Kompaktisuus ja filtterit

Koko: px
Aloita esitys sivulta:

Download "Kompaktisuus ja filtterit"

Transkriptio

1 Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L joss L on filtteriesikanta eli joss perhe { L : L L ja L on äärellinen} on filtterikanta (kyseistä perhettä kutsutaan filtteriesikannan L virittämäksi filtterikannaksi). Seuraava yksinkertainen havainto yhdistää filtteriesikannat kompaktisuuteen. Lemma 1 Joukon X epätyhjä osajoukkoperhe L on filtteriesikanta joss mikään perheen {X L : L L} äärellinen osaperhe ei ole X:n peite. Lause 2 Avaruus X on kompakti joss jokaisella X:n filtterikannalla on kasaantumispiste. Todistus. Välttämättömyys. Oletetaan, että X on kompakti. Olkoon L X:n filtterikanta. Tällöin myös perhe F = {L : L L} on filtterikanta. Tästä seuraa X:n kompaktisuuden ja Lemmman 1 nojalla, että avoin perhe {X F : F F} ei ole X:n peite. Täten on olemassa piste x X {X F : F F}; tällaiselle pisteelle pätee, että x F = {L : L L} ja x on siis L:n kasaantumispiste. Riittävyys. Oletamme, että jokaisella X:n filtterikannalla on kasaantumispiste ja osoitamme, että X on tällöin kompakti. Tehdään vastaväite: X:llä on avoin peite U, jolla ei ole äärellistä osapeitettä. Lemman 1 nojalla perhe F = {X U : U U} on filtteriesikanta; täten perhe ˆF = { F : F F ja F on äärellinen} on X:n filtterikanta ja oletuksen nojalla ˆF:llä on kasaantumispiste x. Koska ˆF on suljettu perhe, on voimassa x ˆF, mutta tämä on mahdotonta, koska ˆF = F = X U =.

2 Lause 3 Olkoon F sellainen avaruuden X filtterikanta, että jokainen perheen F joukko on kompakti ja suljettu. Tällöin F:n kasaantumispisteiden joukko K = F on kompakti ja epätyhjä ja jokaisella K:n ympäristöllä V on olemassa sellainen F F, että F V. Todistus. Olkoon F 0 perheen F joukko. Joukko K on suljettu ja K F 0, joten K on kompakti. Perhe F = {F F 0 : F F} on kompaktin avaruuden F 0 suljettu filtterikanta, ja sen kasaantumispisteiden joukko on F = F = K. Lauseen 2 nojalla on K. Olkoon V joukon K avoin ympäristö. Tällöin on voimassa = K V = F V = F V = {F V : F F }. Täten perheelle L = {F V : F F } on voimassa L =. Jos olisi voimassa L, niin L olisi F 0 :n suljettu filtterikanta. Koska L =, Lauseesta 2 seuraa, ettei L ole filtterikanta. Edellisen nojalla L, eli on olemassa sellainen F F, että (F F 0 ) V =. Edelleen on olemassa sellainen F F, että F F F 0. Nyt on voimassa F V. Lauseen 3 tulos pätee perheelle {L : L L}, missä L on kompaktin avaruuden filtterikanta. Tulos voitaisiin ilmaista sanomalla, että kompaktin avaruuden filtterikanta suppenee kohti kasaantumispisteidensä joukkoa. Lause 4 Kompaktin T 2 -avaruuden X jokainen kvasikomponentti on komponentti. Todistus. Teemme vastaväitteen: On olemassa sellainen x X, että Q(x, X) C(x, X). Tällöin joukko Q(x, X) on epäyhtenäinen, joten on voimassa Q(x,X) = F S, missä F,S c Q(x,X), F S = ja F S. On voimassa F,S c X, joten X:n normaalisuuden nojalla on olemassa sellaiset X:n avoimet joukot U ja V, että F U, S V ja U V =.

3 Perhe Q = {G X : G on reunaton ja x G} on filtterikanta ja sille pätee, että Q = Q(x,X). Koska on voimassa Q(x,X) = F S U V X, Lauseen 3 nojalla on olemassa sellainen G Q, että G U V. On voimassa x Q(x,X) eli x F S. Olkoon vaikkapa x F. Tällöin x U ja siis x G U. On voimassa G U X. Lisäksi pätee, että G U c X, koska G U = G V. Edellisen nojalla G U Q ja täten Q(x,X) G U. Tämä on ristiriita, sillä on voimassa S U = ja S Q(x,X). On ilmeistä, että topologisen avaruuden X piste x on X:n filtterikannan L kasaantumispiste joss x on filtterikannan L virittämän X:n filtterin kasaantumispiste. Täten Lauseen 2 tulos pysyy voimassa jos siinä filtterikanta korvataan filtterillä. Osoitamme seuraavaksi, että meidän ei tarvitse tarkastella edes kaikkia avaruuden filttereitä vaan ainoastaan eräitä hyvin erikoislaatuisia. Määritelmä Joukon E ultrafiltteri on E:n maksimaalinen filtteri eli sellainen E:n filtteri, joka ei sisälly aidosti mihinkään muuhun E:n filtteriin. Seuraavassa esitetään eräitä luonnehdintoja ultrafilttereille. Lause 5 Seuraavat ehdot ovat keskenään yhtäpitävät joukon E filtteriesikannalle L: A. L on ultrafiltteri. B. Jokaisella A E on voimassa joko A L tai E A L. C. Jokaisella E:n äärellisellä peitteellä U on voimassa L U. Todistus. Koska selvästi C B, riittää näyttää, että A C ja B A. A C: Olkoon L E:n ultrafiltteri. Osoitetaan, että ehto C toteutuu. Tehdään vastaväite: joukolla E on sellainen äärellinen peite U, että U F =. Olkoon U U. Koska U ei kuulu maksimaaliseen filtteriin F, perhe

4 F {U} ei ole filtteriesikanta (muuten sen virittämä E:n filtteri sisältäisi F:n aidosti); täten on olemassa sellainen äärellinen perhe F U F, että U F U =. Nyt F:n äärellisellä osaperheellä F = U U F U on voimassa ( U) F = eli F = ja tämä on mahdotonta, koska F on filtteri. B A. Oletetaan, että ehto B toteutuu. Osoitetaan, että L on ultrafiltteri. Perhe L on filtterikanta, sillä jos L,T L, niin L T L, koska muuten olisi voimassa E (L T) L ja L:llä olisi äärellinen osaperhe L = {L,T,E (L T)}, jolla L =. Lisäksi L on filtteri, sillä jos L L ja L A E, niin on voimassa L (E A) = ja siten E A / L ja edelleen A L. Filtteri L on selvästi maksimaalinen: jokaisella A P(E) L on voimassa E A L, joten L {A} ei sisälly mihinkään filtteriin. Seuraavien huomioiden avulla voimme laajentaa filtteriesikantoja ultrafilttereiksi. Lemma 6 (a) Jos L P(E) on filtteriesikanta ja A E, niin ainakin toinen perheistä L {A} tai L {E A} on filtteriesikanta. (b) Jos α on ordinaali ja (L β ) β<α on nouseva jono filtteriesikantoja (eli L β L γ kun β < γ < α), niin perhe L = β<α L β on filtteriesikanta. Todistus. (a) Jos kumpikaan ei ole, löydämme sellaiset äärelliset perheet K, N L, että K A = ja N A =, mutta tällöin (K N) =, mikä on mahdotonta. (b) Muussa tapauksessa löydämme sellaisen äärellisen L L, että L = ; koska äärellinen perhe L sisältyy nousevan jonon (L β ) β<α yhdisteeseen, on olemassa sellainen β < α, että L L β, mutta tämä on mahdotonta, koska L β on filtteriesikanta.

5 Ultrafiltterilause: (A. Tarski) Jokainen joukon E filtteriesikanta sisältyy johonkin E:n ultrafiltteriin. Todistus. Olkoon L joukon E filtteriesikanta. Esitetään perhe P(E) muodossa {A α : 0 < α < λ}, missä λ on ordinaali. Asetetaan L 0 = L ja määritellään rekursiivisesti E:n filtteriesikannat L α, α < λ, asettamalla L α = ( β<α L β) {B}, missä B = Aα, mikäli syntyvä perhe on filtteriesikanta ja muussa tapauksessa B = E A α. Lemmaa 6 käyttämällä näemme helposti, että L α on filtteriesikanta jokaisella α < λ ja myös, että perhe F = α<λ L α on filtteriesikanta. Rekursiivisesta konstruktiostamme seuraa, että jokaisella A E on voimassa joko A F tai E A F ja tästä seuraa Lauseen 5 nojalla, että F on ultrafiltteri. Lisäksi L = L 0 F. Tarkastellaan nyt ultrafiltterien suppenemista. Lemma 7 Olkoon D joukko, X avaruus, φ : D X ja F D:n ultrafiltteri. Tällöin X:n filtterikanta φ(f) = {φ(a) : A F} suppenee kohti jokaista kasaantumispistettään. Todistus. Olkoon p φ(f):n kasaantumispiste. Osoitetaan, että φ(f) p. Olkoon U p:n ympäristö. Joukko φ 1 (X U) ei kuuluu filtteriin F, koska on voimassa p / X U ja φ ( φ 1 (X U) ) X U. Koska F on ultrafiltteri, Lauseen 3 nojalla on voimassa φ 1 (U) = D φ 1 (X U) F; täten φ ( φ 1 (U) ) φ(f). Lisäksi φ ( φ 1 (U) ) U. Seuraus Avaruuden ultrafiltteri suppenee kohti jokaista kasaantumispistettään. Lause 8 Avaruus on kompakti joss jokainen avaruuden ultrafiltteri suppenee.

6 Todistus. Välttämättömyys seuraa Lauseesta 4 ja Lemman 7 korollaarista. Riittävyys. Oletetaan, että jokainen avaruuden X ultrafiltteri suppenee. Osoitetaan Lauseen 2 avulla, että X on kompakti. Olkoon L X:n filtteri. Ultrafiltterilauseen nojalla on olemassa sellainen X:n ultrafiltteri F, että L F. Oletuksen nojalla on olemassa sellainen x X, että F x. Nyt on voimassa x {H : H F} {H : H L} ja täten x on L:n kasaantumispiste. Todistamme nyt Lauseen 8 avulla yleisen topologian kenties tärkeimmän tuloksen. Tihonovin lause: Kompaktien avaruuksien muodostama tuloavaruus on kompakti. Todistus. Olkoon X i kompakti avaruus jokaisella i I ja X = i I X i. Osoitetaan Lauseen 8 avulla, että X on kompakti. Olkoon F avaruuden X ultrafiltteri. Jokaisella i I, perhe p i (F) = {p i (H) : H F} on avaruuden X i filtteri, joten sillä on Lauseen 2 nojalla kasaantumispiste x i. Osoitetaan, että x = (x i ) i I on F:n kasaantumispiste avaruudessa X. Tehdään vastaväite: on olemassa sellainen joukko H F, että x / H. Tällöin on olemassa sellainen äärellinen J I ja jokaisella j J sellainen V j η xj (X j ), että on voimassa H j J p 1 j (V j ) =. Koska F on filtteri, on olemassa sellainen k J, että p 1 k (V k) / F ja koska F on ultrafiltteri, on voimassa X p 1 k (V k) F; tämä on kuitenkin mahdotonta, koska p k (X p 1 k (V k)) = X k V k, eikä filtterin p k (F) kasaantumispiste x k kuulu joukon X k V k sulkeumaan. Edellisen nojalla x on F:n kasaantumispiste. Lemman 7 nojalla on voimassa F x. Seuraus I A on kompakti jokaisella joukolla A.

7 Seuraus * (Banach-Alaoglun lause) Banachin avaruuden X duaalin X yksikkökuula B = {φ X : φ 1} on kompakti heikko- -topologiassaan. Todistus. Olemme aikaisemmin todenneet, että X :n heikko- -topologia on sama kuin X :n relatiivitopologia tuloavaruudessa R X. Jos φ B, niin φ(x) φ x x jokaisella x X; täten B sisältyy R X :n aliavaruuteen K = [ ] x X x, x. Tihonovin lauseen nojalla avaruus K on kompakti. Täten B :n kompaktisuus seuraa, kun osoitetaan, että B on suljettu K:ssa. Merkitään S x,y = {f R X : f(x+y) = f(x) + f(y)} kaikilla x,y X. Joukot S x,y ovat suljettuja: jos f R X S x,y ja jos merkitsemme ǫ = 1 4 f(x + y) f(x) f(y), niin f:n ympäristö { g R X : g(z) f(z) < ǫ jokaisella z {x,y,x + y} } ei leikkaa joukkoa S x,y. Vastaavasti, kaikilla x X ja α R, joukko T α,x = {f R X : f(αx) = αf(x)} on suljettu. Tästä seuraa, että kaikkien lineaarifunktioiden joukko L = {S x,y T α,z : x,y,z X ja α R} on suljettu R X :ssä. Koska B = L K, joukko B on suljettu kompaktissa avaruudessa K. Esittelemme lopuksi erään mielenkiintoisen luokan ultrafiltterien avulla määriteltäviä kompakteja avaruuksia. Esimerkki * Olkoon D joukko. Merkitsemme βd:llä kaikkien joukon D ultrafilttereiden muodostamaa joukkoa. Jokaisella A D merkitsemme  = {F βd : A F}. Perhe B = { : A D} on joukon βd erään topologian kanta, sillä on voimassa B = βd (koska F jokaisella F βd) ja lisäksi kaikilla Â, B B on voimassa  B =  B B. Merkitsemme kyseistä topologiaa τ:lla ja teemme βd:stä topologisen avaruuden varustamalle sen topologialla τ.

8 Avaruuden βd kannan B joukot ovat reunattomia, sillä jokaisella  B on Lauseen 5 nojalla voimassa βd  = D A B. Täten βd on nollaulotteinen avaruus; tästä seuraa, koska βd on selvästi T 0 -avaruus, että βd on Hausdorffin avaruus. Osoitamme, että βd on kompakti. Olkoon G βd:n avoin peite. Tällöin perhe B = {B B : B G jollain G G} on βd:n peite. Merkitään A = {A D :  B }. Perhe A on joukon D peite, sillä jokaisella x D, kiintofiltteri K x = {A D : x D} on D:n ultrafiltteri eli K x βd ja jos K x  B, niin x A A. Osoitamme, että D:n peitteellä A on äärellinen osapeite. Teemme vastaväitteen: A:lla ei ole äärellistä osapeitettä. Lemman 1 nojalla perhe L = {D A : A A} on D:n filtteriesikanta. Ultrafiltterilauseen nojalla on olemassa sellainen D:n ultrafiltteri F, että L F. Koska F βd = B, on olemassa sellainen A A, että F Â. Nyt A F ja toisaalta D A L F, mikä on mahdotonta. On siis olemassa äärellinen A A, joka on D:n peite. Lauseen 5 nojalla on voimassa A A  = βd eli perhe B = { : a A } on βd:n peite. Valitaan jokaisella B B sellainen joukko G B G, että B G B. Tällöin {G B : B B } on βd:n peitteen G äärellinen osapeite. Merkitään jokaisella x D kiintofiltteriä K x symbolilla x ja pannaan merkille, että x on avaruuden βd erakkopiste, sillä {x} = { x}. Merkitään edelleen D = { x : x D}. Jos tulkitsemme D:n diskreetiksi avaruudeksi, niin avaruus βd voidaan tulkita D:n kompaktisoinniksi upotuksen x x välityksellä. Diskreetin avaruuden D kopio D on tiheä βd:ssä, sillä jos  B ja Â, niin A ja x  jokaisella x A. Osoitetaan, että avaruudella βd on seuraava merkittävä ominaisuus: jokainen kuvaus f : D K, missä K on kompakti Hausdorffin avaruus, voidaan jatkaa jatkuvaksi kuvaukseksi βf : βd K. Olkoon siis K

9 kompakti Hausdorffin avaruus ja f kuvaus D K. Määritellään ensin kuvaus f : D K kaavalla f(x) = f( x) ja määritellään sitten kuvaus βf : βd K seuraavasti. Olkoon F βd. Kompaktin avaruuden K filtterikannalla f(f) = { f(a) : A F} on Lauseen 4 ja Lemman 7 nojalla rajapiste p; koska K on Hausdorffin avaruus, rajapiste p on yksikäsitteinen ja voimme merkitä βf(f) = p. Kuvaus βf määräytyy siis ehdosta f(f) βf(f). Kuvaus βf on kuvauksen f jatke, sillä jokaisella x D on voimassa {f( x)} = f{x} f( x) ja täten βf( x) = f( x). Näytetään, että βf on jatkuva. Olkoon G K ja F (βf) 1 (G). Tällöin βf(f) G ja avaruuden K säännöllisyyden nojalla on olemassa sellainen G K, että βf(f) G ja G G. Koska f(f) βf(f), on olemassa sellainen A F, että f(a) G. Nyt f(a) G G ja tästä seuraa, että pisteen F ympäristö Â sisältyy joukkoon (βf) 1 (G): jokaisella H Â on voimassa f(a) f(h) ja tästä seuraa, että filtterikannan f(h) rajapisteelle βf(h) on voimassa βf(h) f(a) G. Edellä esitetyn nojalla on voimassa (βf) 1 (G) βd. Jos edellä joukko D on äärellinen, niin kaikki D:n ultrafiltterit ovat kiintofilttereitä, joten βd = D D. Sensijaan jo numeroituvasti äärettömän joukon N määräämä avaruus βn on hyvin monimutkainen ja mielenkiintoinen. Avaruus βn on separoituva ja kompakti Hausdorffin avaruus ja sillä on seuraava universaalisuusominaisuus tällaisten avaruuksien luokassa: jokainen separoituva kompakti Hausdorffin avaruus voidaan esittää avaruuden βn jatkuvana kuvana. Tämä seuraa edellä esitetystä, sillä jos M on kompaktin Hausdorff-avaruuden K numeroituva ja tiheä osajoukko, niin on olemassa surjektio f : Ñ M ja kuvauksen f jatke βf on jatkuva surjektio βn K.

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot

Hieman joukko-oppia. A X(A a A b A a b).

Hieman joukko-oppia. A X(A a A b A a b). Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

Topologia Syksy 2010 Harjoitus 11

Topologia Syksy 2010 Harjoitus 11 Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Topologian demotehtäviä

Topologian demotehtäviä Topologian demotehtäviä 31.10.2012 1.1 Olkoon X joukko ja {T α } α I epätyhjä (eli I ) perhe X:n topologioita. Ovatko joukot T α P(X) ja/tai T α P(X) α I välttämättä X:n topologioita? Tässä on ehkä syytä

Lisätiedot

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause

Lisätiedot

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla MAT21007 Mitta ja integraali Harjoitus 2 viikko 25.3-29.3 2019) Palauta mieleen: monisteen luku 0; Topologia I) avaruuden d euklidinen etäisyys, avoimet kuulat ja joukot. Ohjausta laskuharjoitusten tekoon:

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

U β T. (1) U β T. (2) {,X} T. (3)

U β T. (1) U β T. (2) {,X} T. (3) 1.1 a) Joukkoperhe T = α I T α P(X) on topologia. Todistus. Osoitetaan, että topologian määritelmän 1.1 ehdot (1), (2) ja (3) toteutuvat. Ehtoa (1) varten olkoon {U β β J} T. Pitää osoittaa, että U β T.

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Johdanto Lassi Kurittu

Johdanto Lassi Kurittu Johdanto Tämä luentomoniste on kirjoitettu syksyn 2012 topologian kurssin jälkimmäisen osan luentomateriaaliksi. Kurssin ensimmäisellä puoliskolla käsiteltiin metrisiä avaruuksia, mutta nyt siirrytään

Lisätiedot

Topologisten avaruuksien metristyvyys. Toni Annala

Topologisten avaruuksien metristyvyys. Toni Annala Topologisten avaruuksien metristyvyys Toni Annala Sisältö 1 Johdanto 2 2 Topologiset avaruudet 3 3 Erotteluaksioomat 8 4 Metristyvät avaruudet 13 5 Metristyvyys 17 1 Luku 1 Johdanto Topologia on matematiikan

Lisätiedot

Metristyvät topologiset avaruudet

Metristyvät topologiset avaruudet TAMPEREEN YLIOPISTO Pro gradu -tutkielma Arttu Ojanperä Metristyvät topologiset avaruudet Informaatiotieteiden yksikkö Matematiikka Tammikuu 2016 Tampereen Yliopisto Informaatiotieteiden yksikkö OJANPERÄ,

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

PARAKOMPAKTIT AVARUUDET JA SMIRNOVIN METRISTYVYYSLAUSE

PARAKOMPAKTIT AVARUUDET JA SMIRNOVIN METRISTYVYYSLAUSE PARAKOMPAKTIT AVARUUDET JA SMIRNOVIN METRISTYVYYSLAUSE PRO GRADU -TUTKIELMA HELSINGIN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS SAKU SNICKER OHJAAJA: ERIK ELFVING HELSINGIN YLIOPISTO HELSINGFORS

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA

TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA Arttu Ojanperä (Eero Hyryn luentojen mukaan) 2013 Sisältö 1 Johdanto 4 1 Jatkuvat kuvaukset........................ 4 2 Avoimet joukot..........................

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Kompaktisuus ja kompaktisointi

Kompaktisuus ja kompaktisointi Kompaktisuus ja kompaktisointi Mikko Salo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2017 Tiivistelmä: Mikko Salo, Kompaktisuus ja kompaktisointi matematiikan

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Kompaktien avaruuksien ominaisuuksia

Kompaktien avaruuksien ominaisuuksia Kompaktien avaruuksien ominaisuuksia Pro gradu -tutkielma Aleksi Karhu 249670 Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Päivämäärä 24.6.2019 Tiivistelmä Tämän työn tavoitteena on tutkia, mitä

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Yleistettyjen jonojen käyttö topologiassa

Yleistettyjen jonojen käyttö topologiassa Yleistettyjen jonojen käyttö topologiassa Antti Karvinen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2016 Tiivistelmä: Antti Karvinen, Yleistettyjen jonojen

Lisätiedot

TOPOLOGISET RYHMÄT. I Topologisten ryhmien yleistä teoriaa

TOPOLOGISET RYHMÄT. I Topologisten ryhmien yleistä teoriaa Heikki Junnila TOPOLOGISET RYHMÄT I Topologisten ryhmien yleistä teoriaa 1. Määritelmä, perusominaisuuksia..... 1 2. Aliryhmät ja tekijäryhmät. Jatkuvat homomorfismit. Tulot..... 13 3. Yhtenäisyys ja epäyhtenäisyys

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

p-laplacen operaattorin ominaisarvo-ongelmasta

p-laplacen operaattorin ominaisarvo-ongelmasta p-laplacen operaattorin ominaisarvo-ongelmasta Jarkko Siltakoski Pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 R N x alue B(x 0, r) E E E int E E U E Merkintöjä

Lisätiedot

SUORAVIIVAISTA AJATTELUA OSA III TOPOLOGISET VEKTORIAVARUUDET JA DISTRIBUUTIOT

SUORAVIIVAISTA AJATTELUA OSA III TOPOLOGISET VEKTORIAVARUUDET JA DISTRIBUUTIOT SUOAVIIVAISTA AJATTELUA OSA III TOPOLOGISET VEKTOIAVAUUDET JA DISTIBUUTIOT Lauri Kahanpää Jyväskylän yliopisto 2013 1 2 TOPOLOGISET VEKTOIAVAUUDET JA DISTIBUUTIOT Sisältö Aluksi 4 Topologiset vektoriavaruudet

Lisätiedot

Analyyttisten ja koanalyyttisten ekvivalenssirelaatioiden ekvivalenssiluokkien lukumääristä

Analyyttisten ja koanalyyttisten ekvivalenssirelaatioiden ekvivalenssiluokkien lukumääristä Analyyttisten ja koanalyyttisten ekvivalenssirelaatioiden ekvivalenssiluokkien lukumääristä Matti Pirinen Helsingin yliopisto Matematiikan laitos Pro gradu -tutkielma 20.11.2003 Sisältö Johdanto..................................

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi Solmu 2/2012 1 Yhtenäisyydestä Tuomas Korppi Johdanto Tarkastellaan kuvassa 1 näkyviä verkkoa 1 ja R 2 :n (eli tason) osajoukkoa. Kuvan 2 verkko voidaan jakaa kolmeen osaan niin, että osien välillä ei

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Johdatus topologiaan (4 op)

Johdatus topologiaan (4 op) 180305 Johdatus topologiaan (4 op) Kevät 2009 1. Alkusanat Sana topologia on johdettu kreikan kielen sanoista topos ja logos, jotka merkitsevät paikkaa ja tietoa. Jo 1700-luvun alussa käytettiin latinan

Lisätiedot

ei ole muita välikuntia.

ei ole muita välikuntia. ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot

Tehtävä 8 : 1. Tehtävä 8 : 2

Tehtävä 8 : 1. Tehtävä 8 : 2 Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella

Lisätiedot

Reaalianalyysin perusteita

Reaalianalyysin perusteita Reaalianalyysin perusteita Heikki Orelma 16. marraskuuta 2008 Sisältö 1 Johdanto 3 2 Mitallisuus 3 3 Yksinkertaiset funktiot 6 4 Mitat ja integrointi 7 5 Kompleksisten funktioiden integrointi 10 6 Nolla-mittaisten

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Metriset avaruudet ja Topologia

Metriset avaruudet ja Topologia Metriset avaruudet ja Topologia 1.0 0.5 0.2 0.4 0.6 0.8 1.0-0.5-1.0 Jouni Parkkonen Luentoja Jyväskylän yliopistossa syksyllä 2018 Sisältö I Metriset avaruudet 7 1 Metriset avaruudet 9 1.1 Määritelmä ja

Lisätiedot

4. Martingaalit ja lokaalit martingaalit

4. Martingaalit ja lokaalit martingaalit STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

Luonnollisten lukujen suurista osajoukoista

Luonnollisten lukujen suurista osajoukoista Luonnollisten lukujen suurista osajoukoista Pro gradu -tutkielma Minna Turunen 234482 Itä-Suomen yliopisto Fysiikan ja matematiikan laitos Kevät 2016 Sisältö Johdanto 3 1 Luonnollinen tiheys 7 1.1 Esimerkki

Lisätiedot

Metriset avaruudet 2017

Metriset avaruudet 2017 Metriset avaruudet 2017 Jouni Parkkonen Merkintöjä N = {0, 1, 2,... } luonnolliset luvut #(A) N { } joukon A alkioiden lukumäärä A B = {a A : a / B} joukkojen A ja B erotus. A B on joukkojen A ja B erillinen

Lisätiedot

Tasainen suppeneminen ja sen sovellukset

Tasainen suppeneminen ja sen sovellukset Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence

Lisätiedot

Metrisoituvuuden yleistämisestä. Joonas Ilmavirta

Metrisoituvuuden yleistämisestä. Joonas Ilmavirta Metrisoituvuuden yleistämisestä Joonas Ilmavirta Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2011 Sisältö 1. Johdanto 1 2. Järjestys ja metriikka 2 2.1. Järjestys 2 2.2. Ordinaaleista

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Metriset avaruudet ja Topologia

Metriset avaruudet ja Topologia Metriset avaruudet ja Topologia 1.0 0.5 0.2 0.4 0.6 0.8 1.0-0.5-1.0 Jouni Parkkonen Luentoja Jyväskylän yliopistossa syksyllä 2017 Sisältö I Metriset avaruudet 5 1 Metriset avaruudet 7 1.1 Määritelmä ja

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

2 Konveksisuus ja ratkaisun olemassaolo

2 Konveksisuus ja ratkaisun olemassaolo 2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Kalle

Lisätiedot

Determinoiruvuuden aksiooma

Determinoiruvuuden aksiooma Determinoiruvuuden aksiooma Vadim Kulikov Esitelma 12 Maaliskuuta 2008 Tiivistelma. Valinta-aksioomasta seuraa, etta Leb(R) ( P(R), eli on olemassa epamitallisia joukkoja. Tassa esitelmassa nahdaan, etta

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v.

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v. FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 2006 ja kevät 2008 Kari Astala ja Petteri Piiroinen (v. 2006) Hans-Olav Tylli (v. 2008 hienosäätöä)

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Fourier-analyysia ryhmillä

Fourier-analyysia ryhmillä Fourier-analyysia ryhmillä Pekka Salmi Kevät 2010 1 Topologian pikakurssi Avoimet, suljetut, kompaktit joukot Olkoon X ei-tyhjä joukko ja P(X) = { A; A X } joukon X osajoukkojen muodostama joukko. Kokoelma

Lisätiedot

Metriset avaruudet ja Topologia

Metriset avaruudet ja Topologia Metriset avaruudet ja Topologia 1.0 0.5 0.2 0.4 0.6 0.8 1.0-0.5-1.0 Jouni Parkkonen Luentoja Jyväskylän yliopistossa syksyllä 2018 Sisältö I Metriset avaruudet 5 1 Metriset avaruudet 7 1.1 Määritelmä ja

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto Tehtävä 3 : 1 Olkoon G mielivaltainen epätyhjä verkko. Erityisesti siltä ei vaadita äärellisyyttä. Polut ovat verkon G koosta riippumatta määritelmän mukaan aina äärellisiä, joten kahden solmun välisen

Lisätiedot

DISKREETTIÄ MATEMATIIKKAA.

DISKREETTIÄ MATEMATIIKKAA. Heikki Junnila DISKREETTIÄ MATEMATIIKKAA. LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset..... 3 2. Luonnolliset luvut. Induktio.... 9 3. Äärelliset joukot.... 14 4. Joukon ositukset.

Lisätiedot

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n.

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n. Analyysi I ja II lisämateriaalia HAARUKOINTI Tässä käsitellään kootusti sellaisia differentiaali- ja integraalilaskennan kurssin kysymyksiä, joissa joudutaan syventymään lukusuoran hienovaraisimpiin ominaisuuksiin.

Lisätiedot

15. Laajennosten väliset homomorfismit

15. Laajennosten väliset homomorfismit 15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti

Lisätiedot

Metriset avaruudet 2017

Metriset avaruudet 2017 Metriset avaruudet 2017 Jouni Parkkonen Lukijalle Nämä ovat muistiinpanoni metristen avaruuksien kurssille syyslukukaudella 2017. Kurssi on johdatus metristen avaruuksien teoriaan. Peruskäsitteiden (metriikka,

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Analyysi I (mat & til) Demonstraatio IX

Analyysi I (mat & til) Demonstraatio IX Analyysi I (mat & til) Demonstraatio IX 16.11. 2018 II välikoe 19.11. klo 9 salissa IX. Ilmoittaudu NettiOpsussa 12.11. mennessä. Koealue: Funktion raja-arvo, jatkuvuus ja Bolzanon lause, ts. kirjan luku

Lisätiedot

Sisältö. 1 Johdanto 1

Sisältö. 1 Johdanto 1 ÍÒ ÓÖÑ Ò Ú ÖÙÙ Ò À Ù ÓÖ Ò ØÝ ÐÐ ØÝÑ À ÒÖ ÌÙÓÑ Ò Ò ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÌÓÙ Ó ÙÙ ¾¼¼ ÍÆÁÎ ÊËÁÌ Ç ÌÍÊÃÍ È ÊÌÅ ÆÌ Ç Å ÌÀ Å ÌÁ Ë Áƹ¾¼¼½ ÌÍÊÃÍ ÁÆÄ Æ Sisältö 1 Johdanto 1 2 Esitietoja uniformista avaruuksista 1

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Mitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille

Mitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille Harjoitus 1, 30.10.2015 1. Olkoon f : A! [0, 1] mitallinen ja ma) < 1. Näytä, että josonp>1javakio Mt} apple M 2. Olkoon f 2 L 1 A). Näytä, että 2 kaikilla

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot