Chapter 7. Entropic forces at work
|
|
- Hanna Nurminen
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 Chapter 7. Entropic forces at work Osmoottinen paine Pintaännitys Tyhennysvuorovaikutus MIKSI?
2 Hiukan termodynamiikan kertausta Tasapainotila: systeemiin vaikuttava nettovoima = 0 Jos vain yksi systeemin muuttua (esim. V, E tai N) voi muuttua: Tilavuus V: S(V) maksimoituu spontaanisti laaeneminen Energia E: S(E) maksimoituu spontaanisti lämpövirtaus Ainemäärä N: S(N) maksimoituu spontaanisti sekoittuminen Yleensä systeemin useiden muuttuien arvot voivat muuttua Esim. V, E a N: S = S(V,E,N) Tilanyhtälöt kuvaavat muuttuien väliset riippuvuudet Saadaan kokeellisesti tai mikroskooppisista malleista Systeemi kuvataan riippumattomilla muuttuilla Muuttuia, oiden arvoa voidaan mitata tai kontrolloida systeemin raalla Esim. V, E, N Riippumattomat muuttuat valitaan systeemin raoen perusteella Eristetty, sulettu vai avoin systeemi
3 Määritelmiä: Pienille entropiamuutoksille: M S S S ds de dv dn E V N V, N E, N i1 V, E, Ni Vastaavasti pienille energiamuutoksille: M E E E de ds dv dn S V N V, N S, N i1 V, S, N Osittaisderivaatat mitattavissa olevia fysikaalisia suureita, määritellään: T E E E p S V, N V S, N N de TdS pdv dn T, p a intensiivisuureita: eivät riipu systeemin koosta M i1 Sulettu systeemi: tumma boksi Avoin systeemi: tumma a vaalea boksi i V, S, N i systeemi sisältää M eri ainelaia Kemiallinen potentiaali, käsitellään myöhemmin
4 ds total = 0 määrää termisen, mekaanisen a kemiallisen tasapainon Kaksi systeemiä on termisessä tasapainossa, kun niillä on sama lämpötila T; ei välttämättä sama energia tai entropia Kun systeemi kontaktissa ympäristöön, systeemin E, V a N voivat muuttua (fluktuoida); tällöin riippumattomina muuttuina intensiivisuureita kuten T, p tai Vakio T: systeemi voi vaihtaa energiaa ympäristön kanssa Vakio p: systeemi voi vaihtaa tilavuutta ympäristön kanssa Vakio : systeemi voi vaihtaa ainetta ympäristön kanssa
5 Helmholtzin vapaa energia F Systeemeissä, oissa vakio T a V, F(T,V,N) minimoituu tasapainossa F E TS df de TdS SdT Sioittamalla de TdS pdv dn M i1 M i1 vakiolämpötilassa dt 0, vakiotilavuudessa dv 0, suletussa systeemissä ilman kemiallisia reaktioita dn 0 M i1 df TdS pdv dn TdS SdT SdT pdv dn
6 Gibbsin vapaa energia G Systeemeissä, oissa vakio T a p, G(T,p,N) minimoituu tasapainossa G E pv TS dg de pdv Vdp TdS SdT Sioittamalla de TdS pdv dn M dg TdS pdv dn pdv Vdp TdS SdT i1 vakiolämpötilassa dt 0, vakiopaineessa dp 0, M i1 suletussa systeemissä ilman kemiallisia reaktioita dn 0 M i1 SdT Vdp dn
7 Vapaa energia F a = E a -TS a voi pienentyä 1. Pienentämällä energiaa 2. Kasvattamalla entropiaa 3. 1 & 2 4. Entropiatermi TS a voi pienetä, kunhan energiatermi pienenee enemmän 5. Energia voi kasvaa, kunhan entropiatermi TS a kasvaa enemmän Entrooppinen voima: Vapaan energian entropiatermin muutoksen aiheuttama voima Entrooppiset voimat tärkeitä makromolekyylien a pintoen välisissä vuorovaikutuksissa Biologisesti tärkeitä entrooppisia voimia: Elektrostaattisia Hydrofobisia Tyhennysilmiöt
8 Biologinen kysymys: Mikä pitää solut täynnä nestettä? Miten solut voivat aaa nestettä painegradienttia vastaan? Fysikaalinen idea: Osmoottisen paineen avulla. Osmoottinen paine on yksi entrooppisista voimavaikutuksista.
9 Entrooppisten voimien mikroskooppinen kuva Ideaalikaasun paine vakiotilavuudessa: Ideaalikaasu (m, N molek.) lämpövarastoon kytk. boksissa V = L 3 = vakio f 1 df( L) p, F ( L ) kbt ln Z ( L ) A A dl Partitiofunktio? Z E kbt e F = E - TS Sisältää sisäenergiatermit e i k T B pn L L p mkBT 1 1 N N 0 0 Z( L) C d r d p... d r d p e C d r d r d p e d p e 3 N vakioita L dz( L) N N1 kbt dl kbt A NL NkBT p N N A Z( L) A A L V pn L L p mkBT 3 2mkBT 1... N 1... N 0 0 T Ideaalikaasulaki
10 Ideaalikaasun tilavuus vakiopaineessa: L Ideaalikaasu sylinterissä, onka poikkipinta-ala A Potentiaalienergia = f L V A L Boltzmann-akauma (tasapaino):? M f f Tilan todennäk. 1,..., N,, L P r p L p Ce 3 3 L P L, r1,... d r1... d p Nd pmäntädl 3 3 P L, r1,... d r1... d p Nd pmäntädl palon vakiotermeä k T f B N 1 N 1 kbt pa mäntä p1... pn pmäntä fl 2mkBT 2MkBT kbt 0 0 dl e dl e fl k T B fl k T N L L kbt kbt V L A N 1 N suurilla N, tasapainossa p p B L N
11 Osmoottinen paine Paine, oka tarvitaan pysäyt- tämään ainepitoisuuseroen synnyttämä liuotinvirtaus Vesi, ei ideaalikaasu! Tark. laimeaa liuosta Liuenneet partikkelit veden ympäröimiä Keskinäiset vuorovaikutukset harvinaisia Mikrotiloen energia ei riipu partikkelien paikasta Vesimolekyylit mukana partitiofunktiossa, mutta vesi kaikkialla paikka- a liikemäärätermit vakioita Ratkaisu kuten ideaalikaasu vakiotilavuudessa (pätee laimeille liuoksille). Nyt tilavuus V se, ossa liuenneet molekyylit (N kpl) N pequil ckbt missä c van t Hoffin relaatio V
12 Osmoottisen paineen kokeellinen määrittäminen: Tasapainossa paine-ero p c k T z g 0 B f m Esim. Veren plasma (ionipitoisuuksien summa n. 300 mm) laitetaan yhteyteen tislattua vettä sisältävään säiliöön. Kuinka korkea plasmapatsaan on oltava estääkseen veden virtaus plasmaan?
13 Osmoottisen paineen suuruus: Tasapainossa paine-ero p c k T z g 0 B f m Esim. Veren plasma (ionipitoisuuksien summa n. 300 mm) laitetaan yhteyteen tislattua vettä sisältävään säiliöön. Kuinka korkea plasmapatsaan on oltava estääkseen veden virtaus plasmaan? z f c0kbt g m mol/m 610 1/mol1,3810 J/K 310K m 1000 kg/m 9,8 m/s
14 Pintaännitys Faasiraapinnalla molekyylit kokevat erilaiset vuorovaikutukset raapinnan eri puolilta Esim. neste-kaasu: Törmäyksiä kaasupuolelta harvemmin Attraktiot nestepuolella Kaasu-neste raapinta: Kaasussa kylläinen kyseisen nesteen höyry Nestepinnan laaentaminen vaatii energiaa Esim. vesitippa pallomainen ilmassa Nestepinnan laaentamiseen 1 m 2 :llä kuluva energia = spesifinen pintaenergia [ ] = J/m 2 Nesteen pintaännitys = voima pituusyksikköä kohden, oka pyrkii pitämään nesteen pinta-alan minimissään Nesteen pintaännitys = spesifinen pintaenergia [ ] = N/m = J/m 2
15 Esim. Pyöreitä solua ( = 10 m), tislattuun veteen, 295 K. Sytoplasman ionipitoisuuksien summa on noin 300 mm. Kalvohaoamisen pintaännitys N/m
16 Esim. Pyöreitä solua ( = 10 m), tislattuun veteen, 295 K. Sytoplasman ionipitoisuuksien summa on noin 300 mm. Kalvohaoamisen pintaännitys N/m Pallon (A = 4 R 2 ) venytys: R R + dr da da dr 8 RdR dr R R+dR Venymiseen tarvittava energia = da Pallon laaentamisen aiheuttama vapaan energian väheneminen = pdv : Tasapainossa 2 pdv p dr p 4 R dr da RdR p R dr Rp 2 dv dr pdv Laplace-yhtälö
17 Esim. Pyöreitä solua ( = 10 m), tislattuun veteen, 295 K. Sytoplasman ionipitoisuuksien summa on noin 300 mm. Kalvohaoamisen pintaännitys N/m Rp RckBT m 300 mol/m 610 1/mol1,3810 J/K 295K 3,7 N/m 2
18 Esim. Pyöreitä solua ( = 10 m), tislattuun veteen, 295 K. Sytoplasman ionipitoisuuksien summa on noin 300 mm. Kalvohaoamisen N/m Rp RckBT m 300 mol/m 610 1/mol1,3810 J/K 295K 3,7 N/m solut "räähtävät" 2
19 Esim. Mikä on 1 m säteisen vesipisaran sisällä oleva ylipaine lämpötilassa 25 C, kun veden a ilman raapinnan pintaännitys on 0,072 N/m? ( l) ( g) 2 R 20,072 N m 106m p p 1,4 atm
20 Esim. Keuhkoen toiminta Miksi alveolit eivät mene lyttyyn? Miten keuhkot aksavat laaeta? p 4 R (2 pintaa)
21 Pintaännitys aiheuttaa pinnan tangentin suuntaisen voiman Hydrofiilinen vs. hydrofobinen pinta Kontaktikulma nesteen pinnan a kiinteän pinnan välillä F mg 2 r hg 2rcos 2 h cos gr vesi F Hg Lasi: polaarisia a ionisia ryhmiä Vrt. Mikroelektrodin täyttö!
22 Tyhennysvuorovaikutus ( depletion interaction ) Soluissa palon eri kokoisia soluorganellea (pintoa) makromolekyyleä pieniä molekyyleä atomea (ionea) kokohierarkia
23 Tyhennysvuorovaikutus ( depletion interaction ) Entrooppinen vuorovaikutus Tyhennysvyöhyke isoen partikkelien pinnalla S kasvaa, kun pienet partikkelit ovat poistuneet välitilasta (l < 2R) a tyhennysvyöhyke pienenee attraktio Lyhytkantamainen (partikkelien halkaisian suuruusluokkaa) Heikko Voi silti nopeuttaa sitoutumista, entsymaattisia reaktioita ym. Jos V A 2R F p ckbt V F ck B T 2 R A A
24 Esim. Tyhennysvuorovaikutusdemo vesikkelissä polystyreenipallo, r = 0,24 m b) ei pieniä partikkeleita vesikkelissä c) pieniä partikkeleita (r = 0,04 m) vesikkelissä Kirkkausaste kuvassa kuvaa polystyreenipallon viettämää aikaa kyseisessä kohdassa; tumma vähän, kirkas palon Dinsmore et al. (1998), Phys. Rev. Lett. 80,
25 Tyhennysvuorovaikutus voi olla mukana ohaamassa molekyylien sitoutumista toisiinsa
26 Beyond Equilibrium: Osmotic Flow Osmoottisen voiman alkuperä? Männät liikkuvia Puoliläpäisevä kalvo paikallaan sylinterin suhteen voima kalvosta Kalvo taipuu
27 Ulkoisen voiman aiheuttama voimakenttä nesteessä: Olkoon ulkoinen voima tilavuusyksikköä kohden Fr paikassa r Tasapainoehto: p( z ½ dz) p( z ½ dz) dxdy F ( z) dxdydz 0 dp F() z dz Nestetilavuuselementti Jos ulk. voima gravitaatiosta: Vakiovoima F(z) F ( z) g m p() z p g z z 0 m 0
28 Kolloidipartikkelit nesteessä (tiheys c(z)) Vaikuttakoon z-suuntainen voima f(z) okaiseen kolloidipartikkeliin Kolloidipartikkeleihin vaikuttava voima = nesteen vastusvoima (pienet partikkelit alhainen Reynoldsin luku) partikkelit aiheuttavat voimakentän nesteeseen: dp du F( z) c( z) f ( z), f ( z) dz dz Tasapainossa konsentraation paikkariippuvuus määräytyy potentiaalienergiasta U ( z ) : U( z) kbt c( z) c e, c = konsentraatio tasolla z U ( z) U ( z) kbt du d kbt F () z c0e kbt c0e dz dz dp dc kt Tämä on tasapainoehto: B dz dz paine-ero vain kun on konsentraatioero tasapainotilanteessa
29 dp dz kt B dc dz Integroimalla paine-ero tasapainossa: p k T c B (van t Hoffin laki) Puoliläpäisevän kalvon esimerkkitapauksessa: p k T c B 0 Tasapaino Osmoottinen paine edellyttää fysikaalisen obektin, oka kohdistaa voiman liuenneisiin partikkeleihin Epätasapaino Käänteisosmoosi Osmoottinen virtaus
30 Brownin liikkeen tasasuuntaus: Tuottaako systeemi voimavaikutuksen puoliläpäisevään kalvoon 2? Puoliläpäisevä kalvo 2
31 Osmoottinen virtaus Osmoottinen paine = paine, oka tarvitaan pysäyttämään virtaus Jos ei paine-eroa ( = voimaa) virtaus Pooreissa paineen pudotus: Hagen-Poiseuille: 4 R Q p 8L 8 LQ p k 4 BT c R 0 Jos sekä paine- a konsentraatioero:, filtraatiokerroin kalvon omin. L p c k T L V p B p Virtauksen suunta kääntyy, kun Suuremmilla paineilla käänteisosmoosi p c k T B
Chapter 7. Entropic forces at work
Chapter 7. Entropic forces at work 1 Luento 8 4.3.2016 Osmoottinen paine Pintajännitys Tyhjennysvuorovaikutus MIKSI? Vapaa energia F a = E a -TS a voi pienentyä 1. Pienentämällä energiaa 2. Kasvattamalla
Lisätiedot1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotTeddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
LisätiedotSpontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi
KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä
Lisätiedot8. Chemical Forces and self-assembly
Luento 10 24.3.2017 1 Kemiallinen potentiaali Sähkökemiallinen potentiaali Kemiallisen reaktion suunta Reaktiokoordinaatti Entsymaattisten reaktioiden kinetiikka Elektro-osmoottiset ilmiöt solukalvolla
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
LisätiedotGibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen
KEMA221 2009 YKSINKERTAISET SEOKSET ATKINS LUKU 5 1 YKSINKERTAISET SEOKSET Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen Seoksia voidaan tarkastella osittaisten moolisuureitten
LisätiedotChapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
Chapter 3. The Molecular Dance 1 Luento 15.1.016 Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotLuento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
Lisätiedot6. Entropia, lämpötila ja vapaa energia
6. Entropia, lämpötila a vapaa energia 1 Luento 6 24.2.2017: Shannonin entropia M I NK P ln P 1 Boltzmannin entropia S k B ln Lämpötila Vapaa energia 2 Probleemoita: Miten DNA-sekvenssistä määräytyvän
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
LisätiedotTässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
LisätiedotEntrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit
Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotPuhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
LisätiedotLuento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit
Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotBiofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.
Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
LisätiedotLuku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde
Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
Lisätiedotvetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
Lisätiedot= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotLuku Pääsääntö (The Second Law)
Luku 3 2. Pääsääntö (he Second Law) Some things happen naturally, some things don t Spontaneous must be interpreted as a natural tendency that may or may not be realized in prac=ce. hermodynamics is silent
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotKemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
LisätiedotOhjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3
PHYS-A0120 Termodynamiikka, syksy 2017 Kotitentti Vastaa tehtäviin 1, 2/3, 4/5, 6/7, 8 (yhteensä viisi vastausta). Tehtävissä 1 ja 7 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla sekä
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
Lisätiedotln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.
S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.
LisätiedotLuvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotTeddy 1. välikoe kevät 2008
Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?
LisätiedotL7 Kaasun adsorptio kiinteän aineen pinnalle
CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1
Lisätiedotvetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa
LisätiedotREAKTIOT JA ENERGIA, KE3. Kaasut
Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2017 Emppu Salonen Lasse Laurson Touko Herranen Toni Mäkelä Luento 11: Faasitransitiot Ke 29.3.2017 1 AIHEET 1. 1. kertaluvun transitioiden (esim.
LisätiedotNesteen sisäinen kitka ja diffuusio
Nesteen sisäinen kitka ja diffuusio 1 Luento.1.016 (oppikirjan luku 4) Nesteen sisäinen kitka Satunnaiskävelyilmiöitä Diffuusio Diffuusio kalvon läpi Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
Lisätiedot4. Termodynaamiset potentiaalit
Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty
LisätiedotBiofysiikka, Luento
Biofysiikka, Luento 4 3..017 1 Diffuusio eri geometrioissa ja sovelluksia Varattujen partikkelien diffuusio (elektrodiffuusio) Johdatus matalien Reynolds-lukujen maailmaan Aikariippuvat diffuusioprosessit
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
LisätiedotEkvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotEkvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
Lisätiedotkuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä
Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä
Lisätiedot- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)
KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:
Lisätiedot782630S Pintakemia I, 3 op
782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus
LisätiedotCh 19-1&2 Lämpö ja sisäenergia
Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit
LisätiedotL7 Kaasun adsorptio kiinteän aineen pinnalle
CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle Oppimistavoitteet
Lisätiedot. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä
LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?
Lisätiedot8. Chemical Forces and self-assembly
8. Chemical Forces and self-assembly Biologinen kysymys: Miten voi hyvin sekoittuneessa liuoksessa oleva molekulaarinen moottori tehdä hyötytyötä? Eikö sen tarvitsisi olla sellaisten kompartmenttien rajalla,
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotSISÄLLYSLUETTELO SYMBOLILUETTELO 4
1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ
LisätiedotTermodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
Lisätiedot7 Termodynaamiset potentiaalit
82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
LisätiedotIdeaalikaasulaki johdettuna mikroskooppisen tarkastelun perusteella! Lämpötila vaikuttaa / johtuu molekyylien kineettisestä energiasta
HYS-A00 Termodynamiikka (TFM), Luentomuistiinpanot Luennot 7-8, kertaus, mitkä olivat oppimistavoitteet? Kineettinen kaasuteoria Oletukset: - kaasun tiheys on riittävän suuri - molekyylin koko on paljon
Lisätiedotinfoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2
infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotTermodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
LisätiedotVauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä
S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen
Lisätiedot4. Termodynaamiset potentiaalit
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2015 4. ermodynaamiset potentiaalit 1 ermodynaaminen tasapaino kanonisessa joukossa Mikrokanoninen
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa
LisätiedotKuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
Lisätiedot= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan
LisätiedotLämpöopin pääsäännöt
Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia
LisätiedotLämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
LisätiedotKryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1
DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold
Lisätiedot2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)
2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja
LisätiedotS , Fysiikka III (Sf) tentti/välikoeuusinta
S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat
LisätiedotTermodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
LisätiedotAstrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut
Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa
LisätiedotChapter 4. Random Walks, Friction and Diffusion
Chapter 4. Random Walks, Friction and Diffusion 1 Luento3 6.1.017 Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen kuvantaminen Chapter 4. Random Walks, Friction and Diffusion Dissipaatio:
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......
LisätiedotKonventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla
Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa
LisätiedotIX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208
IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.
Lisätiedot766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)
7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
Lisätiedotkolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä
Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti
LisätiedotKEMIAN MIKROMAAILMA, KE2 VESI
VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
LisätiedotFysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?
Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
Lisätiedot