MUODONMUUTOKSET. Lähtöotaksumat:
|
|
- Maija-Liisa Anneli Kinnunen
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 MUODONMUUTOKSET Lähtöotaksumat:. Materiaali on isotrooppista ja homogeenista. Hooken laki on voimassa (fysikaalinen lineaarisuus) 3. Bernoullin hypoteesi on voimassa (tekninen taivutusteoria) 4. Muodonmuutokset ovat niin pieniä rakenteen mittoihin verrattuna, että kuormituksen voidaan katsoa vaikuttavan alkuperäiseen kuormittamattomaan rakenteeseen (geometrinen lineaarisuus). 5. Rakenteen staattinen systeemi ei muutu muodonmuutosten tapahtuessa. 6. Edellisistä seuraa, että superpositioperiaate on voimassa myös muodonmuutossuureisiin nähden.
2 Palkkialkion kimmoiset muodonmuutokset Normaalivoima: Toisaalta palkkialkiolle on Joten Leikkausvoima: on keskimääräinen leikkausjännitys v ds on muotokerroin Joten v ds
3 Taivutusmomentti: M t a I z Toisaalta Kuvan perusteella M EI t z E EI M t a ds M t joten ds EI ad a ds z ds a d z ds a ds josta d M EI t z ds Työ ja energiakäsitteet Voiman tekemä työ W F s s Fcos s Voiman tekemä työ = voiman vaikutuspisteen siirtymä kerrottuna voiman projektiolla siirtymän suunnassa Huomautus: Voiman arvo ja suunta eivät saa muuttua siirtymän tapahtuessa. 3
4 Yleisemmin: Jos voima on funktio siirtymästä, eli F F() s, on sen alkion ds kohdalla suorittama työ dw F() s ds ja kokonaistyö s W F() s ds 0 Jos voiman arvo riippuu siirtymästä lineaarisesti lähtien nollasta loppuarvoonsa F, on voiman tekemä työ W F s s 4
5 Momentin suorittama työ Korvataan momentti ekvivalentilla voimasysteemillä, voimaparilla ja lasketaan sen tekemä työ M W c M c Siirtymä 5
6 Siirtymien indeksit: ii pisteen i siirtymän projektio siinä vaikuttavan voiman F i suunnassa voimasta F i ik pisteen i siirtymän projektio siinä vaikuttavan voiman F i suunnassa voimasta F k Siirtymän ik tapahtuessa voima Fi on vakio ja suorittaa siis siirtymätyön W F i ik Siirtymätyön kannalta on täysin yhdentekevää, mistä siirtymä ik aiheutuu. Se voi olla kuviteltu (virtuaalinen). Tällöin kysymyksessä on virtuaalinen siirtymätyö W F i ik 6
7 Virtuaalisen siirtymän on oltava pieni, tasapainotilasta tapahtuva ja rakenteelle mahdollinen ts. toteutettava rakenteen tuki ja jatkuvuusehdot. Tilanne voi olla myös päinvastainen ts. voima voi olla virtuaalinen, jolloin W F missä Fi i ik ik virtuaalinen voima todellinen siirtymä Siirtymätyötä tekevät voimat muodostavat ns. kuormatilan Fi ja niistä aiheutuvat muodostavat siirtymä Voimat siirtymät tilan. F k F k ik 7
8 Siirtymän ii tapahtuessa Fi kasvaa 0:sta loppuarvoonsa samassa tahdissa siirtymän kanssa. Tällöin tehdään todellinen siirtymätyö W F i ii Kaikki voimat kasvavat samassa tahdissa loppuarvoonsa W F F F n n n Fi i i= Ulkoisen momentin suorittama todellinen työ on W M i ii Ulkoisen momentin suorittama virtuaalinen siirtymätyö W M i ik 8
9 Muodonmuutostyö ja energia. Normaalivoiman tekemä muodonmuutostyö Jos normaalivoima N aiheuttaa pituuden muutoksen, tehdään todellinen muodonmuutostyö dw Nds N ds EA Jos pituuden muutos ds on virtuaalinen, on tehty työ dw N ds. Leikkausvoiman tekemä muodonmuutostyö Jos leikkausvoima Q aiheuttaa pituuden muutoksen, tehdään todellinen muodonmuutostyö dw Qv Q ds GA Jos pystysiirtymän muutos virtuaalinen, on tehty työ dw Q v v on 9
10 . Leikkausvoiman tekemä muodonmuutostyö Jos taivutusmomentti M t aiheuttaa kulman muutoksen d, tehdään todellinen muodonmuutostyö dw Mt d M t ds EIz Jos pystysiirtymän muutos v on virtuaalinen, on tehty työ dw M d t Koko rakenteen muodonmuutostyö (= muodonmuutos tai kimmoenergia) saadaan laskemalla kaikissa alkioissa tehty työ yhteen. Todellinen työ M t Q N U ds EIz GA EA Virtuaalinen työ t U M d Qv Nds M M QQ NN ds ds ds EI GA EA t t z 0
11 Virtuaalisen työn eli virtuaalisen työn periaate W U Tasapainossa olevassa rakenteessa on ulkoisten kuormitusten suorittama virtuaalinen siirtymätyö yhtä suuri kuin sisäisten voimien suorittama virtuaalinen muodonmuutostyö. Sauvarakenteen virtuaaliseksi työyhtälöksi tulee M M QQ NN t t Fii Mii ds ds ds EIz GA EA Tavallisesti palkkirakenteissa kaksi viimeistä termiä voidaan jättää pois niiden pienuuden vuoksi. Leikkausmuodonmuutoksen vaikutus on olematon ja sauvan aksiaalisen venymän vaikutus on niin pieni, että käsin suoritettavissa laskelmissa sitä ei tarvitse tavanomaisissa rakenteissa huomioida. Jos rakenteeseen liittyy ainoastaan normaalivoiman rasittamia sauvoja, on normaalivoiman osuus arvioitava erikseen. Esimerkiksi
12 Työyhtälö saa näin muodon MM t t Fi i Mi i ds EIz Jos muodonmuutostyön merkki määritellään negatiiviseksi (työtä tehdään voimaa vastaan), voidaan virtuaalisen työn periaate kirjoittaa yleisemmin esitettyyn muotoon W U 0 eli tasapainossa olevan rakenteen saadessa mielivaltaisen virtuaalisen siirtymän, on ulkoisten ja sisäisten voimien suorittama työ yhteensä nolla. Maxwell in sääntö: F F i ik k ki Jos lisäksi Fi Fk ik ki Tämä tunnetaan Maxwell in sääntönä.
13 Siirtymien (kiertymien) määrittäminen virtuaalisen työn periaatteen avulla (työyhtälön avulla): M,( N, Q ), d, v, ds t ia ja voimat Fmuodostavat todellisen siirtymätilan i Valitaan virtuaalinen kuormatila siten, että työyhtälöstä saadaan ratkaistua mahdollisimman helposti: sen muodostaa ia pisteeseen i asetettu siirtymän suuntainen virtuaalinen voima ia F i M,( N, Q ), d, v, ds t Työyhtälö saa muodon ia MM t t ds EI jota kutsutaan ykkösvoimaperiaatteeksi. Ykkösvoimalla ei ole yksikköä. z 3
14 Jos halutaan määrittää kiertymä (=kiertymäkulma) jossakin kohdassa, asetetaan kyseiseen kohtaan ulkoinen virtuaalinen momentti Mi Työyhtälö on nyt i MM t t ds EI z ESIMERKKI Määritä voimaperiaatteella kuvan ulokepalkin ulokepään a) taipuma A b) kiertymä A Palkin taivutusjäykkyys on EI. RATKAISU a) Taivutusmomentti kuormittavasta voimasta F M t Fx Taivutusmomentti voimasta x M t 4
15 b) voima periaate: L L L MM t t F A d d d EI EI EI F L 3 F 3 3 / 3 x ( L 0 ) 0 EI x Fx x x x x 3EI 3 FL A 3EI Taivutusmomentti kuormittavasta voimasta F on edelleen M t Fx Taivutusmomentti momentista M t voima periaate: L L MM t t F A d d d EI EI EI 0 0 x Fx x x x F F EI EI FL A EI L / x ( L 0 ) 0 5
16 ESIMERKKI Määritä voimaperiaatteella kuvan tasaisella kuormituksella kuormitetun yksiaukkoisen palkin keskipisteen taipuma. Palkin taivutusjäykkyys on EI. RATKAISU Taivutusmomentin lauseke tasaisesta kuormituksesta q ( ) ql qx Mt x x Taivutusmomentti voimasta välille 0 x L/ M ( x) x t voima periaatteella saadaan Välille L/ x L lausekkeeksi tulee M ( x) x ( x L/ ) t L x L L/ MM t t x ql qx k d d EI EI 0 0 L x x x L xql qx x dx EI L/ Usein kannattaa laskea EI kertaista siirtymää, jolloin ei tarvitse kuljettaa /EI kerrointa mukana. Tehdään niin seuraavassa. 6
17 Lasketaan eteenpäin L/ 3 L 3 Lx x L x Lx x EIk q d d 4 4 xq x 0 L/ L/ 3 4 L 3 4 Lx x L x Lx x q / q / 0 6 L/ L L L L L L L L q q q ql ql ql k ql EI ESIMERKKI 3 Määritä voimaperiaatteella kuvan ulokepalkin ulokepään Mohrin integraalitaulukoita käyttäen a) taipuma A b) kiertymä A Palkin taivutusjäykkyys on EI. RATKAISU a) voimaperiaate L L t t A t t EI EI 0 0 MM d x MM d x 7
18 Tulointegraalitaulukon avulla (. sarake,. rivi) L L M M dx L FL EI 3 A t t EI 0 3 FL A 3EI bkohy b) voimaperiaate L L t t A t t EI EI 0 0 MM d x M M d x L ( ) ( FL) (. sar.,. rivi) EI FL A EI 8
19 ESIMERKKI 4 Määritä voimaperiaatteella kuvan yksiaukkoisen palkin keskipisteen taipuma. Käytä Mohrin tulointegraalitaulukkoa. Palkin taivutusjäykkyys on EI. RATKAISU voimaperiaate L L MM t t A d x M t M td x EI EI 0 0 L L L ql ( L ) EI 3 L L 5 L ql 5qL A EI EI ESIMERKKI 5 Määritä kuvan kehän pisteen B a) pystysiirtymä b) vaakasiirtymä Taivutusjäykkyys EI 000 knm. Suhteelliset jäykkyydet on merkitty kuvaan. RATKAISU voimaperiaate: asetetaan pisteeseen B vuorotellen haluttujen siirtymien suuntaiset voimat ja lasketaan virtuaalisen työn lausekkeella siirtymät. 9
20 a) pisteen B pystysiirtymä v L M M t t B d EI 0 x 3,5,8 M M dx M M dx EI t t t t EI 0 0 EIvb 35, m ( 8, m) ( 36, knm) 8, m + ( 8, m) ( 36, knm)=5,8knm 3 v 3 b 5, 8kNm 5, 8mm 000kNm b) pisteen B vaakasiirtymä u L M M t t B d EI 0 x 3,5,8 M M dx M M dx EI t t t t EI 0 0, m EIu 35 b ( 35, m) ( 36, knm) 0,05kNm u 3 b, 05kNm, 05mm 000kNm 0
21 ESIMERKKI 6 Määritä kuvan ulokepalkin pään C a) pystysiirtymä v C b) kiertymä C Taivutusjäykkyys EI 5000 knm. RATKAISU Taivutusmomentin arvo palkin tyvessä tasaisesta kuormituksesta: M m t kn/m m 4 A kNm a) pisteen C pystysiirtymä v C Asetetaan pisteeseen C voima alaspäin. voimaperiaate: d d 0d 4m EIC m 3 ( 6m) ( 60kNm) 3 067kNm L 4m 6m MtMt C x M t M t x M t x EI EI 0 0 4m knm C 708, mm 5000 knm
22 b) palkin kiertymä C Asetetaan pisteeseen C momentti myötäpäivään: L 4m MtMt C d x M t M td x 0 EI EI 0 0 4m EIC 3 ( ) ( 60kNm) 3,3kNm, knm C 4035, 0 (rad!) 5000 knm TEHTÄVÄ Määritä kuvan palkin taipumat pistevoiman kohdalla ja palkin keskellä. Palkin taivutusjäykkyys EI 60000kNm. RATKAISU
23 TEHTÄVÄ Määritä kuvan palkin taipumat pistevoiman kohdalla ja palkin keskellä. Palkin taivutusjäykkyys EI knm. RATKAISU V: C 7, 75mm TEHTÄVÄ 3 Määritä kuvan kehän pisteen B a) pystysiirtymä b) vaakasiirtymä Taivutusjäykkyys EI knm. Suhteelliset jäykkyydet on merkitty kuvaan. RATKAISU V: vb 780, mm 3
24 TEHTÄVÄ 4 Määritä kuvan palkin pisteiden B ja C taipumat. Palkin osien suhteelliset jäykkyydet on merkitty kuvaan. EI knm RATKAISU V: vc 575, mm TEHTÄVÄ 5 Määritä kuvan palkin vasemman kentän keskipisteen D ja palkin ulokepään C taipumat. Palkin EI 08kNm. RATKAISU V: vc 8, 44mm v 675, mm D 4
25 TEHTÄVÄ 6 Määritä kuvan palkin vasemman kentän keskipisteen D ja palkin ulokepään C taipumat. Palkin EI 08kNm. RATKAISU V: vc 0587, mm v 486, mm D TEHTÄVÄ 7 Määritä kuvan kehän a) siirtymät ub ja vb b) kiertymä C Taivutusjäykkyys EI knm. Suhteelliset jäykkyydet on merkitty kuvaan. RATKAISU V: v X mm B 5
26 TEHTÄVÄ 8 Määritä kuvan nivelkehän nivelpisteen C taipuma v C. Kehä on valmistettu kuumamuovatusta IPE80 profiilista, 7 4 jonka Iy, 370 mm ja kimmomoduli E 0GPa. RATKAISU V: v C 6, 03mm TEHTÄVÄ 8 Määritä kuvan nivelkehän nivelpisteen C taipuma v C. Kehä on valmistettu kuumamuovatusta IPE40 profiilista, 6 4 jonka Iy 38, 90 mm ja kimmomoduli E 0GPa. RATKAISU V: v C 3, 48mm 6
27 TEHTÄVÄ 0 Määritä kuvan palkin nivelpisteen C taipuma. Palkin valmistettu kuumamuovatusta IPE70, jonka 6 4 Iy 57, 900 mm. Kimmomoduuli E 0GPa. RATKAISU V: vc 3, 6mm RISTIKON SIIRTYMIEN LASKEMINEN Työyhtälöä M M QQ NN t t Fii Mii ds ds ds EIz GA EA käytetään seuraavalla tavalla: Ristikon sauvoissa ei ole taivutusmomenttia eikä leikkausvoimaa, joten työyhtälön oikealta puolelta jää kaksi ensimmäistä termiä pois. Ristikon niveliin voi kohdistaa ainostaan pistevoimia, josta seuraa, että vasemmalta puolelta toinen termi jää pois. Työyhtälöksi jää NN Fi i ds EA 7
28 Käytetään virtuaalista voimaa ulkoisena kuormatilana. Näin saadaan voimaperiaate ristikolle (pisteessä i, suunta a) NN ia ds EA Ristikon sauvoissa on tavallisesti vakiopoikkileikkauksia sauvoja (useimmiten keskenään erisuuruiset poikkipinta alat), joten rakenteen sisäisen työn integraali oikealla puolella voidaan laskea sauva kerrallaan. Kun vielä otetaan huomioon, että normaalivoimat (todellisesta ja virtuaalisesta kuormituksesta) ovat vakioita sauvan pituudella, niin saadaan s Lk s NN k i NN k k ia NN ds d s L k EA ( EA) ( EA) k k 0 k k voimaperiaate ristikolle on siis ia n k S S L ( EA) k k k k missä S k S k L k ( EA) k on sauvan k sauvavoima voimasta on sauvan k sauvavoima todellisesta kuormituksesta on sauvan k pituus on sauvan k vetojäykkyys 8
29 ESIMERKKI 7 Laske kuvan ristikon nivelen D pystysiirtymä voimaperiaatteella. Kaikki sauvat ovat lautaa (x5x00). Sauvat on tuettu siten, että nurjahdusta ei tapahdu. Materiaalin kimmomoduli E 6000MPa p RATKAISU Sauvavoimat kuormituksesta saadaan nivelpisteiden tsp menetelmällä: S 8, 333kN S 6, 667kN S3 0kN S4 8, 333kN S 6667, kn 5 Sauvavoimat voimasta nivelessä D (nivelten tsp menetelmällä) S S 0, 8333 S 0, 6667 S 0, S , E 6000N/mm A mm Taipuma lasketaan kaavalla v D 5 k S S L E A k k k k k Laskenta on tehty seuraavan sivun taulukossa. 9
30 Taulukko: Taipuman laskeminen: Robotohjelmiston antama tulos: 30
PALKIN KIMMOVIIVA M EI. Kaarevuudelle saatiin aiemmin. Matematiikassa esitetään kaarevuudelle v. 1 v
PALKIN KIMMOVIIVA Palkin akseli taipuu suorassa taivutuksessa kuormitustasossa tasokäyräksi, jota kutsutaan kimmoviivaksi tai taipumaviivaksi. Palkin akselin pisteen siirtymästä y akselin suunnassa käytetään
LisätiedotKJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti
KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako
LisätiedotHYPERSTAATTISET RAKENTEET
HYPERSTAATTISET RAKENTEET Yleistä Sauva ja palkkirakenne on on isostaattinen, jos tasapainoehdot yksin riittävät sen tukireaktioiden ja rasitusten määrittämiseen. Jos näiden voimasuureiden määrittäminen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 8.3.2016 Susanna Hurme Päivän aihe: Normaalivoiman, leikkausvoiman ja taivutusmomentin käsitteet (Kirjan luku 7.1) Osaamistavoitteet: Ymmärtää, millaisia sisäisiä
LisätiedotTasokehät. Kuva. Sauvojen alapuolet merkittyinä.
Tasokehät Tasokehä muodostuu yksinkertaisista palkeista ja ulokepalkeista, joita yhdistetään toisiinsa jäykästi tai nivelkehässä nivelellisesti. Palkit voivat olla tasossa missä kulmassa tahansa. Palkkikannattimessa
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,
LisätiedotTAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat
TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,
LisätiedotPUHDAS, SUORA TAIVUTUS
PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso
LisätiedotRakenteiden mekaniikka TF00BO01, 5op
Rakenteiden mekaniikka TF00BO01, 5op Sisältö: Nivelpalkit Kehät Virtuaalisen työn periaate sauvarakenteelle Muodonmuutosten laskeminen Hyperstaattiset rakenteet Voimamenetelmä Crossin momentintasausmenetelmä
LisätiedotRASITUSKUVIOT (jatkuu)
RASITUSKUVIOT (jatkuu) Rakenteiden suunnittelussa yksi tärkeimmistä tehtävistä on rakenteen mitoittaminen kestämään ja kantamaan annetut kuormitukset muotonsa riittävässä määrin säilyttäen. Kun on selvitetty
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla
LisätiedotOSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43
OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN Esa Makkonen Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 Tiivistelmii: Artikkelissa kehitetaan laskumenetelma, jonka avulla
LisätiedotAnalysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus
TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,
LisätiedotKJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,
LisätiedotSUORAN PALKIN TAIVUTUS
SUORAN PALKIN TAIVUTUS KERTAUSTA! Palkin rasituslajit Palkki tasossa: Tasopalkin rasitukset, sisäiset voimat, ovat normaalivoima N, leikkausvoima Q ja taivutusmomentti M t. Ne voidaan isostaattisessa rakenteessa
LisätiedotRASITUSKUVIOT. Kuvioiden laatimisen tehostamiseksi kannattaa rasitukset poikkileikkauksissa laskea seuraavassa esitetyllä tavalla:
RASITUSKUVIOT Suurimpien rasitusten ja niiden yhdistelmien selvittämiseksi laaditaan niin sanotut rasituskuviot, joissa esitetään kunkin rasituksen arvot kaikissa rakenteen poikkileikkauksissa. Rasituskuvioita
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat
LisätiedotLaskuharjoitus 1 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.
Lisätiedot2 SUORA SAUVA ja PALKKI Suoran sauvan puhdas veto tai puristus Suoran palkin taivutus Harjoitustehtäviä 71
7 SISÄLLYSLUETTELO Alkulause 5 Kirjallisuus 12 1 JOHDANTO 13 1.1 Yleistä 13 1.2 Rakenteiden statiikan historiallista taustaa 15 1.3 Rakennetyyppejä 17 1.4 Rakenteen tuennat 22 1.5 Kuormitukset 25 2 SUORA
LisätiedotMääritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja
TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti
LisätiedotHarjoitus 7. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 4: mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotSUORAN PALKIN RASITUKSET
SUORAN PALKIN RASITUKSET Palkilla tarkoitetaan pitkänomaista rakenneosaa, jota voidaan käsitellä yksiulotteisena eli viivamaisena. Palkkia kuormitetaan pääasiassa poikittaisilla kuormituksilla, mutta usein
LisätiedotTampere University of Technology
Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö
LisätiedotLaskuharjoitus 7 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan
LisätiedotSTATIIKKA. TF00BN89 5op
STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit
LisätiedotKJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino
KJR-C1001: Statiikka L3 Luento 27.2.2018: Jäykän kappaleen tasapaino Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon (ja laskuharjoitusten) jälkeen opiskelija
LisätiedotQ Q 3. [mm 2 ] 1 1 = L
EDE-00 Elementtimenetelmän perusteet. Harjoitus 5r Syksy 03. 400 mm 0 kn 600 mm A 400 mm B 8 kn 300 mm 5 kn 000 mm 8 kn 300 mm 300 mm 00 mm. Määritä pisteiden A ja B siirtymät elementtimenetelmällä, kun
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
Lisätiedot7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ
TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 3.3.2016 Susanna Hurme Päivän aihe: Ristikon sauvavoimat (Kirjan luvut 6.1-6.4) Osaamistavoitteet: Ymmärtää, mikä on ristikkorakenne Osata soveltaa aiemmin kurssilla
LisätiedotSISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa
SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotRTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa
RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset
LisätiedotSUORAN SAUVAN VETO TAI PURISTUS
SUORAN SAUVAN VETO TAI PURISTUS Kuva esittää puhtaan vedn tai puristuksen alaista suraa sauvaa Jännityskentän resultantti n N ( y, z)da Tietyin edellytyksin n pikkileikkauksen jännityskenttä tasainen,
LisätiedotLaskuharjoitus 2 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 25.2.2016 Susanna Hurme Päivän aihe: Voimasysteemien samanarvoisuus ja jakaantuneen voiman käsite (Kirjan luvut 4.7-4.9) Osaamistavoitteet: 1. Ymmärtää, mikä on
Lisätiedot10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko.
Elementtimenetelmän perusteet Esimerkki. kn kn/m 5 = 8 E= GPa mm 5 5 mm (a) 5 5 6 Y X (b) Kuva. Tasokehä ja sen elementtiverkko. Tarkastellaan kuvassa (a) olevan tasokehän statiikan ratkaisemista elementtimenetelmällä.
LisätiedotA on sauvan akselia vastaan kohtisuoran leikkauspinnan ala.
Leikkausjännitys Kuvassa on esitetty vetosauvan vinossa leikkauksessa vaikuttavat voimat ja jännitykset. N on vinon tason normaalivoima ja on leikkausvoima. Q Kuvan c perusteella nähdään N Fcos Q Fsin
LisätiedotMEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 6. harjoitus jännitysmitat Ratkaisut T 1: Ohuen suoran sauvan pituus referenssitilassa on 0 ja poikkipinta-ala on A 0. Sauvan akselin suuntaisen
LisätiedotRatkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.
7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa
LisätiedotHarjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.
LisätiedotMYNTINSYRJÄN JALKAPALLOHALLI
Sivu 1 / 9 MYNTINSYRJÄN JALKAPALLOHALLI Tämä selvitys on tilattu rakenteellisen turvallisuuden arvioimiseksi Myntinsyrjän jalkapallohallista. Hallin rakenne vastaa ko. valmistajan tekemiä halleja 90 ja
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017
KJR-C00 Kontinuumimekaniikan perusteet, viikko 47/017 1. Määritä oheisen kuvan mukaisen kanaalin portin
Lisätiedotnormaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät
TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
LisätiedotAksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu
TAVOITTEET Statiikan kertausta Kappaleen sisäiset rasitukset Normaali- ja leikkausjännitys Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu 1
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.
4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.
LisätiedotYEISTÄ KOKONAISUUS. 1 Rakennemalli. 1.1 Rungon päämitat
YEISTÄ Tässä esimerkissä mitoitetaan asuinkerrostalon lasitetun parvekkeen kaiteen kantavat rakenteet pystytolppa- ja käsijohdeprofiili. Esimerkin rakenteet ovat Lumon Oy: parvekekaidejärjestelmän mukaiset.
LisätiedotLAATTATEORIAA. Yleistä. Kuva 1.
LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.
Lisätiedot2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34
SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku
LisätiedotMUODONMUUTOKSET. Lähtöotaksumat:
MUODONMUUTOKSET Lähöoaksuma:. Maeraal on sorooppsa ja homogeensa. Hooken lak on vomassa (fyskaalnen lneaarsuus) 3. Bernoulln hypoees on vomassa (eknnen avuuseora) 4. Muodonmuuokse ova nn penä rakeneen
LisätiedotESIMERKKI 2: Kehän mastopilari
ESIMERKKI : Kehän mastopilari Perustietoja: - Hallin 1 pääpilarit MP101 ovat liimapuurakenteisia mastopilareita. - Mastopilarit ovat tuettuja heikomman suunnan nurjahusta vastaan ulkoseinäelementeillä.
LisätiedotExam III 10 Mar 2014 Solutions
TTY/ Department o Mechanical Engineering and Industrial Systems TE III / EDE_ / S EDE- Finite Ement Method Exam III Mar Solutions. Compute the dection at right end o the y,v / F structure using the potential
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet, tentti
KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
Lisätiedot3. SUUNNITTELUPERUSTEET
3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Myötölujuuden ja vetomurtolujuuden arvot f R ja f R y eh u m tuotestandardista tai taulukosta 3.1 Sitkeysvaatimukset: - vetomurtolujuuden ja myötörajan f y minimiarvojen
LisätiedotRatkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotMitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki.
YLEISTÄ Mitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki. Kaksi 57 mm päässä toisistaan olevaa U70x80x alumiiniprofiilia muodostaa varastohyllypalkkiparin, joiden ylälaippojen päälle
LisätiedotIntegrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
Lisätiedot8. Yhdistetyt rasitukset
TAVOITTEET Analysoidaan ohutseinäisten painesäiliöiden jännitystilaa Tehdään yhteenveto edellisissä luennoissa olleille rasitustyypeille eli aksiaalikuormalle, väännölle, taivutukselle ja leikkausvoimalle.
Lisätiedot1.3 Pilareiden epäkeskisyyksien ja alkukiertymien huomioon ottaminen
1. MASTOPILARIN MITOITUSMENETELMÄ 1.1 Käyttökohteet Mitoitusmenetelmä soveltuu ensisijaisesti yksilaivaisen, yksikerroksisen mastojäykistetyn teräsbetonikehän tarkkaan analysointiin. Menetelmän soveltamisessa
Lisätiedot10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat
TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-
LisätiedotKatso lasiseinän rungon päämitat kuvista 01 ja Jäykistys ja staattinen tasapaino
YLEISTÄ itoitetaan oheisen toimistotalo A-kulman sisääntuloaulan alumiinirunkoisen lasiseinän kantavat rakenteet. Rakennus sijaitsee Tampereen keskustaalueella. KOKOAISUUS Rakennemalli Lasiseinän kantava
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
LisätiedotESIMERKKI 4: Välipohjan kehäpalkki
ESIMERKKI 4: Välipohjan kehäpalkki Perustietoja - Välipohjan kehäpalkki sijaitsee ensimmäisen kerroksen ulkoseinien päällä. - Välipohjan kehäpalkki välittää ylemmän kerroksen ulkoseinien kuormat alemmille
LisätiedotHarjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
KJR-C001 Kiinteän aineen mekaniikan perusteet, IV/01 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 1:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä
LisätiedotLUJUUSOPPI. TF00BN90 5op. Sisältö:
LUJUUSOPPI TF00BN90 5op Sisältö: Peruskäsitteet Jännitystila Suoran sauvan veto ja puristus Puhdas leikkaus Poikkileikkaussuureiden laskeminen Suoran palkin taivutus Vääntö Nurjahdus 1 Kirjallisuus: Salmi
LisätiedotTuulen nopeuden mittaaminen
KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2
LisätiedotAx 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0
Tamprn tknillinn yliopisto Tknisn suunnittlun laitos EDE-00 Elmnttimntlmän prustt. Harjoitus 6 Syksy 0. F 00 OpNro 859 L 800 mm M T 85 K K 9 E 05000 MPa Kulmat ja pituudn lämpölaajnmiskrroin α 0.60865
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
LisätiedotESIMERKKI 1: NR-ristikoiden kannatuspalkki
ESIMERKKI 1: NR-ristikoiden kannatuspalkki Perustietoja - NR-ristikot kannatetaan seinän päällä olevalla palkilla P101. - NR-ristikoihin tehdään tehtaalla lovi kannatuspalkkia P101 varten. 2 1 2 1 11400
LisätiedotMITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/16
1/16 MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen Mitoitettava hitsattu palkki on rakenneosa sellaisessa rakennuksessa, joka kuuluu seuraamusluokkaan CC. Palkki on katoksen pääkannattaja. Hyötykuorma
LisätiedotRTEK-2000 Statiikan perusteet 4 op
RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat Osaamistavoitteet
LisätiedotKoesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen
LisätiedotRak-54.1200 Rakenteiden lujuusoppi Tentti 8.3.2007
Rak-54.00 Raketeide lujuusoppi Tetti 8..007 Kirjoita jokaisee koepaperii selvästi: opitojakso imi, koodi ja teti päivämäärä imesi puhutteluimi alleviivattua koulutusohjelma ja oppilasumero, mös tarkistuskirjai.
LisätiedotRAK-C3004 Rakentamisen tekniikat
RAK-C3004 Rakentamisen tekniikat Johdatus rakenteiden mitoitukseen joonas.jaaranen@aalto.fi Sisältö Esimerkkirakennus: puurakenteinen pienrakennus Kuormat Seinätolpan mitoitus Alapohjapalkin mitoitus Anturan
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
Lisätiedot2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys
SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotMAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotKJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018
Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:
LisätiedotMuodonmuutostila hum 30.8.13
Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan
Lisätiedot3. SUUNNITTELUPERUSTEET
3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Rakenneterästen myötörajan f y ja vetomurtolujuuden f u arvot valitaan seuraavasti: a) käytetään suoraan tuotestandardin arvoja f y = R eh ja f u = R m b) tai käytetään
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 2.3.2016 Susanna Hurme äivän aihe: Staattisesti määrätyn rakenteen tukireaktiot (Kirjan luvut 5.7 ja 6.6) Osaamistavoitteet: Ymmärtää, mitä tarkoittaa staattisesti
Lisätiedot1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotESIMERKKI 3: Nurkkapilari
ESIMERKKI 3: Nurkkapilari Perustietoja: - Hallin 1 nurkkapilarit MP10 ovat liimapuurakenteisia mastopilareita. 3 Halli 1 6000 - Mastopilarit on tuettu heikomman suunnan nurjahusta vastaan ulkoseinäelementeillä.
LisätiedotHarjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotJakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
Lisätiedot