KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017

Koko: px
Aloita esitys sivulta:

Download "KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017"

Transkriptio

1 KJR-C00 Kontinuumimekaniikan perusteet, viikko 47/ Määritä oheisen kuvan mukaisen kanaalin portin <0 p 0 < d g ilman- ja veden hdrostaattisesta paineesta aiheutuva vaakasuuntainen voimaresultantti. Portin leves on. Ilmanpaine p 0 on vakio. p 0 <, h Vastaus 1 F < θ gh( H, h) (oikealle) <, H. Määritä kuvan ulokepalkin poikkileikkauksen normaalivoi- f ma N, leikkausvoima Q, ja taivutusmomentti M aksiaalikoordinaatin funktioina. Palkkiin vaikuttaa ulkoisina voimina jakautunut voima pituusksikköä kohden f, pistevoima vapaassa päässä ja tukireaktiot seinän kohdalla. F Vastaus N <, F, Q<, f(, ), 1 ( ) M <, f, 3. Bernoulli tasopalkin siirtmäkomponentit ovat u < u( ), dw( )/ d, u < 0 ja u < w ( ) ja normaalijännitkset ρ < ρ < 0. Johda palkin normaalivoiman N ja taivutusmomentin M lausekkeet lähtien määritelmistä N da M < ρ ja ρ < da, joissa integraali on poikkipinnan litse. Oleta lineaaris-elastinen isotrooppinen ja homogeeninen materiaali (E on vakio). Palkin pituussuuntainen, akseli on pintakeskiössä ja poikkipinta on smmetrinen, ja, akselien suhteen. Vastaus N du < EA ja d M d w <, EI. d 4. Isotrooppisen ja lineaaris-elastisen materiaalin kimmokerroin on E ja Poissonin luku µ < 1/3. Materiaalista valmistetun kappaleen Karteesisen koordinaatiston siirtmäkomponentit ovat u < k(3 ), u < k(, ) ja u < 0, joissa k on dimensioton vakio. Määritä kappaleen jännitstensori samassa vektorikannassa. Vastaus θ T θ i i σ θ 3 ρ j ke θ <, j 4 θ k θ k

2 5. Kuvan sauvat on kiinnitett nivelillä tukiin ja toisiinsa ja rakennetta kuormittaa pstsuora voima F. Vaakasauvan poikkipinta-ala on A, sauvan 1 poikkipinta-ala A ja materiaalin kimmokerroin E. aske sauvojen aksiaalijännitkset, aksiaalivenmät ja voiman vaikutuspisteen siirtmä. Y F X Y 1 X 45 α Vastaus u F F <, u <, 3 EA EA M, ϖ 6. Kuvan kartioviskometrin pörittämiseen akselin mpäri vakiokulmanopeudella ϖ tarvitaan momentti M. Määritä nesteen viskositeetin λ laskukaava. Oleta, että nopeusjakauma on lineaari-nen pörivän kartion ja kiinteän astianpohjan välillä. 3 M sinπ Vastaus λ < ο 3 ϖr R π r 7. Kappaleen liikkeen kuvaus on < X kty, σ σ viskoosin jännitstensorin < λd < Y, kt X ja < Z, joissa k on vakio. Määritä esits paikan (,, ) ja ajan t funktiona. Vastaus σ 3 θθ θθ σ k t < λd < 4 λ ( ii jj) 4 1 k t 8. Määritä kuvan virtajohtimen stationaarinen lämpötila T( ). Seinämien lämpötilat T 0 ja T, johtimen poikkipinnan ala A, lämmönjohtavuus k ja lämmöntuotto tilavuuusksikköä kohden vakioita. s ovat T 0 T s Vastaus T( ) < (, ) T T0 (1, ) k

3 Määritä oheisen kuvan mukaisen kanaalin portin ilmanja veden hdrostaattisesta paineesta aiheutuva vaakasuuntainen voimaresultantti. Portin leves on. Ilmanpaine p 0 on vakio. <0 p 0 < d p 0 g <, h <, H θ Nestestiikan tasapainohtälö f, p< 0 on kolmen osittaisdifferentiaalihtälön rhmä paineelle, θ θ jossa painovoima f < g ajatellaan tunnetuksi. löt ainakin, jos tihes θ on vakio ja massavoimalla g θ θ on potentiaali eli g <, Ε. Tällöin, θ Ε, p < 0 p θε< C. Vakion C arvo voidaan ratkaista, jos paine ja potentiaali tunnetaan jossain kohdassa esimerkiksi pisteessä A nesteen pinnalla, jolloin C < pa θε A. Koordinaatiston, akseli olkoon θ vastakkaissuuntainen maan vetovoiman kiihtvdelle. Tällöin htälön g <, Ε ratkaisu potentiaalille on Ε < g B. Vakion B arvolla ei ole merkitstä ja voidaan valita vaikka B < 0. Jos ilmanpaine vapaalla pinnalla on p 0 ja pinnan asema 0, hdrostaattinen paine nesteessä p g p g θ < 0 θ 0 0 θ 0 p< p g(, ). Porttin vaikuttavan paineen voima ja momenttiresultantti, koostuu vasempaan puoleen vaikuttavasta hdrostaattisesta paineesta (), oikeaan puoleen vaikuttavasta hdrostaattisesta paineesta ja ilmanpaineesta. p p0, θg, H 0 < p0 0 ; d ja p R p0, θg( h ), H, h <. p0, h; d Ilmanpaine tuottaa siis tasaisen jakauman molemmille puolille, joko suoraan tai nestestatiikan tasapainohtälön kautta, joten sen osuus lopulta häviää. Tarkastellaan vain nesteen painosta johtuvaa osuutta 0 1 F <, θgd < θgh (oikealle), H FR <, g h d <, g h, h H h, H < g H, h, h θ ( ) θ [ ( ) )] θ ( ) (vasemmalle), H Olkoon positiivinen suunta oikealle, voimasumma 1 F < F, FR < θgh( H, h).

4 Määritä kuvan ulokepalkin poikkileikkauksen normaalivoima N, leikkausvoima Q, ja taivutusmomentti M (sisäisten voimien resultantteja) aksiaalikoordinaatin funktioina. Palkkiin vaikuttaa ulkoisina voimina jakautunut voima pituusksikköä kohden f, pistevoima F ja tukireaktiot seinän kohdalla. f F Palkin normaalivoima, leikkausvoima ja taivutusmomentti ovat tietssä poikkipinnassa vaikuttavan jännitksen resultantteja. Ulokepalkin sisäisten voimien resultantit tietssä poikkileikkauksessa saadaan leikkaamalla palkki kahteen osaan ja tarkastelemalla vapaan pään voima ja momenttitasapainoa, F, N < 0 N <, F,, Q, fdω < 0 Q<, f(, ),, ω N M Q f F, M, f( ω, d ) ω < 0 1 ( ) M <, f,. Jakautuneen kuorman resultantin integraaleissa pitää ajatella vakioksi ja kättää esimerkiksi koordinaattia ω palkkialkion resultantin laskennassa kohdan suhteen. Poikkipinnan täsmällinen jännitsjakauma saadaan kontinuumimekaniikan keinoin ratkaisemalla palkin siirtmää ja jännitstä kuvaavat differentiaalihtälöt.

5 Bernoulli tasopalkin siirtmäkomponentit ovat u < u( ), dw( )/ d, u < 0 ja u < w ( ) ja normaalijännitkset ρ < ρ < 0. Johda palkin normaalivoiman N ja taivutusmomentin M lausekkeet lähtien määritelmistä N < ρ da ja M < ρ da, joissa integraali on poikkipinnan litse. Oleta lineaaris-elastinen isotrooppinen ja homogeeninen materiaali (E on vakio). Palkin pituussuuntainen, akseli on pintakeskiössä ja poikkipinta on smmetrinen, ja, akselien suhteen. Tasopalkin leikkausrasitussuureet N ja M ovat poikkileikkaukssen jännitsjakauman reultantit. Määritetään aluksi tarvittava jännitskomponentti ρ lähtien venmän määritelmästä ja leistetstä Hooken laista. Koska ρ < ρ < 0 Hooken laista seuraa, että δ 1 < ρ ρ < Eδ. E Venmä voidaan lausua siirtmän avulla kättämällä venmä-siirtmä htettä du du d w δ < <,. d d d Normaalijännits lausuttuna poikkipinnan translaatiokomponenttien u ( ) ja w ( ) avulla ρ du d w < Eδ < E(, ). d d Tietllä poikkipinnalla derivaatat ovat vakioita integroinnin suhteen < vakio, joten jännitksen lausekkeen funktioiden u ( ) ja w ( ) du d w du d w du d w ρ ( ), N < da < E, da < E da, E da < EA, ES d d d d d d du d w du d w du d w M < ρ da < E(, ) da < E da, E da < ES, EI d d d d d d. Resultanttien lausekkeissa esiintvät pinnan geometriaa kuvaavat suureet ovat pinta-ala A, pinnan ensimmäinen momentti S ja pinnan toinen momentti I A < da, S < da ja I < da. Pinnan ensimmäinen momentti S < 0, jos poikkipinta on smmetrinen, akselin suhteen. Tällöin

6 N du < EA ja d d w M <, EI. d

7 Isotrooppisen ja lineaaris-elastisen materiaalin kimmokerroin on E ja Poissonin luku µ < 1/3. Materiaalista valmistetun kappaleen Karteesisen koordinaatiston siirtmäkomponentit ovat u < k(3 ), u < k(, ) ja u < 0, joissa k on dimensioton vakio. Määritä kappaleen jännitstensori samassa vektorikannassa. Eliminoimalla venmät isotrooppisen materiaalin jännits-venmä ja venmä-siirtmä relaatioista, päädtään jännits-siirtmä relaation matriisiesitksiin ρ 1, µ µ µ u / E ρ µ 1 µ µ < u / (1 µ )(1 µ ),, ρ µ µ 1 µ, u / ja ρ ρ u / u / ρ < ρ < G u / u /. ρ ρ u / u / Jännits riippuu vain kimmokertoimesta E ja Poissonin luvusta µ, koska liukumoduli G < E /( µ ). Sijoitetaan annetut siirtmäkomponentit ja sievennetään ρ 1, µ µ µ 3k E 3 3 ρ µ 1 µ µ k ke 1 1 <,, <, < ke, 1 (1 µ )(1 µ ) 4,, 4 ρ µ µ 1, µ ρ ρ k 1 E 3 ρ < ρ < 0 < ke 0. (1 µ ) 4 ρ 0 0 ρ Jännitstensori saadaan komponenttimatriisin avulla θ T T i ρ ρ ρ θ θ θ i i i σ θ θ θ 3 ρ j ρ ρ ρ j j ke θ < <, j 4 θ θ θ k ρ θ. ρ ρ k k k

8 Kuvan sauvat on kiinnitett nivelillä tukiin ja toisiinsa ja rakennetta kuormittaa pstsuora voima F = 0. Vaakasauvan poikkipinta-ala on A, sauvan 1 poikkipinta-ala A ja materiaalin kimmokerroin E. aske sauvojen aksiaalijännitkset, aksiaalivenmät ja voiman vaikutuspisteen siirtmä. Y F X Y 1 X 45 α Sauvarakenteen analsissä sauvoja tarkastellaan erillisinä kappaleina, joilla kullakin on oma kappalekoordinaatistonsa. Sauvat vuorovaikuttavat nivelten kautta ja kantavat vain akselinsa suuntaisia voimia. Ratkaistaan aluksi sauvavoimat statiikan keinoja kättäen. Tässä riittää tarkastella voiman F kuormittaman nivelen voimatasapainoa. Vapaakappalekuvion avulla saadaan tasapainohtälöt kiinteän koordinaatiston akselien suunnille 1 F <, N1, N < 0 1 F <, N1, F < 0 N 1 <, F ja N < F. N N 1 F Voiman ja vastavoiman lain mukaan sauvoihin 1 ja vaikuttaa htä suuret mutta vastakkaissuuntaiset voimat (siis sauvasta ulospäin). Aksiaalijännits on aksiaalivoima jaettuna sauvan poikkipinnan alalla. Kappalekoordinaatiston nollasta eroava komponentti Sauva 1: ρ N1 F XX < A <, A (puristusta) Sauva : ρ N F XX < A < A (vetoa) Koska sauvavoimat oli merkitt ulospäin sauvasta, jännitksen positiivinen etumerkki tarkoittaa vetoa ja negatiivinen puristusta. Sauvan jännits on ksiaksiaalinen, jolloin leistett Hooken laki ksinkertaistuu muotoon ρ < Eδ. Sauvojen venmät aksiaalisuunnissa ρ XX Sauva 1: Sauva : ρ XX F δ XX < <,, E EA ρ XX F δ XX < <. E EA Venmä on vakio kummankin sauvan alueella, jolloin sauvan pituuden muutos on venmä kerrottuna alkuperäisellä pituudella. F Sauva 1: Χ < δxx <,, EA

9 Sauva : F Χ < δxx <. EA Saadut arvot ovat nivelen siirtmiä sauvoihin kiinnitettjen kappalekoordinaatistojen θ θ θ X, akseleiden suuntiin. Nivelen siirtmän u< ui ui komponentit kiinteän koordinaatiston komponentit u ja u saadaan ehdoista, että siirtmät sauvojen suuntiin vastaavat edellä laskettuja arvoja Sauva 1: θ θ θ 1 θ θ θ θ 1 θ θ F u I < u ( i j) < ( ui uj) ( i j) <,, EA θ θ θ θ θ θ θ Sauva : u I < u i < ( u i u j) i < F, EA joista ratkaisemalla u F F < ja u <, 3. EA EA

10 Kuvan kartioviskometrin pörittämiseen akselin mpäri vakiokulmanopeudella ϖ tarvitaan momentti M. Määritä nesteen viskositeetin λ laskukaava. Oleta, että nopeusjakauma on lineaarinen pörivän kartion ja kiinteän astianpohjan välillä. Tarkasteltavaan kappaleeseen eli kartioviskometriin vaikuttaa ulkoisina kuormina momentti M ja nesteen viskositeetista aiheutuva momentti. Viskometrin nesteen kanssa kosketuksissa olevaan pintaan vaikuttaa tangentiaalitraktio σ < λdv / d. Nesteen nopeus kartioviskometrin kohdalla on ε sama kuin kartioviskometrin nopeus ja nesteen nopeus pohjalla häviää. Koska nopeusjakauma on lineaarinen, kohdassa r M, ϖ M, R π r dvε Χ vε ϖr, 0 ϖ < < < d Χ rtanπ, 0 tanπ Pohjan pinta-ala alkio dvε ϖ σ < λ < λ. d tanπ 1 da < οrdr. cosπ Traktion momentti akselin suhteen ϖ 1 οϖ οϖ 1 M λ < rda < r rdr < r dr < R tanπ cosπ sinπ sinπ 3 R R 3 σ λ ο λ λ 0. 0 Tasapainotilanteessa Mλ < M 3 M sinπ λ < ο 3 ϖr.

11 Kappaleen liikkeen kuvaus on < X kty, σ σ viskoosin jännitstensorin < λd < Y, kt X ja < Z, joissa k on vakio. Määritä esits paikan (,, ) ja ajan t funktiona. Kappaleen liikkeen kuvaus on kappaleen partikkelien ratojen parametriesits (aika on käräparametri). Kappalekoordinaatit ( XYZ,, ) identifioivat partikkelin. Tässä kappaleen liikkeen kuvaus on 1 kt 0 X <, kt 1 0 Y Z, 1 1 kt 0 kt X, 1 Y <, kt 1 0 < kt 4. 1 k t Z (1 k t ) Nopeuden komponentit Eulerin esitksessä saadaan laskemalla ensiksi komponentit agrange esitksessä ja eliminoimalla tämän jälkeen ainekoordinaatit kappaleen liikkeen käänteiskuvauksen avulla v 0 kt 0 X kt kt v kt 0 0 <, Y < kt 4,. 1 k t v Z 0 Muodonmuutosnopeustensorin komponentit θ T i i 3 σ θ θ 3 θθ θθ σ 4λk t 4λk t < λd < j j ( ii jj) 4 <. 4 1 k t θ 1 k t k θ k θ

12 Määritä kuvan virtajohtimen stationaarinen lämpötila T( ). Seinämien lämpötilat T 0 ja T, johtimen poikkipinnan ala A, lämmönjohtavuus k ja lämmöntuotto tilavuuusksikköä kohden s ovat vakioita. Kun aikaderivaatat ovat nollia ja lämpöä johtuu vain, akselin suunnassa, energian taseen periaate ja Fourierin lämmönjohtumislaki ksinkertaistuvat muotoihin (sijoitetaan lämmönjohtumislaki tasehtälöön) T 0 T dq s, < 0 ja q d dt <, k d d T s k < 0. d Tehtävässä poikkipinta, lämmön tuotto ja lämmänjohtavuus ovat vakioita, jolloin päädtään reunaarvotehtävään d T k d s < 0 ]0, [, T(0) < T0 ja T( ) < T Aluksi differentiaalihtälön leinen ratkaisu integroimalla (kukin integrointi tuottaa integrointivakion) d T d s <, dt <, s A k d k s T <, A B. k ausutaan integrointivakiot päiden tunnettujen lämpötilojen avulla T(0) < B< T ja 0 s T T( ) <, A B < T B< T0 ja, T0 s A<. k k Sijoitetaan ratkaisuun s T( ) < (, ) T T0 (1, ). k

KJR-C2002 Kontinuumimekaniikan perusteet, tentti

KJR-C2002 Kontinuumimekaniikan perusteet, tentti KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 48/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 48/2017 KJR-C00 Kontinuumimekaniikan perusteet, viikko 48/017 1. Kilpailun aikana moottoripörän avaitaan lentävän matkan lätökulman ollessa. Mallinnetaan moottoripörä kuskeineen partikkeliksi (massa m) ja unodetaan

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki)

KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki) KJR-00 Kontinuumimekaniikan perusteet, tentti (esimerkki) 1. Liikemäärän momentin taseen periaatteen soeltaminen kappalealkioon johtaa lokaaliin muotoon σ θ ( ρ r ) < 0, jossa alaindeksi tarkoittaa akiota

Lisätiedot

LAATTATEORIAA. Yleistä. Kuva 1.

LAATTATEORIAA. Yleistä. Kuva 1. LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.

Lisätiedot

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018 Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 25.2.2016 Susanna Hurme Päivän aihe: Voimasysteemien samanarvoisuus ja jakaantuneen voiman käsite (Kirjan luvut 4.7-4.9) Osaamistavoitteet: 1. Ymmärtää, mikä on

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017 KJR-C00 Kontinuumimeaniian perusteet viio 45/017 1. Oloon f t ) alojen onsentraatio [ f ] < g/m ) joessa joa riippuu siis seä paiasta että ajasta. Havaitsija on veneessä ja mittaa onsentraatiota suoraan

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

MUODONMUUTOKSET. Lähtöotaksumat:

MUODONMUUTOKSET. Lähtöotaksumat: MUODONMUUTOKSET Lähtöotaksumat:. Materiaali on isotrooppista ja homogeenista. Hooken laki on voimassa (fysikaalinen lineaarisuus) 3. Bernoullin hypoteesi on voimassa (tekninen taivutusteoria) 4. Muodonmuutokset

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 8.3.2016 Susanna Hurme Päivän aihe: Normaalivoiman, leikkausvoiman ja taivutusmomentin käsitteet (Kirjan luku 7.1) Osaamistavoitteet: Ymmärtää, millaisia sisäisiä

Lisätiedot

SUORAN PALKIN TAIVUTUS

SUORAN PALKIN TAIVUTUS SUORAN PALKIN TAIVUTUS KERTAUSTA! Palkin rasituslajit Palkki tasossa: Tasopalkin rasitukset, sisäiset voimat, ovat normaalivoima N, leikkausvoima Q ja taivutusmomentti M t. Ne voidaan isostaattisessa rakenteessa

Lisätiedot

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

SUORAN PALKIN RASITUKSET

SUORAN PALKIN RASITUKSET SUORAN PALKIN RASITUKSET Palkilla tarkoitetaan pitkänomaista rakenneosaa, jota voidaan käsitellä yksiulotteisena eli viivamaisena. Palkkia kuormitetaan pääasiassa poikittaisilla kuormituksilla, mutta usein

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017 KJR-C00 Kontinuumimekaniikan perusteet, iikko 46/07. Kuan esittämä esiskootteri etenee akioauhdilla. Veden (tihes ) sisäänotto tapahtuu pohjassa olean aakasuoran aukon kautta. Sisääntulean eden auhti on

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,

Lisätiedot

y 1 x l 1 1 Kuva 1: Momentti

y 1 x l 1 1 Kuva 1: Momentti BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa

Lisätiedot

Tasokehät. Kuva. Sauvojen alapuolet merkittyinä.

Tasokehät. Kuva. Sauvojen alapuolet merkittyinä. Tasokehät Tasokehä muodostuu yksinkertaisista palkeista ja ulokepalkeista, joita yhdistetään toisiinsa jäykästi tai nivelkehässä nivelellisesti. Palkit voivat olla tasossa missä kulmassa tahansa. Palkkikannattimessa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 2.3.2016 Susanna Hurme äivän aihe: Staattisesti määrätyn rakenteen tukireaktiot (Kirjan luvut 5.7 ja 6.6) Osaamistavoitteet: Ymmärtää, mitä tarkoittaa staattisesti

Lisätiedot

Laskuharjoitus 2 Ratkaisut

Laskuharjoitus 2 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 44/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 44/2017 KJR-C2002 Kontinuumimekaniikan perusteet, viikko 44/2017 1 Piirrä vapaakappalekuviot kuvien partikkeleille/äykille kappaleille a muodosta vaikuttavien voimien resultantit massakeskipisteiden suhteen Käytä

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

KJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino

KJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino KJR-C1001: Statiikka L3 Luento 27.2.2018: Jäykän kappaleen tasapaino Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon (ja laskuharjoitusten) jälkeen opiskelija

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

Laskuharjoitus 7 Ratkaisut

Laskuharjoitus 7 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita. 4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 3.3.2016 Susanna Hurme Päivän aihe: Ristikon sauvavoimat (Kirjan luvut 6.1-6.4) Osaamistavoitteet: Ymmärtää, mikä on ristikkorakenne Osata soveltaa aiemmin kurssilla

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

5 REUNA-ARVOTEHTÄVÄ 5.1 DIFFERENTIAALIYHTÄLÖT SIIRTYMÄTEHTÄVÄ VIRTAUSTEHTÄVÄ LÄMMÖNJOHTUMISTEHTÄVÄ...

5 REUNA-ARVOTEHTÄVÄ 5.1 DIFFERENTIAALIYHTÄLÖT SIIRTYMÄTEHTÄVÄ VIRTAUSTEHTÄVÄ LÄMMÖNJOHTUMISTEHTÄVÄ... 5 REUNA-ARVOTEHTÄVÄ 5.1 DIFFERENTIAALIYHTÄLÖT... 4 5. SIIRTYMÄTEHTÄVÄ... 14 5.3 VIRTAUSTEHTÄVÄ... 7 5.4 LÄMMÖNJOHTUMISTEHTÄVÄ... 4 L5/1 VIIKON 48 OSAAMISTAVOITTEET Viikon 48 jälkeen kurssin osallistuja

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 6. harjoitus jännitysmitat Ratkaisut T 1: Ohuen suoran sauvan pituus referenssitilassa on 0 ja poikkipinta-ala on A 0. Sauvan akselin suuntaisen

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

y + 4y = 0 (1) λ = 0

y + 4y = 0 (1) λ = 0 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7. BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Demonstraatio 7, 6.7... Ratkaise dierentiaalihtälöpari = = Vastaus: DY-pari voidaan esittää muodossa ( = Matriisin ominaisarvot ovat i ja i ja näihin kuuluvat ominaisvektorit (

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana

Lisätiedot

4 MATERIAALIMALLIT 4.1 JOHDANTO ELASTINEN KIINTEÄ AINE VISKOOSI NESTE LÄMMÖN JOHTUMINEN...

4 MATERIAALIMALLIT 4.1 JOHDANTO ELASTINEN KIINTEÄ AINE VISKOOSI NESTE LÄMMÖN JOHTUMINEN... 4 MATERIAALIMALLIT 4.1 JOHDANTO... 6 4.2 ELASTINEN KIINTEÄ AINE... 19 4.3 VISKOOSI NESTE... 33 4.4 LÄMMÖN JOHTUMINEN... 42 Viikko 47/1 VIIKON 47 OSAAMISTAVOITTEET Viikon 47 jälkeen kurssin osallistuja

Lisätiedot

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 ) BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä

Lisätiedot

Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 KJR-C001 Kiinteän aineen mekaniikan perusteet, IV/01 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 1:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja Elementtimenetelmän perusteet 7. 7 D-SOLIDIRAKEEE 7. ohdanto Edellä tarkasteltiin interpolointia ja numeerista integrointia emoneliön ja emokolmion alueissa. Emoelementtien avulla voidaan muodostaa vaihtelevan

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

Rakenteiden mekaniikka TF00BO01, 5op

Rakenteiden mekaniikka TF00BO01, 5op Rakenteiden mekaniikka TF00BO01, 5op Sisältö: Nivelpalkit Kehät Virtuaalisen työn periaate sauvarakenteelle Muodonmuutosten laskeminen Hyperstaattiset rakenteet Voimamenetelmä Crossin momentintasausmenetelmä

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

PUHDAS, SUORA TAIVUTUS

PUHDAS, SUORA TAIVUTUS PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

STATIIKKA. TF00BN89 5op

STATIIKKA. TF00BN89 5op STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit

Lisätiedot

CHEM-A1410 Materiaalitieteen perusteet

CHEM-A1410 Materiaalitieteen perusteet CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Taivutuksesta ja väännöstä, osa I: Teoria

Taivutuksesta ja väännöstä, osa I: Teoria Rakenteiden Mekaniikka (Journal of Structural Mechanics) Vol. 50 Nro 4 2017 s. 376-404 http://rakenteidenmekaniikka.journal.fi/inde https:/doi.org/10.23998/rm.64856 Kirjoittaja(t) 2017. Vapaasti saatavilla

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan liopisto, kevät 2015 / ORMS1010 Matemaattinen Analsi 8. harjoitus, viikko 18 R1 ma 16 18 D115 (27.4.) R2 ke 12 14 B209 (29.4.) 1. Määritä funktion (x) MacLaurinin sarjan kertoimet, kun (0) = 2 ja

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50 BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

2 LIIKE, JÄNNITYS JA VENYMÄ

2 LIIKE, JÄNNITYS JA VENYMÄ 2 LIIKE, JÄNNITYS JA VENYMÄ 2.1 KAPPALEEN LIIKE... 4 2.2 LAGRANGEN JA EULERIN ESITYSTAVAT... 12 2.3 SIIRTYMÄ... 22 2.4 JÄNNITYS... 25 2.5 VENYMÄ JA VENYMÄNOPEUS... 38 Viikko 45/1 VIIKON 45 OSAAMISTAVOITTEET

Lisätiedot