NESTEIDEN ja ja KAASUJEN MEKANIIKKA

Koko: px
Aloita esitys sivulta:

Download "NESTEIDEN ja ja KAASUJEN MEKANIIKKA"

Transkriptio

1 NESTEIDEN ja KSUJEN MEKNIIKK

2 Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka suuruus riiuu noeudesta Kun astusoima kumoaa kaaleeseen aikuttaat muut oimat, niin on saautettu rajanoeus r

3 Stokesin laki Kaale (ieni kuula, sumuisara, ilmakula) liikkuu erittäin hitaasti nesteessä aiheuttamatta yörteitä. Vastusoima on suoraan errannollinen noeuteen f k Verrannollisuuskerroin k riiuu kaaleen koosta ja muodosta sekä äliaineen ominaisuuksista

4 Pallolle, jonka säde on r, nesteessä, jonka iskositeetti it tti on η, Stokesin lain mukainen astusoima yörteettömässä liikkeessä 6πηr s

5 Ilman astus suurilla noeuksilla Kaale liikkuu noeasti kaasussa tai nesteessä aiheuttaen yörteitä. Vastusoima on errannollinen likimain noeuden neliöön D c D c D on kaaleen muodosta riiua astuskerroin on kaaleen oikkiinta-alaala on äliaineen tiheys

6 Putoaa kaale saauttaa rajanoeuden, kun liikettä astustaa oima ja noste kumoaat ainooiman aikutuksen D G c D + 0 mg Jos nostetta ei huomioida, niin rajanoeudeksi saadaan mg r + c D Joten rajanoeus riiuu myös kaaleen koosta N

7 3. Paine On oima jaettuna oimaa astaan kohtisuoralla inta-alalla Yksikkö ascal (Pa) N/m tai baari (bar) bar 00 kpa

8 Termodynamiikan laskuissa on lähes aina kyse absoluuttiaineesta, joka tarkoittaa ainetta errattuna nollaaineeseen. Tekniikassa ja aineen mittaamisessa käytetään ali- tai yliainetta e e 0 Missä 0 tarkoittaa ertailuainetta, usein ilmanainetta. Nimellisaine on järjestelmän suurin sallittu käyttöaine.

9 3. Hydrostaattinen aine Neste ei irtaa Oletetaan neste kokoonuristumattomaksi Syntyä aine johtuu nesteen omasta ainosta Lisäksi nesteessä aikuttaa ulkoinen aine, esim. ilmanaine 0 Samalla syyydellä aine on sama jokaisessa isteessä

10 Nestesylinterin massa m V h Silloin nestesylinteri aiheuttaa alasäin oiman hg Voimaa astaaa aine, hydrostaattinen aine hg h gh Kokonaisaine o asa + gh 0 0

11 Nesteeseen aikuttaa aineen muutos älittyy muuttumattomana jokaiseen nesteen isteeseen ja astian seiniin Yhtyät astiat. Nestesäiliön muodolla ei ole merkitystä nesteessä allitseaan aineeseen.

12 Soellus. Hydraulinen uristin Paine mäntien innoilla sama Kun umumäntää työnnetään alas matka s, niin kuormamäntä siirtyy ylös matkan s, koska siirtyän nesteen tilauus on akio Molemien mäntien tekemät työt oat yhtä suuret W s s V s s

13 3.3 Paineen mittaaminen Yleensä ainetta mitataan erona tunnettuun aineeseen. Bourdonutki

14 3.4 Ilmanaine Ilmanaine aiheutuu ilmakehän omasta ainosta Normaali-ilmanaine on 0, Pa Ilma ohenee ylösäin ja tiheys on suoraan errannollinen aineeseen 0 0 Koska kaasu ei ole kokoonuristumatonta, ei oida käyttää aineena gh

15 Paineen lauseke gh toimii ii kuitenkin ki muutoksille, jolloin d gdh Silloin saadaan integroimalla ilmanaine korkeudella h h d 0 g d h Tästä oidaan laskea korkeus, jos ilmanaine tiedetään 0 e 0 ln g gh 0 h 0 0 / 0

16 3.5 rkhimedeen laki Hydrostaattisen aineen aulla oidaan selittää nesteessä oleaan kaaleeseen nesteen ylösäin aiheuttama oima, noste. Paine kaaleen yläinnalla + gh 0 Paine kaaleen alainnalla N + gh 0 g( h h ) ( gv Noste on aine-eron aiheuttama oima

17 Noste on yhtä suuri kuin kaaleen syrjäyttämään nestemäärään aikuttaa ainooima. N Vg ( m V ) Osittain nesteessä olealle kaaleelle tilauus on siis ain sen nesteessä olean osan tilauus. Toimii myös kaasuille!

18 3.7 Jatkuuusyhtälö Tilauusirta q V on utken oikkileikkauksen läi aikayksikössä kulkean aineen tilauus. Yksikkö m 3 /s tai L/s V t q V t t eli akio Jos aine ei ole kokoonuristumaton, niin

19 3.8 Bernoullin yhtälö Kuaa aineen, tiheyden, irtausnoeuden ja korkeuseron suhdetta irtauksessa.

20 Energian säilymistä kuaaa yhtälö irtauksille, kun aine ajatellaan kokoon- uristumattomaksi + gh + + gh + Kun termit kerrotaan tilauudella V, saadaan energian säilymislaki W + + mgh + m W + mgh m

21 3.9 Bernoullin yhtälön soelluksia Neste leossa Noeudet Bernoullin yhtälö: 0 + gh + gh g h h ) Δ gh ( Saatiin hydrostaattisen aineen lauseke

22 Ulosirtausnoeus Kun reiän inta-ala on aljon ienemi kuin säiliön inta-ala, niin irtausnoeus 0 Bernoulli: + gh + gh + ( ) + gh Jos aine-ero on suuri, niin ( )

23 Venturiutki Vaakasuora irtausutki, jossa on kaennus + + ) ( Δ + + Jatkuuusyhtälöstä ) ( Jatkuuusyhtälöstä ) / ( ) / ( Δ ) / ( ) ( ) ( Δ ) / (

24 Pitot-utki Korkeudet lähes yhtä suuret (h h ) Noeus Bernoulli: 0 + ( )

25 N t i Nostooima Nostooima oidaan osittain selittää Bernoullin yhtälön aulla (h h ) Bernoullin yhtälön aulla. (h h ) + + ) ( ) ( Voimaa oidaan arioida siien ylä- ja ) ( ) ( y j alainnan ituuksien (s, s ) aulla ( ) s s

26 Toinen nostooimaa aiheuttaa tekijä on se, että siii on ienessä kulmassa aakatasoon nähden ja työntää ilmamolekyylejä alasäin N sin α cosα Samasta syystä aiheutuu myös liikettä astustaa oima μ sin 3 α

27 Maaliruisku Paineilma irtaa läi utken kaennuksesta, jolloin syntyä aliaine imee maalia ilmairtaan Banaaniotku Pallon yöriminen aiheuttaa sen ohi irtaaalle ilmalle noeuseron, josta aiheutuu aine-eroero Voima π r ω π 3

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa:

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa: 1 PAINE Kaasujen ja nesteiden paineen mittaus on yksi yleisimmistä prosessiteollisuuden mittauskohteista. Prosesseja on valvottava, jotta niiden vaatimat olosuhteet, kuten paine, lämpötila ja konsentraatiot

Lisätiedot

Opiskeluintoa ja menestystä tuleviin valintakokeisiin!

Opiskeluintoa ja menestystä tuleviin valintakokeisiin! RATKAISUT TESTIKYSYMYKSIIN Tästä löydät astaukset lääketieteen alintakoetyyppisiin testikysymyksiin. Jos osa kysymyksistä tuotti sinulle paljon päänaiaa, älä masennu, keään alintakokeeseen on ielä pitkä

Lisätiedot

2. Tasasivuinen kolmio

2. Tasasivuinen kolmio Ympäri piirretn mprän säde r a a = = = = sin sin sin γ 4 p( p a)( p )( p ) Sisään piirretn mprän säde r r = a++ = p = ( p a)( p )( p ) p γ γ a m w Korkeusjana a = = = sin = asin Keskijana m m = a + ( )

Lisätiedot

15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m

15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m Ketaustehtäät. c) Len kietokulma on t,5 ad/s (6 s) 9 ad.. a) Ratanopeus on 5, 35 m 53 cm/s. s 3. b) Tasapainoasemassa palloon kohdistuat paino G ja langan jännitsoima T. Pallon liikehtälö on F ma. n Kun

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1. S-445 FSIIKK III (ES) Syksy 004, LH 5 Ratkaisut LHSf5-* Osoita, että van der Waalsin kaasun tilavuuden läötilakerroin on R ( b ) R a b Huoaa, että läötilakerroin on annettu oolisen tilavuuden = / ν avulla

Lisätiedot

Liikemäärä ja törmäykset

Liikemäärä ja törmäykset Liikeäärä a töräykset Haarto & Karhunen www.turkuak.fi Suureita Kaaleen liikeäärä: Vektorisuure Voidaan ilaista koonenttiuodossa,, x x y y z z Voian antaa iulssi: I Aiheuttaa liikeäärän uutoksen Vektorisuure

Lisätiedot

Luento 16: Fluidien mekaniikka

Luento 16: Fluidien mekaniikka Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3 S-4.5.vk. 6..000 Tehtävä Ideaalikaasun aine on 00kPa, lämötila 00K ja tilavuus,0 litraa. Kaasu uristetaan adiabaattisesti 5-kertaiseen aineeseen. Kaasumolekyylit ovat -atomisia. Laske uristamiseen tarvittava

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

FYSIIKAN VALINTAKOE HELSINGIN YLIOPISTOSSA KESÄLLÄ 1976

FYSIIKAN VALINTAKOE HELSINGIN YLIOPISTOSSA KESÄLLÄ 1976 MAIJA AHTEE JA KAALE KUKI-SUONIO FYSIIKAN VALINTAKOE HELSINGIN YLIOPISTOSSA KESÄLLÄ 1976 Valintakokeet Helsingin yliopiston matemaattis-luonnontieteelliseen osastoon pyrkiiä opiskelijoita arten järjestettiin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Navierin-Stokesin menetelmä

Navierin-Stokesin menetelmä Naierin-Stokesin htälöt t ja MAC- menetelmä LuK-tutkielmaseminaari 30.. 009 Aleksi Leino Yhtälöt joita tässä esitksessä käsitellään oat: noeus t f ulkoinen oima iskositeetti Noeusektorikentän aikakehits

Lisätiedot

Peruslaskutehtävät fy2 lämpöoppi kurssille

Peruslaskutehtävät fy2 lämpöoppi kurssille Peruslaskutehtävät fy2 lämpöoppi kurssille Muista että kurssissa on paljon käsitteitä ja ilmiöitä, jotka on myös syytä hallita. Selvitä itsellesi kirjaa apuna käyttäen mitä tarkoittavat seuraavat fysiikan

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste 8 3 Paine Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste i Ilma on ainetta ja se vaatii oman tilavuutensa. Ilmalla on massa. Maapallon ympärillä on ilmakehä. Me asumme ilmameren pohjalla. Me olemme

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

VISKOSITEETTI JA PINTAJÄNNITYS

VISKOSITEETTI JA PINTAJÄNNITYS VISKOSITEETTI JA PINTAJÄNNITYS 1 VISKOSITEETTI Virtaavissa nesteissä ja kaasuissa vaikuttaa kitkavoimia, jotka vastustavat hiukkasten liikettä toisiinsa nähden. Tämä sisäinen kitka johtuu hiukkasten välisestä

Lisätiedot

X JOULEN JA THOMSONIN ILMIÖ...226

X JOULEN JA THOMSONIN ILMIÖ...226 X JOULEN JA HOMSONIN ILMIÖ...6 10.1 Ideaalikaasun tilanyhtälö ja sisäenergia... 6 10. van der Waals in kaasun sisäenergia... 7 10..1 Reaalikaasun energiayhtälö... 7 10.. van der Waalsin kaasun entroia...

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö 1. Selitä fysikaalisesti, miksi: a) sateessa kastuneet vaatteet tuntuvat kylmältä, b) pyykit kuivuvat myös pakkasessa, c) uunista pudonneen hehkuvan hiilenpalan

Lisätiedot

Demo 5, maanantaina 5.10.2009 RATKAISUT

Demo 5, maanantaina 5.10.2009 RATKAISUT Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 31.10.2016 TERVETULOA! v. 02 / T. Paloposki Tämän päivän ohjelma: Virtaussysteemin energiataseen soveltamisesta Kompressorin energiantarve, tekninen

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Fysiikka 5. Tehtävien ratkaisut. Pyöriminen ja gravitaatio. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen

Fysiikka 5. Tehtävien ratkaisut. Pyöriminen ja gravitaatio. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen Tehtäien atkaisut Heikki Lehto Raimo Haukainen Jukka Maalampi Janna Leskinen Fysiikka 5 Pyöiminen ja gaitaatio Kustannusosakeyhtiö Tammi Helsinki . painos Tekijät ja Kustannusosakeyhtiö Tammi, 00 ISBN:

Lisätiedot

Asennus, kiertopumppu TBPA GOLD/COMPACT

Asennus, kiertopumppu TBPA GOLD/COMPACT I.TBPA8. Asennus, kiertopumppu TBPA GOLD/COMPACT. Yleistä Patteripiirin toisiopuolella olean kiertopumpun aulla armistetaan jäätymisahtitoiminto, kun käytetään pattereita, joissa ei ole jäätymishalkeamissuojaa.

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA Hydromekaniikan Piirrosmerkit Johdanto erusteet Päivän teemat Mitä se hydrauliikka oikein on? Missä ja miksi sitä käytetään? Paine, mitä ja miksi? Onko aineesta

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia)

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia) Luento 4: Entroia orstai 12.11. klo 14-16 47741A - ermodynaamiset tasaainot (Syksy 215) htt://www.oulu.fi/yomet/47741a/ ermodynaamisten tilansuureiden käytöstä Lämökaasiteetti/ominaislämö - kuvaa aineiden

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2)

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2) SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat 1 ILMANPAINE (1/2) Ilma kohdistaa voiman kaikkiin kappaleisiin, joiden kanssa

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

V T p pv T pv T. V p V p p V p p. V p p V p

V T p pv T pv T. V p V p p V p p. V p p V p S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien

Lisätiedot

KAAPELIN ULKOPUOLINEN PE-JOHDIN

KAAPELIN ULKOPUOLINEN PE-JOHDIN Helsinki 29.11 21 KAAPELN LKOPOLNEN PE-JOHDN SSÄLTÖ: 1. Johdanto 2. Esimerkki. Symmetristen komponenttien kaaat 1. Johdanto PE-johdin on yleensä puolet aihejohtimien poikkipinnasta. Määriteltäessä poiskytkentäehtojen

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Keskeisliikkeen liikeyhtälö

Keskeisliikkeen liikeyhtälö Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Yläilmakehän luotaukset Synoptiset säähavainnot antavat tietoa meteorologisista parametrestä vain maan pinnalla Ilmakehän

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

AIR-MIX-RUISKUN PERUSKÄYTTÖ

AIR-MIX-RUISKUN PERUSKÄYTTÖ AIR-MIX-RUISKUN PERUSKÄYTTÖ 1. Ruiskun pesu ennen käyttöönottoa 2. Maalin lisäys ja maalaus 3. Ruiskunpesu maalauksen jälkeen RUISKUN KÄYTTÖ MAALAUKSISSA Air-Mix-ruiskua käytetään lähinnä kalusteovien

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

LASKUHARJOITUKSIA. 1. Myllyn ainetase ja kiertokuorman laskeminen. syöte F,f. A lite A,a MYLLY. tuote P,p LUO KITIN. Ylite Y,y. Tehtävä 1.

LASKUHARJOITUKSIA. 1. Myllyn ainetase ja kiertokuorman laskeminen. syöte F,f. A lite A,a MYLLY. tuote P,p LUO KITIN. Ylite Y,y. Tehtävä 1. LASKUHARJOITUKSIA. Mylly aietase ja kiertokuorma laskemie Tehtävä. Kuvassa o mylly suljetussa iirissä luokittime kassa. Mylly kiertokuorma o 00 % ja mylly rimäärisyötevirta F = t/h. Laske mylly tuotevirta

Lisätiedot

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY

VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY V/Ii1C:n) PPA 1 03400 VIHTI 913-46211 VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY KOETUSSELOSTUS TEST REPORT NUMERO 1203 RYHMÄ 13 VUOSI

Lisätiedot

Q1: Mistä tietää varmasti että kappale on negatiivisesti varautunut?

Q1: Mistä tietää varmasti että kappale on negatiivisesti varautunut? 3 HKUKOKET Testataan hangattujen kappaleiden aikutusta toisiinsa. Kissannahka/muoi ilkki/lasi Edelliset keskenään attraktiiiset: Teflon Lasi Teflon Lisäksi nähdään että kissannahka hylkii lasia ja silkki

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET. Kokonaisperuste, vahvistettu 10.10.2007.

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET. Kokonaisperuste, vahvistettu 10.10.2007. MAATALOUYRTTÄJÄN ELÄKELAN MUKAEN VAKUUTUKEN PERUTEET Kokonaisperuste, ahistettu 10.10.2007. 1 (3) MAATALOUYRTTÄJÄN ELÄKELAN MUKAEN VAKUUTUKEN PERUTEET 1 PERUTEDEN OVELTAMNEN Näitä perusteita soelletaan

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Kertaustehtävien ratkaisuja

Kertaustehtävien ratkaisuja Kertaustehtävien ratkaisuja. c) Hanaan kohdistuva aine on = ρgh = 5 5 4,5 Pa kg/m 9,8m/s 8 m,7 Pa. 5-4 Voiman suuruus on F A,7 Pa, m N = =.. c) Keskimääräinen nostoteho oli W mgh 5 kg 9,8 m/s,5 m P = =

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

DEE-54030 Kryogeniikka

DEE-54030 Kryogeniikka DEE-54030 Kryogeniikka Kryogeeninen eristys Mitä lämmönsiirto on? Lämmönsiirto on lämpöenergian välittymistä lämpötilaeron vaikutuksesta. Lämmönsiirron mekanismit Johtuminen Konvektio Säteily Lämmönsiirron

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot