaksi niin, että jokainen yhdistelmä 0000, 000,..., esiintyy täsmälleen kerran. Vihje: Tulkitse de ruijnin jonon

Lisätiedot

Latinalaiset neliöt ja taikaneliöt

Latinalaiset neliöt ja taikaneliöt Latinalaiset neliöt ja taikaneliöt LuK-tutkielma Aku-Petteri Niemi Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Latinalaiset neliöt 3 1.1 Latinalainen neliö.........................

Lisätiedot

Silmukkaoptimoinnista

Silmukkaoptimoinnista sta TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e

Lisätiedot

8.5. Järjestyssuhteet 1 / 19

8.5. Järjestyssuhteet 1 / 19 8.5. Järjestyssuhteet 1 / 19 Määritelmä Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä).

Lisätiedot

VERKKOTEORIAN ALKEITA. Martti E. Pesonen 28.2.2013

VERKKOTEORIAN ALKEITA. Martti E. Pesonen 28.2.2013 VERKKOTEORIAN ALKEITA Martti E. Pesonen 28.2.2013 1 Sisältö 1 VERKOISTA 1 1.1 Mitä matemaattiset verkot ovat?................ 1 1.1.1 Verkkoteorian synty.................... 1 1.2 Suuntaamaton verkko.......................

Lisätiedot

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla?

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla? 7.7. Tasograafit Graafi voidaan piirtää mielivaltaisen monella tavalla. Graafin ominaisuudet voivat näkyä selkeästi jossain piirtämistavoissa, mutta ei toisessa. Eräs tärkeä graafiryhmä, pintagraafit,

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi...

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

Pertti Koivisto ja Riitta Niemistö. Graafiteoriaa

Pertti Koivisto ja Riitta Niemistö. Graafiteoriaa Pertti Koivisto ja Riitta Niemistö Graafiteoriaa TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 60/2018 TAMPERE 2018 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 60/2018 TAMMIKUU

Lisätiedot

Sosiaalisten verkostojen data

Sosiaalisten verkostojen data Sosiaalisten verkostojen data Hypermedian jatko-opintoseminaari 2008-09 2. luento - 17.10.2008 Antti Kortemaa, TTY/Hlab Wasserman, S. & Faust, K.: Social Network Analysis. Methods and Applications. 1 Mitä

Lisätiedot

Verkoston muutoksen mallinnus ja visualisointi

Verkoston muutoksen mallinnus ja visualisointi Verkoston muutoksen mallinnus ja visualisointi Verkostoanalyysi 2011 -seminaari Tampere teknillinen yliopisto Jaakko Salonen Tampereen teknillinen yliopisto Hypermedialaboratorio 1 Tässä esityksessä Dynaamiset

Lisätiedot

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi Solmu 2/2012 1 Yhtenäisyydestä Tuomas Korppi Johdanto Tarkastellaan kuvassa 1 näkyviä verkkoa 1 ja R 2 :n (eli tason) osajoukkoa. Kuvan 2 verkko voidaan jakaa kolmeen osaan niin, että osien välillä ei

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 4 521475S Rinnakkaiset ei-numeeriset algoritmit: transitiivisulkeuma (transitive closure) Oletetaan suunnattu graafi G = (V,E) ja halutaan tietää onko olemassa kahta pistettä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 27. tammikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det

Lisätiedot

Suomen rautatieverkoston robustisuus

Suomen rautatieverkoston robustisuus Suomen rautatieverkoston robustisuus Samu Kilpinen 28.09.2016 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Rautatieverkosto Rautatie on erinomainen tapa kuljettaa suuria ihmis- ja hyödykemääriä Käyttöä etenkin

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Voidaanko verkkoteoriaa opettaa lukiolaisille?

Voidaanko verkkoteoriaa opettaa lukiolaisille? Voidaanko verkkoteoriaa opettaa lukiolaisille? Tuotetun oppimateriaalin analysointia aiheesta painotetut verkot Pro gradu -tutkielma Mika Koponen Itä-Suomen yliopisto Fysiikan ja matematiikan laitos 1.

Lisätiedot