Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen
|
|
- Susanna Saarinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 1 YKSINKERTAISET SEOKSET Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen Seoksia voidaan tarkastella osittaisten moolisuureitten avulla Empiiriset Raoultin ja Henryn lait kuvaavat seoksen muodostavien aineiden osittaisia kemiallisia potentiaaleja (osapaineitten kautta). Näin voidaan arvioida helposti liuenneen aineen vaikutusta liuoksen fysikaalisiin ominaisuuksiin (verrattuna tilanteeseen jossa vain liuotin läsnä); esimerkkeinä ideaalisen liuoksen höyrynpaineen aleneminen, kiehumispisteen kohoaminen, jäätymispisteen aleneminen ja osmoottinen paine. Lopuksi määritellään aktiivisuus joka liittyy kemialliseen potentiaaliin reaaliliuoksessa. 1 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 2 Osittaiset moolisuureet Aineen J osittainen moolitilavuus V J on seoksen tilavuudenmuutos moolia kohti, kun J:tä lisätään suureen määrään liuotinta ja seoksen tilaa kuvaavat muut muuttujat pidetään vakiona. Graafisesti: V J on käyrän V(n) tangentin kulmakerroin ko. pisteessä Huom! V on aina > 0, mutta V J voi olla < 0 2
2 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 3 Esimerkki: etanolin ja veden seos, T = 25 o C Kun 1 mol vettä lisätään veteen, tilavuus kasvaa noin 18 cm 3 /mol (x=0). Kun 1 mol vettä lisätään suureen määrään etanolia (x=1), tilavuudenmuutos on vain noin 14 cm 3 /mol. Osittainen moolitilavuus riippuu seoksen seossuhteesta. Mieti, mitä etanolin käyrä tarkoittaa Jos sekä komponenttia A että B lisätään, on Jos seossuhde pidetään vakiona, kokonaistilavuus on 3 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 4 Osittainen molaarinen Gibbsin energia kuvaa aineen J kemiallista potentiaalia seoksessa Binääriseokselle (kaksi komponenttia) Yleisemmin Vakiopaineessa ja lämpötilassa eli Seossuhteen muutos voi aikaansaada hyödyllistä kemiallista työtä! 4
3 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 5 Kemiallinen potentiaali liittyy myös sisäenergian, entalpian ja Helmholtzin energian muutoksiin Esim. U: Vakiotilavuudessa ja entropiassa dv = ds = 0 joten ja Vastaavasti voidaan johtaa tulokset Binääriseokselle 5 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 6 Kuitenkin vakiopaineessa ja lämpötilassa oli joten on oltava Yleisemmin : Gibbs-Duhem yhtälö Eli: seoksen yhden komponentin kemiallisen potentiaalin muutos ei ole riippumaton muiden komponenttien vastaavista muutoksista 6
4 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 7 Sekoittumisen termodynamiikkaa Gibbsin energian muutos (merkki) ilmaisee, tapahtuuko sekoittuminen spontaanisti Ideaalikaasulle Sopimus: ilmaistaan paine standardipaineen yksiköissä (1 bar) Säiliöitten yhteenlaskettu Gibbsin energia Poistetaan väliseinä 7 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 8 Sekoittumisen Gibbsin energia joka voidaan kirjoittaa mooliosuuksien x J = p J / p avulla Koska x J < 1, on aina mix G < 0 eli ideaalikaasun sekoittuminen on spontaania Entropialle Sen sijaan sekoittumisen entalpia = 0 (miksi?) 8
5 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 9 Nesteen kemiallinen potentiaali Ideaalinen liuos Puhtaalle systeemille, jossa vain komponentti A läsnä, on voimassa Jos nesteeseen on liuennut ainetta B, aineelle A pätee Yhdistämällä nämä saadaan 9 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 10 Empiirisesti: Raoultin laki: Seoksessa A:n höyrynpaineen suhde puhtaan A:n höyrynpaineeseen p A *on sama kuin A:n mooliosuus nesteessä p A / p A * = x A eli ja Näin on määritelty ideaalinen liuos 10
6 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 11 Ideaalisen laimea liuos Henryn laki: pienillä konsentraatioilla liuotetun aineen höyrynpaine reaaliliuoksissa on suoraan verrannollinen mooliosuuteen missä K B on empiirinen vakio. Seokset, joissa liuotettu aine noudattaa Henryn lakia ja liuotin Raoultin lakia, sanotaan ideaalisen laimeiksi liuoksiksi 11 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 12 Nestemäiset seokset Ideaaliselle nesteseokselle Gibbsin sekoittumisenergia lasketaan kuten kaasuille Sekoittumisen entropia on missä n = n A + n B mutta sekoittumisen entalpia on = 0 (kuten kaasuille) sillä mix H = mix G + T mix S Reaaliliuoksen ominaisuuksia kuvataan eksessisuureilla jotka tuovat mukaan molekyylien väliset vuorovaikutukset S E = mix S - mix S ideal ja G E = mix G - mix G ideal 12
7 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 13 Kolligatiiviset ominaisuudet (Laimeitten) liuosten ominaisuuksia, jotka riippuvat vain liuenneen aineen hiukkasluvusta, ei siitä mistä aineesta on kyse, sanotaan kolligatiivisiksi ominaisuuksiksi. Näitä ovat esimerkiksi kiehumispisteen kohoaminen, jäätymispisteen aleneminen, liukoisuus ja osmoosi Esim. kuva: Liuennut aine alentaa liuottimen kemiallista potentiaalia, mikä vaikuttaa kiehumispisteen kohoamaan ja jäätymispisteen alenemaan 13 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 14 Kiehumispisteen kohoaminen Liuotin = A ja liuennut aine = B Kiehumispisteen lämpötilassa Jos liuenneen aineen mooliosuus on x B, kiehumispiste kohoaa T verran: T* T* + T (perustelu taululla): Käytännön laskuissa käytetään usein molaalisuutta missä K b on empiirinen kiehumispistevakio (taulukko seur. sivulla) 14
8 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 15 Jäätymispisteen aleneminen Vastaava tasapainoehto jäätymispisteesä josta ja molaalisuuden avulla K f on empiirinen jäätymispistevakio (taulukko) 15 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 16 Liukoisuus Tasapainoehto josta (taululla) missä T f on B:n sulamislämpötila ja fus H B:n sulamisentalpia 16
9 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 17 Osmoosi Osmoosi on ilmiö, jossa liuotinta siirtyy laimeammasta liuoksesta väkevämpään liuokseen puoliläpäisevän kalvon läpi Osmoottinen paine Π on se paine jolla väkevämpää liuosta pitää puristaa jotta liuottimen virtaus loppuisi Ilmiöllä on useita tärkeitä kemiallisia, fysiologisia ja biokemiallisia sovelluksia Osmometrian avulla voidaan määrittää esim. makromolekyylien moolimassoja Osmoottinen paine saadaan van t Hoffin yhtälöstä (perustelu taululla) missä [B] on liuenneen aineen moolinen konsentraatio n B / V 17 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 18 Esimerkki: Makromolekyylin moolimassan määritys, PVC syklohexanonissa, T = 298 K. Liuoksen massatiheys g / cm 3. Havaitaan nestepastaan korkeus h liuotettavan aineen konsentraation c funktiona. Alla tulokset: c [g/dm3] h [cm] Käytetään van t Hoffin yhtälön viriaalikehitelmää jolloin saadaan lineaarinen riippuvuus suureiden h/c ja c välille 18
10 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 19 Taulukoidaan h/c vs c ja piirretään kuvaan: Y-akselin leikkauskohta = 0.21 (huom. kuvan y-akselissa painovirhe) 0.3 Näin saadaan Huom: 1 Dalton = 1 Da = 1 g / mol Edellä: M = 120 kda 19 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 20 AKTIIVISUUS Liuottimen aktiivisuus Oli: Ideaalisessa liuoksessa liuottimen kemiallinen potentiaali noudattaa Raoultin lakia ja saadaan Reaaliluoksen liuottimen kemiallista potentiaalia voidaan kuvata samanlaisella lailla, jos mooliosuus x A korvataan aktiivisuudella a A : Liuoksen aktiivisuus määritetään siis höyrynpaineesta 20
11 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 21 Koska reaaliliuotin noudattaa Raoultin lakia tarkasti tilanteessa jossa liuotettavan aineen konsentraatio lähestyy nollaa, liuottimen aktiivisuus lähestyy mooliosuutta kun x A 1: Sama asia voidaan ilmaista aktiivisuuskertoimen γ A avulla: Kemiallinen potentiaali on tällöin 21 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 22 Liukenevan aineen aktiivisuus Ideaalisen laimeassa liuoksessa pätee Määritellään liukenevan aineen aktiivisuus (Henryn laista) siten että yo. yhtälöä voi edelleen käyttää: Aktiivisuuskerroin 22
12 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 23 Yhteenveto 23 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 24 Example 5.5 Measuring activity Use the information in Example 5.3 to calculate the activity and activity coefficient of chloroform in acetone at 25 C, treating it first as a solvent and then as a solute. For convenience, the data are repeated here: Method For the activity of chloroform as a solvent (the Raoult s law activity), form a C = p C /p C * and γ C = a C /x C. For its activity as a solute (the Henry s law activity),form a C = p C /K C and γ C = a C /x C. Answer Because p C * = 36.4 kpa and K C = 22.0 kpa,we can construct the following tables. For instance, at x C = 0.20, in the Raoult s law case we find a C = (4.7 kpa)/ (36.4 kpa) = 0.13 and γ C = 0.13/0.20 = 0.65; likewise,in the Henry s law case, a C = (4.7 kpa)/(22.0 kpa) = 0.21 and γ C = 0.21/0.20 =
13 KEMA YKSINKERTAISET SEOKSET ATKINS LUKU 5 25 From Raoult s law (chloroform regarded as the solvent): From Henry s law (chloroform regarded as the solute): These values are plotted in Fig Notice that γ C 1 as x C 1 in the Raoult s law case,but that γ C 1 as x C 0 in the Henry s law case. Fig The variation of activity and activity coefficient of chloroform (trichloromethane) and acetone (propanone) with composition according to (a) Raoult s law, (b) Henry s law. 25
Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotJÄÄTYMISPISTEEN ALENEMA Johdanto. 2 Termodynaaminen tausta
JÄÄTYMISPISTEEN ALENEMA 2-2010 1 Johdanto Kolligatiiviset ominaisuudet ovat liuosten ominaisuuksia, jotka riippuvat ainoastaan liuotetun aineen määrästä (konsentraatiosta) ei sen laadusta. Kolligatiivisia
LisätiedotTeddy 2. välikoe kevät 2008
Teddy 2. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?
LisätiedotSISÄLLYSLUETTELO SYMBOLILUETTELO 4
1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ
LisätiedotSpontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi
KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä
LisätiedotPuhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
Lisätiedot1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
Lisätiedot(l) B. A(l) + B(l) (s) B. B(s)
FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN
LisätiedotLuku 5. Yksinkertaiset seokset
Luku 5. Yksinkertaiset seokset Seosten termodynamiikkaan lii5yy joukko par8aalisia moolisuureita Par8aalinen mooli8lavuus kuvaa 8lavuuden muutosta kun mooli aine5a (J) lisätään seokseen " V J = V % $ '
LisätiedotTeddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
Lisätiedotvetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
LisätiedotOhjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3
PHYS-A0120 Termodynamiikka, syksy 2017 Kotitentti Vastaa tehtäviin 1, 2/3, 4/5, 6/7, 8 (yhteensä viisi vastausta). Tehtävissä 1 ja 7 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla sekä
Lisätiedot- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)
KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:
LisätiedotPalautus yhtenä tiedostona PDF-muodossa viimeistään torstaina
PHYS-A0120 Termodynamiikka, syksy 2018 Kotitentti Vastaa tehtäviin 1/2/3, 4, 5/6, 7/8, 9 (yhteensä viisi vastausta). Tehtävissä 1, 2, 3 ja 9 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla
LisätiedotLuku 13 KAASUSEOKSET
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2010 Luku 13 KAASUSEOKSET Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction
LisätiedotTeddy 1. välikoe kevät 2008
Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?
Lisätiedot= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
Lisätiedotvetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
LisätiedotLuku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission
LisätiedotLUKU 16 KEMIALLINEN JA FAASITASAPAINO
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 16 KEMIALLINEN JA FAASITASAPAINO Copyright The McGraw-Hill Companies, Inc. Permission required
LisätiedotFaasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä.
FAASIDIAGRAMMIT Määritelmiä Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. Esimerkkejä: (a) suolaliuos (P=1),
LisätiedotStandarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin
Standarditilat Ilmiömallinnus prosessimetallurgiassa Syksy 216 Teema 2 - Luento 2 Tavoite Tutustua standarditiloihin Miksi käytössä? Millaisia käytössä? Miten huomioitava tasapainotarkasteluissa? 1 Miten
Lisätiedotkuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä
Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä
LisätiedotChapter 7. Entropic forces at work
Chapter 7. Entropic forces at work 1 Luento 8 4.3.2016 Osmoottinen paine Pintajännitys Tyhjennysvuorovaikutus MIKSI? Vapaa energia F a = E a -TS a voi pienentyä 1. Pienentämällä energiaa 2. Kasvattamalla
LisätiedotSeoksen pitoisuuslaskuja
Seoksen pitoisuuslaskuja KEMIAA KAIKKIALLA, KE1 Analyyttinen kemia tutkii aineiden määriä ja pitoisuuksia näytteissä. Pitoisuudet voidaan ilmoittaa: - massa- tai tilavuusprosentteina - promilleina tai
LisätiedotValitse seuraavista joko tehtävä 1 tai 2
PHYS-A0120 Termodynamiikka, syksy 2016 Kotitentti Vastaa tehtäviin 1/2, 3, 4/5, 6/7, 8 ja 9 (yhteensä kuusi vastausta). Tehtävissä 1 ja 2 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla
LisätiedotLämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
LisätiedotREAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos
ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli
Lisätiedot. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä
LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla
LisätiedotKEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7
KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A
LisätiedotAstrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut
Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotLuento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan
LisätiedotCHEM-A1250 Luento
CHEM-A1250 Luento 5 Tasapainot 1: Olomuodot ja seokset Johdanto Kemialliseen tasapainoon Olomuodon määräytyminen Kuinka voimakkaat vuorovaikutukset ilmenevät Vetovoimat lähentävät, lämpöliike liikuttaa
LisätiedotFaasipiirrokset, osa 2 Binääristen piirrosten tulkinta
Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 4 Tavoite Oppia tulkitsemaan 2-komponenttisysteemien faasipiirroksia 1 Binääriset
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotMuita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:
Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu
LisätiedotKorkealämpötilakemia
1.11.217 Korkealämpötilakemia Standarditilat Ti 1.11.217 klo 8-1 SÄ11 Tavoite Tutustua standarditiloihin liuosten termodynaamisessa mallinnuksessa Miksi? Millaisia? Miten huomioidaan tasapainotarkasteluissa?
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotREAKTIOT JA ENERGIA, KE3. Kaasut
Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
LisätiedotKorkealämpötilakemia
Korkealämpötilakemia Metallurgiset liuosmallit Yleistä To 15.11.218 klo 8-1 PR126A Tavoite Tutustua ideaali- ja reaaliliuosten käsitteisiin Tutustua liuosmalleihin yleisesti - Jaottelu - Hyvän liuosmallin
LisätiedotChapter 7. Entropic forces at work
Chapter 7. Entropic forces at work Osmoottinen paine Pintaännitys Tyhennysvuorovaikutus MIKSI? Hiukan termodynamiikan kertausta Tasapainotila: systeemiin vaikuttava nettovoima = 0 Jos vain yksi systeemin
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
Lisätiedotln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.
S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotTehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):
CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion
LisätiedotLuku Pääsääntö (The Second Law)
Luku 3 2. Pääsääntö (he Second Law) Some things happen naturally, some things don t Spontaneous must be interpreted as a natural tendency that may or may not be realized in prac=ce. hermodynamics is silent
Lisätiedot782630S Pintakemia I, 3 op
782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus
LisätiedotKEMS448 Fysikaalisen kemian syventävät harjoitustyöt
KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Jakaantumislaki 1 Teoriaa 1.1 Jakaantumiskerroin ja assosioituminen Kaksi toisiinsa sekoittumatonta nestettä ovat rajapintansa välityksellä kosketuksissa
LisätiedotKryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1
DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold
LisätiedotLuku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde
Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa
LisätiedotHSC-ohje laskuharjoituksen 1 tehtävälle 2
HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena
Lisätiedot= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
LisätiedotVESI JA VESILIUOKSET
VESI JA VESILIUOKSET KEMIAA KAIKKIALLA, KE1 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten
LisätiedotLuento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä
Luento 2: Lämpökemiaa, osa 1 Keskiviikko 12.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2018) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
LisätiedotTermodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
LisätiedotMolaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
Lisätiedot1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2
FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
Lisätiedotb) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.
Lääketieteellisten alojen valintakokeen 009 esimerkkitehtäviä Tehtävä 4 8 pistettä Aineistossa mainitussa tutkimuksessa mukana olleilla suomalaisilla aikuisilla sydämen keskimääräinen minuuttitilavuus
Lisätiedot7 Termodynaamiset potentiaalit
82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
LisätiedotTermodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
Lisätiedotη = = = 1, S , Fysiikka III (Sf) 2. välikoe
S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / 7.11.2016 v. 02 / T. Paloposki Tämän päivän ohjelma: Sisäenergia (kertaus) termodynamiikan 1. pääsääntö Entropia termodynamiikan 2. pääsääntö 1 Termodynamiikan
LisätiedotL7 Kaasun adsorptio kiinteän aineen pinnalle
CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1
LisätiedotCHEM-A1250 KEMIAN PERUSTEET kevät 2016
CHEM-A1250 KEMIAN PERUSTEET kevät 2016 Luennoitsijat Tuula Leskelä (huone B 201c, p. 0503439120) sähköposti: tuula.leskela@aalto.fi Gunilla Fabricius (huone C219, p. 0504095801) sähköposti: gunilla.fabricius@aalto.fi
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
LisätiedotKOTITEKOINEN PALOSAMMUTIN (OSA 1)
KOTITEKOINEN PALOSAMMUTIN (OSA 1) Johdanto Monet palosammuttimet, kuten kuvassa esitetty käsisammutin, käyttävät hiilidioksidia. Jotta hiilidioksidisammutin olisi tehokas, sen täytyy vapauttaa hiilidioksidia
LisätiedotTermodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
LisätiedotMOOLIMASSA. Vedyllä on yksi atomi, joten Vedyn moolimassa M(H) = 1* g/mol = g/mol. ATOMIMASSAT TAULUKKO
MOOLIMASSA Moolimassan symboli on M ja yksikkö g/mol. Yksikkö ilmoittaa kuinka monta grammaa on yksi mooli. Moolimassa on yhden moolin massa, joka lasketaan suhteellisten atomimassojen avulla (ATOMIMASSAT
LisätiedotOikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:
A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
LisätiedotTermodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:
Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään
LisätiedotTyö 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti
CHEM-C2200 Kemiallinen termodynamiikka Työ 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti Työohje 1 Johdanto Happo-emäsindikaattorina käytetty bromitymolisininen muuttaa
LisätiedotTyö 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti
CHEM-C2200 Kemiallinen termodynamiikka Työ 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti Työohje 1 Johdanto Happo-emäsindikaattorina käytetty bromitymolisininen muuttaa
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotKonventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla
Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa
LisätiedotKEMIAN MIKROMAAILMA, KE2 VESI
VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen
LisätiedotLuento 9 Kemiallinen tasapaino CHEM-A1250
Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>
LisätiedotS , Fysiikka III (Sf) tentti/välikoeuusinta
S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat
Lisätiedot4. Termodynaamiset potentiaalit
Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
LisätiedotL7 Kaasun adsorptio kiinteän aineen pinnalle
CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle Oppimistavoitteet
Lisätiedot