Jäsenyysverkostot ominaisuudet, toimijoiden ja tapahtumien samanaikainen analyysi. Sisältö ja tavoitteet. Osallistujien ja tapahtumien ominaisuudet

Koko: px
Aloita esitys sivulta:

Download "Jäsenyysverkostot ominaisuudet, toimijoiden ja tapahtumien samanaikainen analyysi. Sisältö ja tavoitteet. Osallistujien ja tapahtumien ominaisuudet"

Transkriptio

1 Jäsenyysverkostot, toimijoiden ja tapahtumien samanaikainen anal Hypermedian jatko-opintoseminaari Antti Syvänen TaY / 1 Sisältö ja tavoitteet Esitellään jäsenyysverkostojen, jotka voidaan laskea kytkösmatriisista tai 1-moodisista sosiomatriiseista Esitellään toimijoiden ja tapahtumien samanaikaisen analn menetelmät Galois n hiladiagrammi (Galois Lattice) Korrespondenssi-analmenetelmä Yhteenveto Perustuu teoksen Wasserman & Faust, 1994 lukujen ohella edelliseen esitykseen luvuista (Salonen 2009) Tutustu myös esityksiin Meriläinen (2009) (koheesiviset aliryhmät) ja Miilumäki (2009) (saavutettavuus, tiheys) 2 (Wasserman & Faust, 1994) Osallistujien ja tapahtumien Osallistumismäärät: kytkösmatriisien vaakarivien summat, sosiomatriisin diagonaalialkiot, 2-osaisessa graafissa toimijanoodien asteluvut» Osallistumismääristä laskettuja keskiarvoja voidaan käyttää esim. yhteisöjen vapaaehtoistyöorganisaatioihin osallistumishalukkuuden vertailuun Tapahtumien koot: kytkösmatriisien pystyrivien summat, sosiomatriisin diagonaalialkiot, 2-osaisessa graafissa tapahtumanoodien asteluvut» Tapahtumien koista laskettuja keskiarvoja voidaan käyttää esim. yhteisöjen vapaaehtoisorganisaatioiden kokojen vertailuun Jos aineistosta puuttuu dataa, on kyseessä otos ja keskiarvoilla ei em. kaltaisia vertailuja voida suoraan tehdä ennen niiden yleistettävyyden estimointia 3 1

2 Tutkitaan erikseen toimijoiden ja tapahtumien ominaisuuksia Tiheys:toimija- tai tapahtumaparien sidosten määrä Toimijoiden osallistumismäärät vaikuttaa tapahtumien välisten sidosten määrään Tapahtumien koot vaikuttavat toimijoiden välisten sidosten määrään Saavutettavuus (reachability): onko joidenkin verkoston kahden toimijan tai tapahtuman välillä yhteyttä Läpimitta (diameter): jäsenyysverkoston pisin polku, jolla toimija- tai tapahtumapari ovat yhteydessä (lyhyin = geodeesi) 4 Toimija- tai tapahtumapareja yhdistävien polkujen voimakkuus Jaettujen osallisuuksien määrä tapahtumissa (toimijat) Jaettujen toimijoiden määrä (tapahtumat) Voimakkuuksia voidaan tutkia koheesivisia aliryhmiä: esim. klikkejä (cliques), joissa 3 tai useampi toimija- tai tapahtumanoodi keskenään täysin verkottuneita Jäsenyysverkoston ollessa kyseessä etsitään toimijoiden ja tapahtumien klikkejä pareittain (joissa vähintään 3 toimijaa/tapahtumaa), jotka ovat yhteydessä c kpl tapahtuman kautta tai jakavat c kpl toimijaa 5 Toimitusjohtajat jalkapalloseuroissa: klikit toimijoiden yhteisosallistumisen suhteen Jalkapalloseurojen toimitusjohtajat: klikit tapahtumien päällekäisyyden suhteen Toimitusjohtajien ja jalkapalloseurojen klikkianal 6 2

3 Aliryhmän koon huomiointi: Toimijaparin yhteisosallisuus tapahtumissa (limittyneisyys, overlap) voi olla suuri riippumatta ovatko toimijat kiinnostuneita toisistaan Tapahtumaparin päällekkäisyys (limittyneisyys) voi olla olla suuri, koska kummassakin on paljon osanottajia riippumatta että se viehättäisi samanlaisia toimijoita Tarvitaan ryhmäkoosta loogisesti vapaa mitta odds-ratios 7 Toimijoiden lukumäärä: 1) molemmissa tapahtumissa, 2) jotka eivät kuulu kumpaankaan tapahtumaan ja 3) 4) jotka kuuluvat vain toiseen tapahtumista Jos arvo on suurempi kuin 1, toimijat ovat enemmän mukana toisessakin tapahtumassa; enemmän päällekäisyyttä 1) 2) 1) 4) 3) 4) 1) 2) 4) 3) 3) 2) Odds-ratios laskukaavat 8 Toimijoiden ja tapahtumien samanaikaisen analn menetelmät Galois n hiladiagrammi Korrespondenssi-anal 9 3

4 Galois n hiladiagrammi Galois n hiladiagrammi pyrkii huomioimaan jäsenyysverkostojen : osajoukot (subsets) ja kaksijakoisuuden (duality), mahdollistaen näiden samanaikaisen tarkastelun Osajoukoilla tarkoitetaan toimijoiden tapahtumiin muodostamia osanottajaryhmiä Kaksijakoisuus viittaa täydentävään perspektiiviin toimijoista tapahtumiin osallistujina, tapahtumista toimijoiden kokoontumispaikkoina Mutta ensin: mikä on tavallinen hiladiagrammi Esimerkki: kuuden lapsen ja kolmen syntymäpäivätapahtuman muodostama kytkösverkostomatriisi 10 Hiladiagrammi Hilaa voidaan käyttää havainnollistamaan kokoelmaa osajoukkoja, nolla joukko (null set, ) ja yhteyttä Oheisessa hiladiagrammissa pisteet edustavat lasten osajoukkoja: juhliin osallistumisen mukaiset osajoukot, osajoukko jossa kaikki ryhmät ja -joukko Syntymäpäiväjuhlien väliset yhteydet, lasten osajoukot (Wasserman & Faust, 1994) 11 Hiladiagrammi Tavallisessa hiladiagrammissa pisteellä on yksi nimike (yksittäinen osajoukko), joten tarvitaan kaksi hiladiagrammia toimijoiden ja tapahtumien havainnollistamiseen Tarvitaan Galois`n hiladiagrammi Lasten väliset yhteydet syntymäpäiväjuhlien osajoukot 12 4

5 Galois n hiladiagrammi Kukin piste edustaa kahden erillisen entiteetin (toimija, tapahtuma) muodostamaa paria Ylin piste: joukko jossa kaikki lapset, ei juhlia (kaikki lapset eivät käyneet kaikissa juhlissa) Alin piste: Ross sekä joukko, jossa kaikki juhlat (Ross kävi ainoana kaikissa juhlissa) Diagrammin alaosan lapset ryhmän keskellä, yläosassa syrjässä olevia (outliers) Lue alhaalta ylös Lasten ja syntymäpäiväjuhlien Galois n hiladiagrammi (Wasserman & Faust, 1994) 13 Galois n hiladiagrammi Hyödyt: keskittyy osajoukkoihin, joihin keskittyminen soveliasta erityisesti jäsenyysverkostojen havainnollistamiseen täydentävä yhteys toimijoiden ja tapahtumien välillä, jotka näkyvät diagrammissa toimijoiden ja tapahtumien välisten yhteyksien rakenteet saattavat näkyä selvemmin Haitat: kuvallisesta esityksestä voi tulla monimutkainen vaakaulottuvuus on sattumanvarainen (eritt. Ross & Eliot) Näistä syistä johtuen Galois n hiladiagrammi on ensisijaisesti tapa havainnollistaa jäsenyysverkostoja 14 Korrespondenssianal Korrespondenssianal on on laajasti käytetty metodi kahden tai useamman muuttujaryhmän korrelaatioiden tutkimiseen Useita eri muunnelmia korrespondenssianalsta, sopivin jäsenyysverkostojen analin on kuitenkin method of reciprocal averaging Toimijan saama pisteytys on suhteellinen tapahtumien painotetuille pisteille, joihin toimija osallistuu (ja toisinpäin) pistemäärillä voidaan siis kuvata toimijat ja tapahtumat yhtä aikaa tilassa siten, että ne asettuvat toistensa läheisyyteen sitä paremmin mitä paremmin ne ovat yhteydessä toisiinsa 15 5

6 Korrespondenssianal Yksittäiselle toimijalle annettu pistemäärä on tapahtumalle annettu painotettu keskiarvo pistemääristä, jotka on annettu tapahtumalle. Painotuksina ovat jäsenyysmatriisin solufrekvenssit, jaettuna kyseisen rivin summalla Näitä pistemääriä hyödyntäen voidaan paikantaa yksittäinen toimija tilassa, jota tapahtumat määrittävät Ja toisinpäin yksittäiselle tapahtumalle annettava pistemäärä lasketaan: 16 Korrespondenssianal Toimitusjohtajien (n) ja jalkapalloseurojen (m) korrespondenssianaln mukaiset koordinaatit 17 Korrespondenssianal Arvotettujen yhteyksien toimijoiden yhteisjäsenyydestä ja tapahtumien limittymisestä Toimitusjohtaja 14 kuuluu useampaan joukkueeseen kuin kukaan muu, toimitusjohtajat 17 ja 20 seuraavaksi eniten Joukkueessa 3 on eniten toimitusjohtajia, 2 ja 15 seuraavaksi eniten Analllä voi tunnistaa ydinryhmän aktiivisia toimijoita ja suuria tapahtumia Nojautuu Simmelin havaintoon: yksilön sosiaalinen identiteetti on määrittynyt niissä kollektiiveissa mihin yksilö kuuluu: Ja asia voitaneen muotoilla myös toisinpäin: kollektiivit määrittyvät niihin kuuluvien yksilöiden kautta: Jäsenyysverkostojen dualistisuus toteutuu näin ollen laskukaavoissa Oletetaan ihmisellä olevan yksi kiinteä identiteetti, mutta sosiaalipsykologian mukaan ihmisellä kokoelma identiteettejä kollektiivien mukaan (työ, harrastus, perhe jne.) 18 6

7 Yhteenveto Kukin tapahtuma koostuu toimijoiden osajoukoista ja kukin toimija on liittynyt tapahtumien osajoukkoihin, joten jäsenyysverkostodataa ei voida tutkia vain toimija- ja/tai tapahtumaparien kautta Jäsenyysverkostot määrittyvät osajoukkojen mukaan (ei parien), voi helposti tapahtua väärin tulkintaa kun tutkitaan vain 1- moodisia verkostoja (pidä kytkösverkostomatriisit & graafit käsillä) Mikäli datasta puuttuu toimijoita tai tapahtumia, tulee huolehtia otantatavoista ja luotettavuusarviointeista 19 Lähteet Salonen, J Jäsenyysverkostot. Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analssä. Hypermedian jatko-opintoseminaari , Wasserman, S. & Faust, K Social Network Analysis: Methods and Applications. New York: Cambridge University Press 20 Kiitos tarkkaavaisuudesta Hyvää viikonloppua! 21 7

Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä

Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä Jäsenyysverkostot Kytkökset ja limittyneet aliryhmät sosiaalisten verkostojen analyysissä Hypermedian jatko-opintoseminaari 2008-2009 20.3.2009 Jaakko Salonen TTY / Hypermedialaboratorio jaakko.salonen@tut.fi

Lisätiedot

Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla

Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla Suunnatut, etumerkilliset ja arvotetut graafit Sosiaalisten verkostojen analysoinnin näkökulmalla Hypermedian jatko-opintoseminaari 2008-2009 12.12.2008 Jaakko Salonen jaakko.salonen@tut.fi TTY / Hypermedialaboratorio

Lisätiedot

Koheesiiviset alaryhmät

Koheesiiviset alaryhmät 1 Koheesiiviset alaryhmät Hypermedian jatko-opintoseminaari 2008-09 11. luento - 6.3.2009 Joonas Meriläinen TTY / Hypermedialaboratorio http://eclectic.ss.uci.edu/~drwhite/cases/transparencies/clique.gif

Lisätiedot

Sosiaalisten verkostojen data

Sosiaalisten verkostojen data Sosiaalisten verkostojen data Hypermedian jatko-opintoseminaari 2008-09 2. luento - 17.10.2008 Antti Kortemaa, TTY/Hlab Wasserman, S. & Faust, K.: Social Network Analysis. Methods and Applications. 1 Mitä

Lisätiedot

Social Network Analysis Centrality And Prestige

Social Network Analysis Centrality And Prestige Hypermedian jatko-opintoseminaari 2008 2009 1 Social Network Analysis Centrality And Prestige Sosiaalisten verkostojen analyysi Keskeisyys ja arvostus 6.2.2009 Thumas Miilumäki thumas.miilumaki@tut.fi

Lisätiedot

Hypermedian jatko-opintoseminaari. MATHM-6750x. 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät

Hypermedian jatko-opintoseminaari. MATHM-6750x. 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät 1 Hypermedian jatko-opintoseminaari MATHM-6750x 2-6 op. Sosiaalisten verkostojen tutkimusmenetelmät 26.10.2008 Modernissa yhteiskunnassa ovat sekä yhteisöjen että laitteistojen muodostamat verkostot muodostuneet

Lisätiedot

BOOTSTRAPPING? Jukka Nyblom Jyväskylän yliopisto. Metodifestivaali

BOOTSTRAPPING? Jukka Nyblom Jyväskylän yliopisto. Metodifestivaali BOOTSTRAPPING? Jukka Nyblom Jyväskylän yliopisto Metodifestivaali 28.5.2009 1 1 Mitä ihmettä on bootstrap? Webster: 1. a loop of leather or cloth sewn at the top rear, or sometimes on each side of a boot

Lisätiedot

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2 Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi

Lisätiedot

Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT

Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT sivu 1 / 10 3 pistettä 1. Kuinka monta pilkkua kuvan leppäkertuilla on yhteensä? (A) 17 (B) 18 (C) 19 (D) 20 (E) 21 Ratkaisu: Pilkkuja on 1 + 1 + 1 + 2 + 2 + 1 + 3 + 2 + 3 + 3 = 19. 2. Miltä kuvan pyöreä

Lisätiedot

Rakenteellinen tasapaino ja transitiivisyys

Rakenteellinen tasapaino ja transitiivisyys 1 Hypermedian jatko-opintoseminaari 2008-2009 Rakenteellinen tasapaino ja transitiivisyys 20.2.2009 Seppo Pohjolainen 2 Rakenteellinen tasapaino Käsitteitä: Arvotettu graafi (signed graph) (+ tai - ) Suuntaamaton

Lisätiedot

Talous- ja velkaneuvonta: Asiakasrekisteri. Tarjousten vertailu. Tiivistelmä

Talous- ja velkaneuvonta: Asiakasrekisteri. Tarjousten vertailu. Tiivistelmä Talous- ja velkaneuvonta: Asiakasrekisteri Tiivistelmä Versio 1.0 23.03.2012 HELSINGIN KAUPUNKI Asiakasrekisteri 2 / 5 SISÄLLYSLUETTELO 1 Tarjouskilpailun pisteytys... 3 1.1 Yhteenveto ja lopputulos...

Lisätiedot

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat).

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat). Laske kymmeneen Tavoite: Oppilaat osaavat laskea yhdestä kymmeneen ja kymmenestä yhteen. Osallistujamäärä: Vähintään 10 oppilasta kartioita, joissa on numerot yhdestä kymmeneen. (Käytä 0-numeroidun kartion

Lisätiedot

Laadullisen tutkimuksen luonne ja tehtävät. Pertti Alasuutari professori, Laitoksen johtaja Yhteiskuntatieteiden tutkimuslaitos

Laadullisen tutkimuksen luonne ja tehtävät. Pertti Alasuutari professori, Laitoksen johtaja Yhteiskuntatieteiden tutkimuslaitos Laadullisen tutkimuksen luonne ja tehtävät Pertti Alasuutari professori, Laitoksen johtaja Yhteiskuntatieteiden tutkimuslaitos Mitä on tieteellinen tutkimus? Rationaalisuuteen pyrkivää havainnointia ja

Lisätiedot

Omien laskukaavojen käyttö

Omien laskukaavojen käyttö Omien laskukaavojen käyttö Asiantuntija Laura Heinonen 12.11.2014 Hintapisteiden määrittäminen Tavallisesti hintavertailu lasketaan hankinnan kohteiden yksikköhinnoilla Vertailuhinnat suhteutetaan toisiinsa

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa

Lisätiedot

Allu-tapahtumanhallintajärjestelmä

Allu-tapahtumanhallintajärjestelmä -tapahtumanhallintajärjestelmä Tarjousten pisteytyskriteerit Pisteet lasketaan tiedonkeruutaulukkoon (LIITE 16) ilmoitettujen tietojen perusteella. Pisteytys painotetaan seuraavasti: 25 %: Rakentamisen

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä

Lineaarialgebra MATH.1040 / Piirianalyysiä Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

Kuinka turvaat työllisyytesi?

Kuinka turvaat työllisyytesi? Kuinka turvaat työllisyytesi? Ida Mielityinen Akava Työurat ja osaaminen koetuksella 20.9.2016 Esimerkkejä tulevaisuuden ammateista ihmisten keinotekoisten kehonosien valmistajat nano-teknikot, geneettisten

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

Ohjaustyön dilemmoista käsitteen ja käytänteiden pohdintaa

Ohjaustyön dilemmoista käsitteen ja käytänteiden pohdintaa Ohjaustyön dilemmoista käsitteen ja käytänteiden pohdintaa OHJAUSTYÖN DILEMMAT JA ELÄMÄNKULKUJEN JÄNNITTEET käytäntö tutkimustapaaminen 17.5.2013 Itä-Suomen yliopisto Jussi Silvonen Yliopistotutkija, dosentti

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6

Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6 Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1. T-61.020 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke 18.4.2007, 12:1 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.0 1. Käytämme siis jälleen viterbi-algoritmia todennäköisimmän

Lisätiedot

Ohjelmointi 2 / 2010 Välikoe / 26.3

Ohjelmointi 2 / 2010 Välikoe / 26.3 Ohjelmointi 2 / 2010 Välikoe / 26.3 Välikoe / 26.3 Vastaa neljään (4) tehtävään ja halutessa bonustehtäviin B1 ja/tai B2, (tuovat lisäpisteitä). Bonustehtävät saa tehdä vaikkei olisi tehnyt siihen tehtävään

Lisätiedot

KUNTIEN JA HUS:N ASIAKAS- JA POTILASTIETOJÄRJESTELMÄN HANKINTA

KUNTIEN JA HUS:N ASIAKAS- JA POTILASTIETOJÄRJESTELMÄN HANKINTA KUNTIEN JA HUS:N ASIAKAS- JA POTILASTIETOJÄRJESTELMÄN HANKINTA Perustelumuistio Liite 4: Toimittajan resurssien ja osaamisen arvioinnin tulokset (vertailuperuste 3.2) 1 Sisällysluettelo 1. Dokumentin tarkoitus

Lisätiedot

Sosiaalisen arvioinnin kehittämisverkosto Ville Kujanpää

Sosiaalisen arvioinnin kehittämisverkosto Ville Kujanpää Sosiaalisen arvioinnin kehittämisverkosto 9.11.2016 Ville Kujanpää Tavoite Sosiaalisen arvioinnin kehittämisverkoston tavoitteena on tukea sosiaalisen arvioinnin menetelmän käyttöönottoa setlementtien

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Kertaustesti Perheessä on neljä lasta, joista valitaan arpomalla kaksi tiskaajaa. Millä todennäköisyydellä nuorin joutuu tiskaamaan?

Kertaustesti Perheessä on neljä lasta, joista valitaan arpomalla kaksi tiskaajaa. Millä todennäköisyydellä nuorin joutuu tiskaamaan? Kertaustesti 1 Nimi: 1. a) Noppaa heitetään kerran. Millä todennäköisyydellä saadaan silmäluku 2? b) Noppaa heitetään kaksi kertaa peräkkäin. Millä todennäköisyydellä molemmilla heitoilla saadaan silmäluku

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

1. Onko terveytenne yleisesti ottaen... (ympyröikää yksi numero) 1 erinomainen 2 varsin hyvä 3 hyvä 4 tyydyttävä 5 huono

1. Onko terveytenne yleisesti ottaen... (ympyröikää yksi numero) 1 erinomainen 2 varsin hyvä 3 hyvä 4 tyydyttävä 5 huono 1. Onko terveytenne yleisesti ottaen... 1 erinomainen 2 varsin hyvä 3 hyvä 4 tyydyttävä 5 huono 2. Jos vertaatte nykyistä terveydentilaanne vuoden takaiseen, onko terveytenne yleisesti ottaen... 1 tällä

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Graphs in Social Network Analysis And Modeling. Graafit sosiaalisten verkostojen mallintamisessa

Graphs in Social Network Analysis And Modeling. Graafit sosiaalisten verkostojen mallintamisessa Hypermedian jatko-opintoseminaari 2008 2009 1 Graphs in Social Network Analysis And Modeling Graafit sosiaalisten verkostojen mallintamisessa 28.11.2008 Thumas Miilumäki thumas.miilumaki@tut.fi Sisältö

Lisätiedot

Kuvasommittelun lähtökohta

Kuvasommittelun lähtökohta KUVASOMMITTELU Kuvasommittelun lähtökohta jäsentämisen ja järjestämisen tarve hahmottaa maailmaa, sen yksityiskohtia ja kokonaisuuksia paremmin. Kuvassa jäsentäminen tapahtuu sommittelullisin keinoin.

Lisätiedot

SOMMITTELU & WWW-LAYOUT WEB-VISUALISOINTI - TTMS0400.6S0V2

SOMMITTELU & WWW-LAYOUT WEB-VISUALISOINTI - TTMS0400.6S0V2 SOMMITTELU & WWW-LAYOUT 27.9.2016 Sivuston layoutin suunnittelu on sisältöelementtien välisten suhteiden määrittelyä. Sommittelu on kuvallisten elementtien järjestämistä mielekkääksi kokonaisuudeksi kuvapinnalla.

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 4.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 4.3.2009 1 / 35 Tiedostot Tiedostojen käsittelyä tarvitaan esimerkiksi seuraavissa tilanteissa: Ohjelman käsittelemiä

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta... JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen

Lisätiedot

Kenguru Benjamin, ratkaisut (1 / 6) luokka

Kenguru Benjamin, ratkaisut (1 / 6) luokka Kenguru Benjamin, ratkaisut (1 / 6) 3 pisteen tehtävät 1. Kuinka monta kokonaislukua on lukujen 19,03 ja,009 välissä? (A) 14 (B) 15 (C) 16 (D) 17 (E) enemmän kuin 17 Luvut 3, 4, 5, 6, 7, 8, 9, 10, 11,

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 14.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 14.9.2015 1 / 17 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Rakentamisen hinta. Palvelun ylläpito: Palvelun ylläpitohinta/kk Palvelun ylläpidon aikaisen jatkokehityksen tuntihinta

Rakentamisen hinta. Palvelun ylläpito: Palvelun ylläpitohinta/kk Palvelun ylläpidon aikaisen jatkokehityksen tuntihinta TAPAHTUMANHALLINTAJÄRJESTELMÄ ALLU Kilpailullisen neuvottelumenettelyn tarjousten vertailu Anssi Hänninen, Helsingin kaupungin rakennusvirasto 1 KILPAILUTUKSEN PISTEYTYSKRITEERIT Kilpailutuksessa jätettyjä

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

How to Support Decision Analysis with Software Case Förbifart Stockholm

How to Support Decision Analysis with Software Case Förbifart Stockholm How to Support Decision Analysis with Software Case Förbifart Stockholm (Valmiin työn esittely) 13.9.2010 Ohjaaja: Prof. Mats Danielson Valvoja: Prof. Ahti Salo Tausta -Tukholman ohikulkutien suunnittelu

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Lasten ja nuorten kirjallisuutta monilukutaidolla. FT, yliopistonlehtori Reijo Kupiainen Kasvatustieteiden yksikkö, Tampereen yliopisto

Lasten ja nuorten kirjallisuutta monilukutaidolla. FT, yliopistonlehtori Reijo Kupiainen Kasvatustieteiden yksikkö, Tampereen yliopisto Lasten ja nuorten kirjallisuutta monilukutaidolla FT, yliopistonlehtori Reijo Kupiainen Kasvatustieteiden yksikkö, Tampereen yliopisto Hyviä uutisia http://www.iltasanomat.fi/kotimaa/art-2000001135082.html

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

HELIA 1 (17) Outi Virkki Tiedonhallinta

HELIA 1 (17) Outi Virkki Tiedonhallinta HELIA 1 (17) Luento 4.1 Looginen suunnittelu... 2 Relaatiomalli... 3 Peruskäsitteet... 4 Relaatio... 6 Relaatiokaava (Relation schema)... 6 Attribuutti ja arvojoukko... 7 Monikko... 8 Avaimet... 10 Avain

Lisätiedot

VÄESTÖENNUSTE

VÄESTÖENNUSTE VÄESTÖENNUSTE 2012-2040 KEHITTÄMIS- JA RAHOITUSOSASTO/ Kaupunki- ja taloussuunnittelu 10 / 2012 Alkusanat Tilastokeskus on julkaissut väestöennusteen joka kolmas vuosi. Tilastokeskuksen väestöennusteet

Lisätiedot

Osafaktorikokeet. Heliövaara 1

Osafaktorikokeet. Heliövaara 1 Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien

Lisätiedot

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä: Matriisi ja vektori laskennan ohjelmisto edellyttää

Lisätiedot

HALLINTOTIETEIDEN KANDIDAATTIOHJELMA (HTK/HTM) Valintakoe Pisteet yhteensä (tarkastaja merkitsee)

HALLINTOTIETEIDEN KANDIDAATTIOHJELMA (HTK/HTM) Valintakoe Pisteet yhteensä (tarkastaja merkitsee) HALLINTOTIETEIDEN KANDIDAATTIOHJELMA (HTK/HTM) Valintakoe 6.6.2016 Pisteet yhteensä (tarkastaja merkitsee) VALINTAKOKEEN PISTEYTYS Valintakokeesta on mahdollisuus saada maksimissaan 60 pistettä. Tehtävät

Lisätiedot

Kenguru 2016 Ecolier (4. ja 5. luokka)

Kenguru 2016 Ecolier (4. ja 5. luokka) sivu 1 / 13 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B igitaalitekniikan matematiikka Luku 5 Sivu (22).9.2 e = + = ( + ) = + = Espresso igitaalitekniikan matematiikka Luku 5 Sivu 2 (22).9.2 e Johdanto Tässä luvussa esitetään perusteet lausekemuodossa esitettyjen

Lisätiedot

Fenomenografia. Hypermedian jatko-opintoseminaari Päivi Mikkonen

Fenomenografia. Hypermedian jatko-opintoseminaari Päivi Mikkonen Fenomenografia Hypermedian jatko-opintoseminaari 12.12.2008 Päivi Mikkonen Mitä on fenomenografia? Historiaa Saksalainen filosofi Ulrich Sonnemann oli ensimmäinen joka käytti sanaa fenomenografia vuonna

Lisätiedot

Helsingin ammattikorkeakoulu Stadia Verkkosivujen silmäiltävyys ja selailtavuus v. 0.9 > 80 % % % < 50 %

Helsingin ammattikorkeakoulu Stadia Verkkosivujen silmäiltävyys ja selailtavuus v. 0.9 > 80 % % % < 50 % Oppimisaihion arviointi / Arvioinnin tulos 9 Aineiston arvioinnin tulos arviointialueittain Helsingin ammattikorkeakoulu Stadia Verkkosivujen silmäiltävyys ja selailtavuus v. 0.9 > 80 % 80 60 % 60 50 %

Lisätiedot

Toimivan verkoston rakentaminen ja verkoston toimintamallit. Mikä on verkosto? Mikä on verkosto? Miksi verkostot kiinnostavat?

Toimivan verkoston rakentaminen ja verkoston toimintamallit. Mikä on verkosto? Mikä on verkosto? Miksi verkostot kiinnostavat? Toimivan verkoston rakentaminen ja verkoston toimintamallit Lasse Lipponen Kasvatustieteen professori Opettajankoulutuslaitos, Helsingin yliopisto 27.1.2011 VOIMAA KANSAINVÄLISTYMISEEN VERKOSTOISTA Mikä

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

VÄESTÖENNUSTE 2015-2040

VÄESTÖENNUSTE 2015-2040 VÄESTÖENNUSTE 2015-2040 KEHITTÄMIS- JA TALOUSOSASTO/ Kehittämispalvelut 1 / 2016 Alkusanat Tilastokeskus on julkaissut väestöennusteen joka kolmas vuosi. Tilastokeskuksen väestöennusteet perustuvat havaintoihin

Lisätiedot

Turvallisuus, identiteetti ja hyvinvointi. Eero Ropo TAY Kasvatustieteiden yksikkö Aineenopettajakoulutus

Turvallisuus, identiteetti ja hyvinvointi. Eero Ropo TAY Kasvatustieteiden yksikkö Aineenopettajakoulutus Turvallisuus, identiteetti ja hyvinvointi Eero Ropo TAY Kasvatustieteiden yksikkö Aineenopettajakoulutus 2 Turvallisuuden kokemus ja identiteetti Turvallisuutta ja identiteettiä on kirjallisuudessa käsitelty

Lisätiedot

Kokonaislukuoptimointi hissiryhmän ohjauksessa

Kokonaislukuoptimointi hissiryhmän ohjauksessa Kokonaislukuoptimointi hissiryhmän ohjauksessa Systeemianalyysin laboratorio Teknillinen Korkeakoulu, TKK 3 Maaliskuuta 2008 Sisällys 1 Johdanto Taustaa Ongelman kuvaus 2 PACE-graafi Graafin muodostaminen

Lisätiedot

Pohjoismainentallennus- ja tutkimushanke Kuva-arkistokurssi Anni Wallenius

Pohjoismainentallennus- ja tutkimushanke Kuva-arkistokurssi Anni Wallenius Pohjoismainentallennus- ja tutkimushanke2015-2020 Kuva-arkistokurssi 4.10.2016 Anni Wallenius NELJÄN ORGANISAATION YHTEISHANKE Suomen valokuvataiteen museo - valtakunnallinen erikoismuseo Aalborg stadsarkiv

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

1. Miten tehdään peliin toinen maila?

1. Miten tehdään peliin toinen maila? Muilla kielillä: English Suomi Pong-peli, vaihe 4 Tässä oppaassa teemme toisenkin mailan. 1. Miten tehdään peliin toinen maila? Maila tehtiin edellisessä vaiheessa, aliohjelmassa LuoKentta, seuraavasti:

Lisätiedot

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

ARVOSANA-HARJOITUKSEN RATKAISU

ARVOSANA-HARJOITUKSEN RATKAISU ARVOSANA-HARJOITUKSEN RATKAISU Tee allaoleva taulukko. Arvosana-sarakkeeseen pitää tehdä sellainen jos-funktio. joka määrittää arvosanaksi Hylätty tai Hyväksyttty. Jos pisteet ovat vähintään 10, arvosanaksi

Lisätiedot

TYÖPAJA: SIX HATS OF THINKING

TYÖPAJA: SIX HATS OF THINKING TYÖPAJA: SIX HATS OF THINKING Pirkanmaan ja Keski-Suomen yhdyshenkilöpäivä 24.9.2015 Jyväskylä 23.9.2015 1 KUUDEN HATUN MENETELMÄ Kehittänyt maltalainen lääketieteen tohtori (psykologia ja fysiologia)

Lisätiedot

Tehtävä 8 : 1. Tehtävä 8 : 2

Tehtävä 8 : 1. Tehtävä 8 : 2 Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella

Lisätiedot

Pisan 2012 tulokset ja johtopäätökset

Pisan 2012 tulokset ja johtopäätökset Pisan 2012 tulokset ja johtopäätökset Jouni Välijärvi, professori Koulutuksen tutkimuslaitos Jyväskylän yliopisto PISA ja opettajankoulutuksen kehittäminen-seminaari Tampere 14.3.2014 17.3.2014 PISA 2012

Lisätiedot

Suomen virtuaaliammattikorkeakoulu Teknillinen mekanikka fem tutorials > 80 % % % < 50 % Suhteellinen osuus maksimiarvosta (%)

Suomen virtuaaliammattikorkeakoulu Teknillinen mekanikka fem tutorials > 80 % % % < 50 % Suhteellinen osuus maksimiarvosta (%) Oppimisaihion arviointi / Arvioinnin tulos 9 Aineiston arvioinnin tulos arviointialueittain Suomen virtuaaliammattikorkeakoulu Teknillinen mekanikka fem tutorials > 80 % 80 60 % 60 50 % < 50 % Arviointialue

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Määrällisen aineiston esittämistapoja. Aki Taanila

Määrällisen aineiston esittämistapoja. Aki Taanila Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla

Lisätiedot

VirtuaaliAMK Opinnäytetyön ohjausprosessi > 80 % % % < 50 % Suhteellinen osuus maksimiarvosta (%)

VirtuaaliAMK Opinnäytetyön ohjausprosessi > 80 % % % < 50 % Suhteellinen osuus maksimiarvosta (%) Oppimisaihion arviointi / Arvioinnin tulos 9 Aineiston arvioinnin tulos arviointialueittain VirtuaaliAMK Opinnäytetyön ohjausprosessi > 80 % 80 60 % 60 50 % < 50 % Arviointialue Ominaisuuksien Arviointialue

Lisätiedot

Mitä eväitä PISA-tulokset antavat äidinkielen opetukseen? Sari Sulkunen, FT Jyväskylän yliopisto

Mitä eväitä PISA-tulokset antavat äidinkielen opetukseen? Sari Sulkunen, FT Jyväskylän yliopisto Mitä eväitä PISA-tulokset antavat äidinkielen opetukseen? Sari Sulkunen, FT Jyväskylän yliopisto Lukutaidon määritelmä PISA-arvioinnissa Lukutaito on kirjoitettujen tekstien ymmärtämistä, käyttöä ja arviointia

Lisätiedot

Kuvattu ja tulkittu kokemus. Kokemuksen tutkimus -seminaari, Oulu VTL Satu Liimakka, Helsingin yliopisto

Kuvattu ja tulkittu kokemus. Kokemuksen tutkimus -seminaari, Oulu VTL Satu Liimakka, Helsingin yliopisto Kuvattu ja tulkittu kokemus Kokemuksen tutkimus -seminaari, Oulu 15.4.2011 VTL Satu Liimakka, Helsingin yliopisto Esityksen taustaa Tekeillä oleva sosiaalipsykologian väitöskirja nuorten naisten ruumiinkokemuksista,

Lisätiedot

Tiesäämallin asemaja hilaversion validointi. UbiCasting Workshop Marjo Hippi / Met. tutkimus

Tiesäämallin asemaja hilaversion validointi. UbiCasting Workshop Marjo Hippi / Met. tutkimus Tiesäämallin asemaja hilaversion validointi UbiCasting Workshop 10-09-2008 Marjo Hippi / Met. tutkimus Tiesäämallin asema- ja hilaversion validointi - Työn sisältö Tiesäämallia ajetaan kahdella eri lähtödatalla,

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

Hämeenlinnan kaupunki: Kotihoidon palveluntuotannon vaikuttavuuden ja käyttäjälähtöisyyden kehittäminen

Hämeenlinnan kaupunki: Kotihoidon palveluntuotannon vaikuttavuuden ja käyttäjälähtöisyyden kehittäminen Hämeenlinnan kaupunki: Kotihoidon palveluntuotannon vaikuttavuuden ja käyttäjälähtöisyyden kehittäminen Selvitystyön loppuraportti 19.02.2015 Vetovoimainen hyvinvointiala Hämeenlinnassa - hanke Johdon

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Markkinoitten mallintaminen ja Internet-markkinat

Markkinoitten mallintaminen ja Internet-markkinat Markkinoitten mallintaminen ja Internet-markkinat Kurssiohjeita: Lue ainakin kertaalleen huolella! Harjoitustyö ja harjoitukset Harjoitustyö palautetaan kahdessa osassa Moodleen. Ensimmäisen osan palautuspäivä

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen. Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele

Lisätiedot

Pielisen säännöstely vaikutukset Pielisen, Pielisjoen ja Saimaan virkistyskäyttöön. Pielisen juoksutuksen kehittämisen neuvotteluryhmä

Pielisen säännöstely vaikutukset Pielisen, Pielisjoen ja Saimaan virkistyskäyttöön. Pielisen juoksutuksen kehittämisen neuvotteluryhmä Pielisen säännöstely vaikutukset Pielisen, Pielisjoen ja Saimaan virkistyskäyttöön Pielisen juoksutuksen kehittämisen neuvotteluryhmä Esityksen sisältö Pielisen säännöstelyn lähtökohdat Laskennassa käytetty

Lisätiedot