ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

Koko: px
Aloita esitys sivulta:

Download "ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!"

Transkriptio

1 ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä ja määritelmiä Lämpötila käsitteenä ja lämpötilan mittaus 1

2 pt-piirros, aineen tila ja faasimuutokset Lähde: Tribus (1961) s. 204, 206. pt-, pv- ja pvt-piirrokset Lähde: Sears (1953) s. 91, 93. 2

3 Veden ja heliumin piirrokset Lähde: Sears (1953) s. 94, 99. Käsitteitä ja määritelmiä systeemi, ympäristö, taseraja systeemin tila, termodynaamiset koordinaatit, ekstensiiviset suureet ja intensiiviset suureet tasapaino homogeeniset ja heterogeeniset systeemit prosessi 3

4 Systeemi, ympäristö, taseraja Systeemi Ympäristö Taseraja - on tarkastelumme kohde on kaikki muu erottaa systeemin ympäristöstä - Pelkkä systeemi on vain harvoin kiinnostava. Useimmiten meitä kiinnostaa myös vuorovaikutus systeemin ja ympäristön välillä. Tästä päästään aikanaan tilanmuutoksiin ja prosesseihin. - Taseraja ei läheskään aina ole mikään fyysinen raja, esim. seinämä. Taseraja voi olla täysin kuvitteellinen. Taseraja voi myös muuttaa muotoaan esim. systeemin laajentuessa tai kutistuessa. Esimerkkisysteemi 1 - Systeemi on säiliössä oleva kaasu. - Taserajana ovat säiliön seinämät. - Kyseessä on suljettu systeemi: systeemiin ei tule eikä siitä poistu ainetta, vaan tarkastelemme täsmälleen samoja atomeita koko ajan (atomit voivat kylläkin reagoida keskenään kemiallisesti, jolloin yhdisteitä muodostuu ja häviää). - Vuorovaikutus ympäristön kanssa muodostuu yleensä lähinnä lämmönsiirrosta systeemin ja ympäristön välillä. - Jos systeemi on täydellisesti lämpöeristetty (adiabaattinen), kyseessä on eristetty systeemi. 4

5 Esimerkkisysteemi 2 - Systeemi on sylinterissä oleva kaasu tai neste. - Taserajana ovat sylinterin seinämät ja mäntä. - Kyseessä on taaskin suljettu systeemi: systeemiin ei tule eikä siitä poistu ainetta. - Vuorovaikutus ympäristön kanssa voi lämmönsiirron lisäksi olla myös työtä: männän liikkuessa systeemi voi joko laajentua (samalla systeemi tekee työtä ympäristöönsä) tai puristua kokoon (samalla ympärstö tekee systeemiin työtä). - Suljetun systeemin tilavuuden muutokseen liittyy aina työtä. Esimerkkisysteemi 3 - Systeemi on virtauskanavassa liikkuva kaasu- tai nestealkio. - Taserajana ovat kanavan seinämät ja kaksi kuvitteellista pintaa (alkion keula ja perä ). - Systeemi ja taserajat liikkuvat seuratessaan alkion liikettä virtauksen mukana. - Tämäkin on suljettu systeemi. Virtaussuunta - Voidaan ajatella toisinkin: kiinnitetään taserajat paikoilleen ja annetaan aineen virrata systeemiin sisään perän kautta ja ulos keulan kautta. Tällöin on kyseessä avoin systeemi. 5

6 Esimerkkisysteemi 3 jatkoa - Avoimen systeemin vuorovaikutukseen ympäristön kanssa sisältyy periaatteessa aina työtä. - Kun systeemiin saapuu uutta ainetta, joutuu ympäristö tekemään työtä sisäänvirtauskohdassa vallitsevaa painetta vastaan. Muuten ei uutta ainetta saada työnnetyksi sisään systeemiin. - Kun systeemistä poistuu ainetta, joutuu systeemi tekemään työtä ulosvirtauskohdassa vallitsevaa painetta vastaan. Muuten ei ainetta saada systeemistä ulos. - Sisäänvirtaustyö ja ulosvirtaustyö huomioidaan systeemin energiataseessa käyttämällä entalpian käsitettä. - Avoimen systeemin ja ympäristön välillä voi luonnollisesti olla muitakin työksi luokiteltavia vuorovaikutuksia. Sovellutuksia Monimutkaiset järjestelmät kannattaa jakaa osiin. Kukin komponentti muodostaa oman osasysteeminsä. 6

7 Esimerkkisysteemi 4 - Systeemi on pieni ainemäärä, alkio, osana isoa kokonaisuutta, esimerkiksi ilmakehää. - Taseraja muodostuu kokonaisuudessaan kuvitteellisista pinnoista. Ilma-alkio Systeemin tila - Systeemin tilaa kuvataan systeemin ominaisuuksilla. - Ominaisuudet ovat mitattavissa olevia fysikaalisia suureita. - Laajasti käsitettynä: systeemin tila on systeemin kaikkien mitattavissa olevien suureiden muodostama kokonaisuus. - Suppeasti käsitettynä: systeemin tila on määrätty, kun tunnetaan riittävä määrä mitattavissa olevia suureita (ns. termodynaamiset koordinaatit). - Riittävä tarkoittaa tässä sitä, että joukko muita tärkeitä suureita voidaan (ainakin periaatteessa) laskea tunnetuista suureista. - Jälkimmäinen määritelmä on käytössä termodynamiikassa. - Usein tilan määräytymiseen riittää, että tunnetaan kaksi suuretta. 7

8 Koordinaatit > < tila - Matematiikassa pisteen asema tasolla määräytyy, kun kiinnitetään kaksi koordinaattia. Voidaan käyttää esim. suorakulmaista karteesista koordinaatistoa (koordinaatit x ja y) tai napakoordinaatistoa (koordinaatit r ja Φ). - Jos tunnetaan x ja y, voidaan laskea r ja Φ (ja kääntäen). Koordinaatit > < tila - Käytettävät koordinaatit voidaan valita monella tavalla. Esimerkiksi x ja Φ riittävät myös pisteen aseman määrittämiseen (paitsi jos x = 0). Sen sijaan x ja r eivät riitä (paitsi jos x = ±r). 8

9 Systeemin ominaisuudet - Suureet (ominaisuudet) voivat olla ekstensiivisiä tai intensiivisiä. - Ekstensiiviset suureet ovat verrannollisia systeemin suuruuteen (esim. massa, ainemäärä, tilavuus, jne.). - Intensiiviset suureet eivät ole verrannollisia systeemin suuruuteen (esim. tiheys, paine, lämpötila, jne.). - Ekstensiivisistä suureista voidaan johtaa intensiivisiä suureita jakamalla kaksi ekstensiivistä suuretta keskenään. - Intensiivisten suureiden muodostamiselle ja merkinnöille on olemassa systemaattinen logiikka, joka on kuvattu standardeissa ISO 31 ja SFS Esimerkkejä ekstensiivisistä suureista: tilavuus =m massa = kg ainemäärä = mol Esimerkkejä intensiivisistä suureista: ominaistilavuus = = [ ] [ ] = m kg moolitilavuus = = [ ] [ ] = m mol (yleensä yksikkönä käytetään m 3 /kmol) moolimassa = = [ ] [ ] = kg mol (yleensä yksikkönä käytetään g/mol tai kg/kmol) 9

10 Tasapaino - Termodynamiikka tutkii tasapainossa olevia systeemeitä. - Tasapainossa oleva systeemi ei muutu itsekseen ajan funktiona vaan sen tila pysyy entisellään ( => aika häviää yhtälöistä). - Tasapainon edellytykset ovat: Mekaaninen tasapaino: systeemiin vaikuttavat voimat ovat tasapainossa. Terminen tasapaino: systeemi on kauttaaltaan vakiolämpötilassa. Faasitasapaino: jos systeemissä esiintyy useampi kuin yksi faasi, eri faasien osuudet vastaavat tasapainotilaa. Käsitteen faasi määritelmä: katso seuraava dia. Kemiallinen tasapaino: eri yhdisteiden määrät vastaavat tasapainotilaa. Diffuusiotasapaino: eri yhdisteiden pitoisuudet ovat kauttaaltaan vakioita. Homogeeninen systeemi - Tasapainossa oleva systeemi on homogeeninen, jos systeemiä kuvaavilla intensiivisillä suureilla on samat arvot systeemin jokaisessa kohdassa. - Esim. nestemäinen vesi voi muodostaa homogeenisen systeemin; samoin vesihöyry voi muodostaa homogeenisen systeemin. - Nestemäisen veden ja vesihöyryn seos ei ole homogeeninen, koska höyryn ominaistilavuus on paljon suurempi kuin veden ominaistilavuus. - Ko. seos voi silti olla tasapainossa. Tällöin seos muodostuu kahdesta osasysteemistä, jotka kumpikin itsessään ovat homogeenisia ja jotka ovat tasapainossa keskenään. - Näitä osasysteemeitä kutsutaan faaseiksi. 10

11 Prosessi - Tasapainossa olevan systeemin tila voi muuttua, jos systeemin ja ympäristön välillä vallitsee vuorovaikutuksia. - Suljetun systeemin tapauksessa vuorovaikutuksia ovat energian tuonti systeemiin tai poistaminen systeemistä. Energian tuonti ja poistaminen voivat tapahtua työn tai lämmön muodossa. - Termodynamiikassa tarkastellaan prosesseja, jotka etenevät sarjana peräkkäisiä tasapainotiloja (ns. kvasistaattiset prosessit). - Tällöin systeemi on joka hetkellä sisäisesti tasapainossa (systeemissä ei ole sisäisiä paine-eroja, lämpötilaeroja, jne.). - Prosessien tulee siis tapahtua niin hitaasti, että paine-erot, lämpötilaerot, jne. systeemin sisällä ehtivät tasoittua. Lämpötilan käsite - Tiedämme, että jää sulaa lämpötilassa 0 ºC ja vesi kiehuu lämpötilassa 100 ºC. - Miten toteutetaan lämpötila 50 ºC? - Entä 200 ºC? 11

12 Vakiotilavuuslämpömittari 1, Lähde: Kirk-Othmer (1997), s Lähteet - Kirk-Othmer encyclopedia of chemical technology, 4th ed., Vol. 23. John Wiley & Sons, New York, ISBN F. W. Sears, An introduction to thermodynamics, the kinetic theory of gases, and statistical mechanics, 2nd ed. Addison-Wesley Publishing Company, Reading, M. Tribus, Thermostatics and thermodynamics. D. van Nostrand Company, Princeton,

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 31.10.2016 TERVETULOA! v. 02 / T. Paloposki Tämän päivän ohjelma: Virtaussysteemin energiataseen soveltamisesta Kompressorin energiantarve, tekninen

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena

Lisätiedot

SISÄLLYSLUETTELO SYMBOLILUETTELO 4

SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

Puhtaat aineet ja seokset

Puhtaat aineet ja seokset Puhtaat aineet ja seokset KEMIAA KAIKKIALLA, KE1 Määritelmä: Puhdas aine sisältää vain yhtä alkuainetta tai yhdistettä. Esimerkiksi rautatanko sisältää vain Fe-atomeita ja ruokasuola vain NaCl-ioniyhdistettä

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta

Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 4 Tavoite Oppia tulkitsemaan 2-komponenttisysteemien faasipiirroksia 1 Binääriset

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä.

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. FAASIDIAGRAMMIT Määritelmiä Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. Esimerkkejä: (a) suolaliuos (P=1),

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208 IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.

Lisätiedot

DEE-54030 Kryogeniikka

DEE-54030 Kryogeniikka DEE-54030 Kryogeniikka Kryogeeninen eristys Mitä lämmönsiirto on? Lämmönsiirto on lämpöenergian välittymistä lämpötilaeron vaikutuksesta. Lämmönsiirron mekanismit Johtuminen Konvektio Säteily Lämmönsiirron

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

PROSESSISUUNNITTELUN SEMINAARI. Luento 5.3.2012 3. vaihe

PROSESSISUUNNITTELUN SEMINAARI. Luento 5.3.2012 3. vaihe PROSESSISUUNNITTELUN SEMINAARI Luento 5.3.2012 3. vaihe 1 3. Vaihe Sanallinen prosessikuvaus Taselaskenta Lopullinen virtauskaavio 2 Sanallinen prosessikuvaus Prosessikuvaus on kirjallinen kuvaus prosessin

Lisätiedot

Dislokaatiot - pikauusinta

Dislokaatiot - pikauusinta Dislokaatiot - pikauusinta Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi

Lisätiedot

Metra ERW 700. Energialaskuri

Metra ERW 700. Energialaskuri Metra ERW 700 Energialaskuri 2013 2 Energialaskuri ERW 700 sisältää monipuoliset laskentaominaisuudet erilaisten virtausten energialaskentaan. Höyryn, lauhteen, maakaasun, ilman jne. ominaisuudet ovat

Lisätiedot

3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet

3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet 3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 orstai 11.10. klo 14-16 477401A - ermodynaamiset tasapainot (Syksy 2012) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen Faasi

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu

Lisätiedot

Puun termiset aineominaisuudet pyrolyysissa

Puun termiset aineominaisuudet pyrolyysissa 1 Puun termiset aineominaisuudet pyrolyysissa V Liekkipäivä Otaniemi, Espoo 14.1.2010 Ville Hankalin TTY / EPR 14.1.2010 2 Esityksen sisältö TTY:n projekti Biomassan pyrolyysin reaktiokinetiikan tutkimus

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos Nesteiden lämmönjohtavuus on yleensä huomattavasti suurempi kuin kaasuilla, joten myös niiden lämmönsiirtokertoimet sekä lämmönsiirtotehokkuus ovat kaasujen vastaavia arvoja suurempia Pakotettu konvektio:

Lisätiedot

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Kaasu Neste Kiinteä aine Plasma

Kaasu Neste Kiinteä aine Plasma Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

CHEM-A1250 KEMIAN PERUSTEET kevät 2016

CHEM-A1250 KEMIAN PERUSTEET kevät 2016 CHEM-A1250 KEMIAN PERUSTEET kevät 2016 Luennoitsijat Tuula Leskelä (huone B 201c, p. 0503439120) sähköposti: tuula.leskela@aalto.fi Gunilla Fabricius (huone C219, p. 0504095801) sähköposti: gunilla.fabricius@aalto.fi

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Suljettu paisuntajärjestelmä

Suljettu paisuntajärjestelmä Suljettu paisuntajärjestelmä CIREX on teknisesti ja taloudellisesti säröilemätön kokonaisuus Paineenpitopumpulla toimivista paisuntajärjestelmistä on Suomessa pitkäaikainen kokemus. Tällaiset laitokset

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA Hydromekaniikan Piirrosmerkit Johdanto erusteet Päivän teemat Mitä se hydrauliikka oikein on? Missä ja miksi sitä käytetään? Paine, mitä ja miksi? Onko aineesta

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin. KERTAUSKOE, KE1, SYKSY 2013, VIE Tehtävä 1. Kirjoita kemiallisia kaavoja ja olomuodon symboleja käyttäen seuraavat olomuodon muutokset a) etanolin CH 3 CH 2 OH höyrystyminen b) salmiakin NH 4 Cl sublimoituminen

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Syöttöveden kaasunpoisto ja lauhteenpuhdistus

Syöttöveden kaasunpoisto ja lauhteenpuhdistus Syöttöveden kaasunpoisto ja lauhteenpuhdistus Susanna Vähäsarja ÅF-Consult 11.2.2016 1 Sisältö Syöttöveden kaasunpoisto Kaasunpoistolaitteistot Lauhteenpuhdistuksen edut Mekaaninen lauhteenpuhdistus Kemiallinen

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006 TKK, TTY, LTY, Y, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 1.5.006 1. Uraanimetallin valmistus puhdistetusta uraanidioksidimalmista koostuu seuraavista reaktiovaiheista: (1) U (s)

Lisätiedot

KÄYTTÖTURVALLISUUSTIEDOTE

KÄYTTÖTURVALLISUUSTIEDOTE Sivu: 1/5 Etiketti 2.1: Palavat kaasut F+: Erittäin helposti syttyvää 1. AINEEN TAI VALMISTEEN JA YHTIÖN TAI YRITYKSEN TUNNISTETIEDOT 1.1 Kemikaalin tunnistustiedot Kauppanimi 1.2 Kemikaalin käyttötarkoitus

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2 I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

PULLEAT JA VALTAVAT VAAHTOKARKIT

PULLEAT JA VALTAVAT VAAHTOKARKIT sivu 1/6 PULLEAT JA VALTAVAT VAAHTOKARKIT LUOKKA-ASTE/KURSSI Soveltuu ala-asteelle, mutta myös yläkouluun syvemmällä teoriataustalla. ARVIOTU AIKA n. 1 tunti TAUSTA Ilma on kaasua. Se on yksi kolmesta

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:

Lisätiedot

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio.

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio. REAKTIOT JA TASAPAINO, KE5 REAKTIOTASAPAINO Johdantoa: Usein kemialliset reaktiot tapahtuvat vain yhteen suuntaan eli lähtöaineet reagoivat keskenään täydellisesti reaktiotuotteiksi, esimerkiksi palaminen

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Ellinghamin diagrammit

Ellinghamin diagrammit Ellinghamin diagrammit Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 2 Tavoite Oppia tulkitsemaan (ja laatimaan) vapaaenergiapiirroksia eli Ellinghamdiagrammeja 1 Tasapainopiirrokset

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

IPAR MONIEN MAHDOLLISUUKSIEN JULKISIVULAATAT

IPAR MONIEN MAHDOLLISUUKSIEN JULKISIVULAATAT IPAR MONIEN MAHDOLLISUUKSIEN JULKISIVULAATAT Kun haluat kestäviä, näyttäviä ja ympäristöystävällisiä julkisivuja IPAR- julkisivulaatat ovat käyttökohteen mukaan joko yksi- tai kaksikerrosmosaiikkibetonilaattoja,

Lisätiedot

9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet

9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet 9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Mitä on huomioitava kaasupäästöjen virtausmittauksissa

Mitä on huomioitava kaasupäästöjen virtausmittauksissa Mitä on huomioitava kaasupäästöjen virtausmittauksissa Luotettavuutta päästökauppaan liittyviin mittauksiin 21.8.2006 Paula Juuti 2 Kaupattavien päästöjen määrittäminen Toistaiseksi CO2-päästömäärät perustuvat

Lisätiedot

TEKNISET TIEDOT. Venttiilit COMPA-sarja

TEKNISET TIEDOT. Venttiilit COMPA-sarja Venttiilit COMPA-sarja COMPA-sarjan venttiilit tarjoavat monipuoliset asennusmahdollisuudet sekä sähköliitäntöjen että DIN-kiskoasennusmahdollisuuden ansiosta. COMPA-sarjasta löytyvät ratkaisut niin yksittäis-

Lisätiedot

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Mikä on probabilistinen malli? Kutsumme probabilistisiksi malleiksi kaikkia

Lisätiedot

Leena Ylivuori ja Tarja Ihalin/ DFCL3/ LAB/ raportti/ webbiversio/ 8. kokonaisuus. 8. Lämpöoppi 1. : Tilanyhtälö

Leena Ylivuori ja Tarja Ihalin/ DFCL3/ LAB/ raportti/ webbiversio/ 8. kokonaisuus. 8. Lämpöoppi 1. : Tilanyhtälö Leena Ylivuori ja Tarja Ihalin/ DFCL3/ LAB/ raportti/ webbiversio/ 8. kokonaisuus 8. Lämpöoppi 1. : Tilanyhtälö 1. Johdanto Tässä työkokonaisuudessa on tutkittu lämmittämisen, jäähdyttämisen ja puristuksen

Lisätiedot

Energian varastointi ja uudet energialähteet

Energian varastointi ja uudet energialähteet Energian varastointi ja uudet energialähteet Fossiiliset polttoaineet, entropia 1 Fossiilisten polttoaineiden jaottelu Raakaöljy Vedyn ja hiilen yhdisteet Öljyliuske Öljyhiekka Maakaasu Kivihiili 2 Öljyvarat

Lisätiedot

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017 Materiaalifysiikan perusteet 51104P Ratkaisut 1, Kevät 017 1. Kiderakenteen alkeiskopin hahmottamiseksi pyritään löytämään kuvitteellisesta rakenteesta sen pienin toistuva yksikkö (=kanta). Kunkin toistuvan

Lisätiedot