Navierin-Stokesin menetelmä

Koko: px
Aloita esitys sivulta:

Download "Navierin-Stokesin menetelmä"

Transkriptio

1 Naierin-Stokesin htälöt t ja MAC- menetelmä LuK-tutkielmaseminaari Aleksi Leino

2 Yhtälöt joita tässä esitksessä käsitellään oat: noeus t f ulkoinen oima iskositeetti Noeusektorikentän aikakehits konektio aine 0 Kokoonuristumattomuus -aatimus

3 Miksi halutaan ratkaista? Yhtälöt t kuaaat kokoonuristumattoman fluidin liikettä.. Niitä oidaan kättk ttää mm. nesteirtauksien tutkimiseen. Yhtälöiden analttinen käsittel k on erittäin in hankalaa eikä ratkaisuja ole kuin erikoistaauksiin Tareeksi tarkka numeerinenkin ratkaisu on hankalaa turbulenssi. Hienostuneita menetelmiä löt jolla esim. NASA tutkii aaruussukkuloihin kohdistuaa rasitusta ilmakehäss ssä. 3

4 Esitksessä esitetää ään n taa ratkaista htälöt t joka on melko ksinkertainen soeltuu nesteen liikkeen likimää ääräiseen kuailuun on kehitett lähinnl hinnä tietokonegrafiikan tareisiin: tietokoneanimaatiot elit tarjoaa ensikosketuksen Naier-Stokes htälöihin ja mahdollisuuden nähdn hdä ne "toiminnassa" ja ehkä innostaa tutkimaan malleja joilla on enemmän fsikaalista ainoaroa. ei ole sama kuin alkueräinen ensimmäinen inen MAC-simulaattori simulaattori aan jalostunut tietokonegrafiikan tutkijoiden toimesta 4

5 Vektorikenttä tietokoneen muistissa Tietokoneen muistia oi errata lokerikkoon jonka lokerot oat numeroitu XXXXXX. Tietokone oi iedä hteen lokeroon numeron jonka se osaa lokerikon numeron erusteella alauttaa kättäjälle. Esimerkki kahdesta ohjelmointikäskstä Vie lokeroon 34 luku Mikä luku on lokerossa 34? Ohjelmointikielellä astaaa nättäisi: taulukko[34] = 0.345; kselt_luku = taulukko[34]; 5

6 Miten toimia kun halutaan tallentaa ektorikenttä tietokoneen muistiin? Matemaattiset ektorikentät alauttaat ektorin aikan ajan tms. funktiona d taaus: u t f t i g t Jos f ja g tunnetaan tunnetaan ektorikenttä mielialtaisen tarkasti. j Numeerisissa menetelmissä funktioita ei leensä haluta käsitellä aan kenttä tallennettaan tietllä ajanhetkenä "alokuana" tietokoneen muistiin. Lähestmistaa: Tätetään tietokonemuistin lokerikko nätteillä ektorikentästä 6

7 On huomattaa että tietokoneen muistiaikkoihin ei oi tallentaa ektoreita aan lukuja. Ne tallennetaan koordinaatiston ksikköektoreiden suuntaisina istetuloina. Muistissa olea luku siis kertoo kuinka "itkä" ektori on X tai Y suunnassa. X ja Y komonentteja arten on on oltaa omat "lokerikkonsa". Lokeroon osoittamiseen kätetään ksidimensioista lukua. Koordinaattitieto on kuitenkin leensä ähintään kaksiulotteinen X Y. Oikean lokeron lötämiseen oi kättää kaaaa + KENTÄN_LEVEYS * lokero lokero 99+5*00 = lokero 50+0*00 = 00 7

8 Nt tietokoneen muistissa on tieto siitä minkälaisia ektoreita alkueräinen kenttä antaa aikan kokonaislukuaroilla. Entä jos kättäjä haluaa tietää mikä kentän aro on kohdassa ?

9 9 Vastausehdotus: Aroksimoidaan kohtaa lähellä oleien kokonaislukuarojen aulla Siihen oidaan kättää esimerkiksi bilineaarista interolointia ain d:ssä Kohdan arioimiseen menetelmä taritsee nätteet kohdista Bilineaarisen interolaation kaaa: Q u Q u Q u Q u u

10 Kaaa ksinkertaistuu edellisen esimerkin kohdalla muotoon u u u u u Bilineaarisesta interoloinnista on helo tehdä funktio jolla kättäjä ksellä ektoria mistä tahansa sijainnista tallennetun alueen sisällä Koska kseessä on elkkä aroksimaatio tallennettaa ektorikenttä on kuitenkin skaalattaa niin että kokonaislukukohtiin sisält mahdollisimman aljon informaatiota 0

11 Tarkastellaan aikakehitshtälöstä t f t t elkkää asenta uolta Matematiikassa deriaatat ja osittaisderiaatat on määritelt rajankännein. Numeerisissa menetelmissä oidaan eräänä aroksimaationa alita joku konkreettinen luku edustamaan ientä ajanmuutosta. Valitaan esimerkiksi t t 0. 0 [aikaksikköä]

12 t f f t t Nt ikään näköinen htälö Voidaan kirjoittaa sisältää sekä ektorikentän ja suuntaisen komonentin. Ratkaisun lähestmistaana on että lähdemme jostain annetusta alkutilanteesta ektorikenttä annettu ajanhetkellä t=0 ja tallennamme sen tietokoneen muistiin. Yksinkertaisuuden uoksi otetaan nollaektorikenttä eli kaikki nätteet oat nollia

13 Sitten tutkimme aikakehitstä lisäämällä ektorikenttään ektorikentän nätteisiin ienen muutoksen ja saamme ektorikentän ajanhetkellä t t0 t Toimeniteet toistetaan kunnes ollaan halutussa ajanhetkessä Saamme sarjan eräkkäisiä "alokuia" ektorikentästä -> animaatio 3

14 On huomattaa että laskemme noeusektorikentän kehitstä. Se kertoo millä noeudella aine irtaa missäkin kohtaa aaruutta mutta ei sitä miltä arsinainen irtaus nättää. MAC menetelmä marker and cell hahmottelee irran liikuttelemalla "merkitsijähiukkasia" marker article ektorikentän aulla Ne oat istemäisiä olioita jotka liikkuat aaruudessa kselemällä ektorikentältä mihin suuntaan siinä kohtaa aaruutta jossa ne sijaitseat itäisi liikkua. Sitten ne liikkuat annetun noeuden ja aikainterallin erusteella uuteen aikkaan ja ksät seuraaalla kerralla uudestaan ektorikentältä minne suuntaan itäisi liikkua jne. Laske Liikuta hiukkasia ajanjakso t 4

15 Alussa merkitsijähiukkaset sijoitetaan esim. aromalla sinne kohtaa aaruutta missä haluamme nesteen olean aluksi: 5

16 6 6 Siirrtään takaisin Naierin-Stokesin htälöihin: t f t Aletaan urkamaan oikeaa uolta Ensimmäinen asia joka aikuttaa ieneen ektorikentän muutokseen on termi f t * Se kuaa nesteeseen kauttaaltaan aikuttaaa ulkoista oimaa esim. graitaatiota. Yksikkö on [Voima] er [Yksikkötilauus].

17 Valitaan esim. f 0 j [Voima] er [Tilauusksikkö] Päiitetään sitten tietokoneen muistissa olea ektorikenttä. Aaruus jaetaan neliölliseen hilaan ja muutos aikuttaa ainoastaan nesteen sisällä oleiin nätteisiin ektorikentästä. 3 ilmaa ilmaa ilmaa neste neste ilmaa ilmaa neste ilmaa 3 7

18 Katsotaan miltä merkitsijäartikkelien liike nättää tässä aiheessa 8

19 9 9 t f t Sitten lisätään ektorikenttään seuraaa termi htälöstä eli t Tämä on hieman mutkikas matemaattisesti tensoritulo? mutta fsikaalinen merkits on selemi.

20 Se kuaa liikemäärän säilmistä ja oidaan ratkaista noeusektorien kulkeutumisena: Kaikki ektorikentän ektorit matkustaa niiden osoittamaan suuntaan matkan itsellään s t dt ja koraa matkan äämärässä olean ektorin 3 t möhemmin

21 Teknisesti tämä on kuitenkin haastaaa koska nätteitä on tallennettu ain kokonaislukukohdissa. Entä jos ektori ajautuu jonnekin muualle kuin nätteen kohdalle? 3 t möhemmin Ratkaisuehdotus: Kädään jokainen nätekohta läi ja tutkitaan minne kenttä kulkeutuu takaisinäin ajassa ja korataan kokonaislukukohta ajassa takaisinäin kulkeutuneella ektorilla Toisin sanoen ennustamme mikä ektori ajautuu juuri nätteen kohdalle ja koraamme nätteen ajautuneella ektorilla

22 3 unaisten allojen kohdalla oleat ektorit oidaan interoloida 3 t möhemmin 3 3 Ongelmia kuitenkin tulee esialueen reuna-alueilla koska noeusektorikenttää äiitetään ain niillä alueilla jolla on nestettä. Reuna-alueella oleaan nätteeseen saattaa kulkeutua nollaektori. Ratkaisuehdotus: Luodaan eden märille alue jossa nätteisiin tallennetaan keskiaroja eden reunalla oleista nätteistä. buffer one

23 Kun reuna-alue ja konektiotermi on lisätt merkitsijäartikkeleiden liike nättää tältä: 3

24 Seuraaa termi htälössä t on f iskositeettitermi t kuaa kuinka suuri iskositeetti nesteellä on. Viskositeetti = nesteen "aksuus" tahmeus jäkks Mitä korkeami iskositeetti sitä huonommin neste "juoksee" Vrt. esi matala iskositeetti iimä korkeami iskositeetti uuro ielä korkeami iskositeetti 4

25 Termi t on muodoltaan sellainen että se on helomi ratkaista. Siihen oidaan kättää "äärellisten erojen menetelmää" aaa suomennos sanoista finite difference method jonka aulla oeraattori oidaan korata laskemalla jokaiselle nätekohdalle ja noeuskomonentille erikseen kuinka aljon ne oikkeaat lähinaaureistaan. Lähinaaurit oat tässä: nätekohdan lä- ala- oikealla ja asemmalla uolella oleat nätteet. Esim. 4* 5

26 6 6 4* 3 3 * 4 3 3

27 Tätä kautta oidaan iskositeettitermi oidaan mmärtää niin että mitä suuremi iskositeetti sitä enemmän neste keskiaroistuu ja sitä ähemmän ienemmät alueet oiat "juosta" itsenäisesti. Seuraaa termi htälössä t on t f t Missä on aineen tihes ja aine saman aaruuden kuin noeuskenttä kattaa skalaarisuure. Painetta arten on arattaa oma muistialue ja sitä tallennetaan samalla taalla nätteinä kuten ektorien komonentteja 7

28 t Tihes oletetaan akioksi ksinkertaisuuden uoksi aina esim koska kseessä on kokoonuristumaton irtaus. Paine ratkaistaan niin että tämän termin lisäämisen jälkeen kenttä on lähteetön 0 8

29 Miten aine määrät? Edellisten askelten jälkeen ennen ainetermin lisäämistä ektorikenttä on Painetermin lisäämisen jälkeen se on t Jotta kenttä olisi lähteetön ainetermin lisäämisen jälkeen on oltaa t 0 t 0 t t 9

30 30 30 t Ratkaistaa htälö aineelle on siis Oeraattorien laskemiseen oidaan jälleen kättää finite difference methodia on iskositeetista tuttu oikkeama lä- ala- oikeasta ja asemmasta naaurista. lasketaan kättämällä ns. forward differenceä jonka aulla se on 4*

31 Yksinkertainen neste/ilma/kiinteä aine uoroaikutus saadaan kun Jätetään n kiinteää ään aineeseen osoittaat ektorinätteet huomioimatta Paine alueilla jolla ei ole nestettä asetetaan ilmanaineeseen Ainoa mikä on tämän jälkeen eäselää on mikä on aine nestesolujen sisällä 3 atm atm ilmaa ilmaa ilmaa neste kiinteä neste kiinteä neste kiinteä 3 atm??? Merkitsijähiukkasten tärkein t tehtää on hahmotella nesteen reunaa jotta tiedetää ään n millä alueilla allitsee "ilmanaine" 3

32 3 3 Jokaiselle nestesolulle oidaan htälöistä 4* t rakentaa ksi htälö jossa saattaa olla mukana muuttujina lähimmäisten nestesolujen aineta tai ilmanaine. Saadaan N kaaleita htälöitä missä N on nestesolujen lukumäärä ja toisaalta N kaaletta muuttujia aineet nesteen sisällä Voidaan esittää matriisimuodossa ja ratkaista aineet nesteen sisällä

33 Saatu matriisi on hara aljon nollaelementtejä johon on olemassa omia noeita ratkaisumenetelmiä. Esim. haran matriisin konjugaattigradientti menetelmä Kun ratkaisu on saatu ja aineet tunnetaan lisätään termi t ektorinätteisiin oeraattori lasketaan taas kättäen finite differenceä tällä kertaa kättäen "taakseäin erotusta" backward difference : ; 33

34 Tämän jälkeen merkitsijähiukkasten liike nättää tältä 34

35 Kun nätteiden ja hiukkasten lukumäärä lisätään huomattaasti ja simulaatiota noeutetaan hieman nättää liike jo uskottaammalta: <ideo> 35

36 <ideo> 36

37 Yhteeneto MAC-menetelm menetelmä oli ensimmäinen inen toimia kokoonuristumattoman irtauksen simuloija ja sitä kätetään n hä tietokonegrafiikassa Jakaa aaruuden suorakulmaiseen hilaan joiden alkioissa näten ektori- ja ainekentäst stä. Nätteisiin lisätää ään n aluksi Sen jälkeen j lisätää ään n t ratkaistuna niin että. 0 Tästä johtuen aineet saadaan htälöst stä f t t Sitten merkitsijähiukkasia liikutellaan kentän n mukaisesti ajanjakson erran ja lasketaan uusi jne. Merkitsijähiukkasten tärkeint tehtää on hahmotella nesteen reunaa jotta tiedetää ään n millä alueilla allitsee "ilmanaine" t 37

38 Yhteeneto t f Ulkoinen oima Konektio "Backward article trace" Viskositeetti "Finite difference" Paine joka ratkaistaan niin että kenttä on lähteetön 38

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki)

KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki) KJR-00 Kontinuumimekaniikan perusteet, tentti (esimerkki) 1. Liikemäärän momentin taseen periaatteen soeltaminen kappalealkioon johtaa lokaaliin muotoon σ θ ( ρ r ) < 0, jossa alaindeksi tarkoittaa akiota

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017 KJR-C00 Kontinuumimekaniikan perusteet, iikko 46/07. Kuan esittämä esiskootteri etenee akioauhdilla. Veden (tihes ) sisäänotto tapahtuu pohjassa olean aakasuoran aukon kautta. Sisääntulean eden auhti on

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Sarja Kon-4.303 HYDRAULIIKKA JA PNEUMATIIKKA erusteet Päiän teemat Sarja Neste kuin neste, onko sillä äliä? Tilauusirta, miten ja miksi? Mihin tilauusirtaa taritaan? Onko tilauusirran ja aineen älillä

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

Liikemäärä ja törmäykset

Liikemäärä ja törmäykset Liikeäärä a töräykset Haarto & Karhunen www.turkuak.fi Suureita Kaaleen liikeäärä: Vektorisuure Voidaan ilaista koonenttiuodossa,, x x y y z z Voian antaa iulssi: I Aiheuttaa liikeäärän uutoksen Vektorisuure

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, tentti

KJR-C2002 Kontinuumimekaniikan perusteet, tentti KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista Matematiikan johdantokurssi, sks 07 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi S-4.35, FYSIIKKA III, Syksy 00, LH, Loppuiikko 38 LH-* Laske happimolekyylin keskimääräinen apaa matka 300 K lämpötilassa ja,0 baarin paineessa. Voit olettaa, että molekyyli on pallon muotoinen ja pallon

Lisätiedot

Luento 4: 3D Transformaatiot

Luento 4: 3D Transformaatiot ietokonegrafiikan perusteet -.43 3 op Luento 4: 3D ransformaatiot Lauri aioja /5 3D transformaatiot / isältö Lineaarialgebran kertausta Geometriset objektit 3D-maailmassa Perustransformaatiot 3D:ssä 3D

Lisätiedot

KAAPELIN ULKOPUOLINEN PE-JOHDIN

KAAPELIN ULKOPUOLINEN PE-JOHDIN Helsinki 29.11 21 KAAPELN LKOPOLNEN PE-JOHDN SSÄLTÖ: 1. Johdanto 2. Esimerkki. Symmetristen komponenttien kaaat 1. Johdanto PE-johdin on yleensä puolet aihejohtimien poikkipinnasta. Määriteltäessä poiskytkentäehtojen

Lisätiedot

2. Tasasivuinen kolmio

2. Tasasivuinen kolmio Ympäri piirretn mprän säde r a a = = = = sin sin sin γ 4 p( p a)( p )( p ) Sisään piirretn mprän säde r r = a++ = p = ( p a)( p )( p ) p γ γ a m w Korkeusjana a = = = sin = asin Keskijana m m = a + ( )

Lisätiedot

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Matematiikan johdantokurssi, sks 06 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-5300 Tuulioiman perusteet Aihepiiri 3 Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen DEE-5300: Tuulioiman perusteet ALBERT BETZ Theoretical

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota

Lisätiedot

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti

Lisätiedot

Energia bittiä kohden

Energia bittiä kohden TLT-54/4u Energia ittiä kohden Kirjallisuudessa (ja muutenkin) on usein tapana käyttää S/ suhteen sijasta suuretta (syy seliää tarkemmin hetken päästä ) E missä - E on hyötysignaalienergia ittiä kohden

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

Opiskeluintoa ja menestystä tuleviin valintakokeisiin!

Opiskeluintoa ja menestystä tuleviin valintakokeisiin! RATKAISUT TESTIKYSYMYKSIIN Tästä löydät astaukset lääketieteen alintakoetyyppisiin testikysymyksiin. Jos osa kysymyksistä tuotti sinulle paljon päänaiaa, älä masennu, keään alintakokeeseen on ielä pitkä

Lisätiedot

1780 N:o 567 LIITTEET 1 2 LASKUPERUSTEET TYÖNTEKIJÄN ELÄKELAIN MUKAISTA TOIMINTAA HARJOITTAVILLE ELÄKESÄÄTIÖILLE

1780 N:o 567 LIITTEET 1 2 LASKUPERUSTEET TYÖNTEKIJÄN ELÄKELAIN MUKAISTA TOIMINTAA HARJOITTAVILLE ELÄKESÄÄTIÖILLE 1780 N:o 567 LTTEET 1 LAKPETEET TYÖNTEKJÄN ELÄKELAN MKATA TOMNTAA HAJOTTALLE ELÄKEÄÄTÖLLE N:o 567 1781 ÄLLYLETTELO LTE 1: LAKPETEET TYÖNTEKJÄN ELÄKELAN MKATA TOMNTAA HAJOTTALLE ELÄKEÄÄTÖLLE 1 AKTTEKNET

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y.

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y. 3.8 Yhtedettömien kielten rajoitksista Yhtedettömille kielille on oimassa säännöllisten kielten pmppaslemman astine. Nt kitenkin merkkijonoa on pmpattaa samanaikaisesti kahdesta paikasta. Lemma 3.9 ( -lemma

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

Y56 laskuharjoitukset 5 - mallivastaukset

Y56 laskuharjoitukset 5 - mallivastaukset Y56 Keät 010 1 Y56 laskuharjoitukset 5 - malliastaukset Harjoitus 1. Voiton maksimoia tuotannon taso & kiinteät kustannukset Taoitteena on ymmärtää kiinteiden kustannusten aikutus yrityksen tuotantopäätöksiin

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Demonstraatio 7, 6.7... Ratkaise dierentiaalihtälöpari = = Vastaus: DY-pari voidaan esittää muodossa ( = Matriisin ominaisarvot ovat i ja i ja näihin kuuluvat ominaisvektorit (

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

Usean muuttujan funktiot

Usean muuttujan funktiot Usean muuttujan funktiot Johdantoa Kertauksen vuoksi seuraavassa kuviossa on joitakin asioita, joita olemme laskeneet hden muuttujan funktioista f() : [a, b] R Kuvion kärä on funktion f() kuvaaja = f()

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

Asennus, kiertopumppu TBPA GOLD/COMPACT

Asennus, kiertopumppu TBPA GOLD/COMPACT I.TBPA8. Asennus, kiertopumppu TBPA GOLD/COMPACT. Yleistä Patteripiirin toisiopuolella olean kiertopumpun aulla armistetaan jäätymisahtitoiminto, kun käytetään pattereita, joissa ei ole jäätymishalkeamissuojaa.

Lisätiedot

Täyttöohje ja tietuekuvaus vuodelle 2014: YEL-MYEL-vakuutuskantatiedot

Täyttöohje ja tietuekuvaus vuodelle 2014: YEL-MYEL-vakuutuskantatiedot Eläketurakeskus 1.10.2014 1 (8) Täyttöohje ja tietuekuaus uodelle 2014: YEL-MYEL-akuutuskantatiedot Sisällysluettelo Sisällysluettelo... 1 1 Täyttöohje... 2 1.1 Yleistä... 2 1.2 Muutokset uodelle 2014...

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

lim Jännitystila Jännitysvektorin määrittely (1)

lim Jännitystila Jännitysvektorin määrittely (1) Jännitstila Tarkastellaan kuvan ukaista ielivaltaista koliulotteista kaaletta, jota kuoritetaan ja tuetaan siten, että se on tasaainossa. Kaaleen kuoritus uodostuu sen intaan kohdistuvista voiajakautuista,

Lisätiedot

FUNKTION KUVAAJAN PIIRTÄMINEN

FUNKTION KUVAAJAN PIIRTÄMINEN FUNKTION KUVAAJAN PIIRTÄMINEN Saat kuvapohjan painamalla @-näppäintä tai Insert/Graph/X-Y-POT. Kuvapohjassa on kuusi paikanvaraaja: vaaka-akselin keskellä muuttuja ja päissä minimi- ja maksimiarvot pstakselin

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

Σ on numeroituvasti ääretön. Todistus. Muodostetaan bijektio f : N Σ seuraavasti. Olkoon

Σ on numeroituvasti ääretön. Todistus. Muodostetaan bijektio f : N Σ seuraavasti. Olkoon 17 Nmeroitat ja linmeroitat jokot Määritelmä 110 Jokko X on nmeroitasti ääretön, jos on olemassa bijektio f : N X Jokko on nmeroita, jos se on äärellinen tai nmeroitasti ääretön Jokko, joka ei ole nmeroita

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

4.6 Matriisin kääntäminen rivioperaatioilla

4.6 Matriisin kääntäminen rivioperaatioilla Vaasan liopiston julkaisuja 9 kuva.plot(,n, k-o,,n, k-s,,n3, k-d ); kuva.set_label( kausi ); kuva.set_label( lkm ); kuva.ais([,,,8]); kuva = fig.add_subplot(); kuva.plot(,tulo, k-o ); kuva.set_label( kausi

Lisätiedot

Jakso 5. Johteet ja eristeet Johteista

Jakso 5. Johteet ja eristeet Johteista Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita. 4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.

Lisätiedot

, jossa X AF on johdon reaktanssi vikapaikkaan asti. Nyt voidaan laskea reaktanssi asemalta A vikapaikkaan F. U X

, jossa X AF on johdon reaktanssi vikapaikkaan asti. Nyt voidaan laskea reaktanssi asemalta A vikapaikkaan F. U X . Tiedetään, että 3-aiheisessa oikosulkuiassa ika on asemien ja älisellä johdolla ja että katkaisija on auennut asemalla. Tiedetään iallisen johdon pituus (6 km), (myötä)reaktanssi pituutta kohti (,33

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Inversio-ongelmien laskennallinen peruskurssi Luento 3 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Lujuusopin jatkokurssi I.1 I. LUJUUSOPIN PERUSYHTÄLÖT

Lujuusopin jatkokurssi I.1 I. LUJUUSOPIN PERUSYHTÄLÖT Lujuusoi jatkokurssi I. I. LUJUUSOPIN PRUSYHTÄLÖT Lujuusoi erushtälöt Lujuusoi jatkokurssi I. JÄNNITYSTILA. Jäitstila käsite ja komoetit Kuassa. o mielialtaie kolmiulotteie kaale jota kuormitetaa ja tuetaa

Lisätiedot

Luento 7: Atomien ja molekyylien väliset voimat ja kineettinen kaasuteoria

Luento 7: Atomien ja molekyylien väliset voimat ja kineettinen kaasuteoria Luento 7: Atomien ja molekyylien äliset oimat ja kineettinen kaasuteoria kirjan kappaleet.,.,. ja.. Osan pohjana on käytetty luentomonistetta Termofysiikan perusteet, I. apari ja H. Vehkamäki (http://www.courses.physics.helsinki.fi/fys/termo/termofysiikka_h.pdf)

Lisätiedot

Korkeamman asteen polynomifunktio

Korkeamman asteen polynomifunktio POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Korkeamman asteen polnomifunktio Määritelmä: Jos polnomifunktion asteluku n, niin funktiota sanotaan korkeamman asteen polnomifunktioksi, P: P = a n n + a n 1 n 1 +...

Lisätiedot

Kaasmarkun asemakaavan muutos, maa- ja metsätalousalue

Kaasmarkun asemakaavan muutos, maa- ja metsätalousalue Liite ULVILAN KAUPUNKI aankäyttöosasto OSALLISTUIS- JA ARVIOINTISUUNNITELA Kaasmarkun asemakaaan muutos, maa- ja metsätalousalue Diaari 8/0.0.0/ . Suunnittelualue Tämä osallistumis- ja ariointisuunnitelma

Lisätiedot

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Mallivastaus

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Mallivastaus Y56 Mikrotaloustieteen jatkokurssi kl 00: HRJOITUSTEHTÄVÄT Mallivastaus. Olkoon Kallen ravintolassa söntiä ( ja muuta vaaa-ajan kulutusta ( kuvaava budjettirajoite muotoa. Kalle on valmis vaihtamaan hden

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Luku 12 THERMODYNAAMISTEN OMINAISUUKSIEN YHTÄLÖT

Luku 12 THERMODYNAAMISTEN OMINAISUUKSIEN YHTÄLÖT hermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 011 Luku 1 HERMODYNAAMISEN OMINAISUUKSIEN YHÄLÖ Copyright he McGraw-Hill Companies, Inc. ermission required

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

Matematiikan pohjatietokurssi

Matematiikan pohjatietokurssi Matematiikan pohjatietokurssi Demonstraatio 3, 15.9.014 1. Mitkä seuraavista voisivat olla funktion kuvaajia ja mitkä eivät? Miksi? (a) (b) (c) (d) Vastaus: Kuvaajat b ja c esittävät funktioita. Huomaa,

Lisätiedot

Nesteen ominaisuudet ja nestetilavuuden mallinnus

Nesteen ominaisuudet ja nestetilavuuden mallinnus Kon-4.47 Hydraulijärjestelmien mallintaminen ja simulointi Nesteen ominaisuudet ja nestetilavuuden mallinnus Hydrauliikka on tehon siirtoa nesteen välityksellä. Jos yrit ymmärtämään hydrauliikkaa, on sinun

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ. Rhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 4, ratkaisuehdotus (5 sivua) 26.11.2012 Tehtävä 1. Etsi neliön smmetriarhmän D 8 kaikki alirhmät. Mitkä niistä ovat normaaleja? Ratkaisu. Rhmää D 8

Lisätiedot

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKUPERUSTEET. Vahvistettu 1.11.2007, sovelletaan 15.9.2007 alkaen.

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKUPERUSTEET. Vahvistettu 1.11.2007, sovelletaan 15.9.2007 alkaen. PTEEKKIE ELÄKEKSS TEL: MUKISE LISÄELÄKEVKUUTUKSE LSKUPEUSTEET Vahistettu 1.11.2007, soelletaan 15.9.2007 alkaen. ii PTEEKKIE ELÄKEKSS TEL: MUKISE LISÄELÄKE- VKUUTUKSE LSKUPEUSTEET 1. VKUUTUSTEKISET SUUEET...

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

N:o 219 739 LIITE 1 ELÄKESÄÄTIÖN TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKUPERUSTEET

N:o 219 739 LIITE 1 ELÄKESÄÄTIÖN TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKUPERUSTEET N:o 29 739 LT LÄKSÄÄTÖN TYÖNTKJÄN LÄKLN MUKSN LSÄLÄKVKUUTUKSN LSKUPUSTT 740 N:o 29 PUSTDN SOVLTMSLU Työntekijäin eläkelain (TL) mukaisella lisäakuutuksella tarkoitetaan tässä akuutusta, joka sisältää yhden

Lisätiedot

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5...

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5... Calkinin-Wiln jono Funktio f : X Y on bijektio, jos sillä on käänteisfunktio f : Y X. Joukko X on äärellinen, jos se on thjä tai jos on olemassa bijektio f : X {,,,..., n}. Joukko X on numeroituva, jos

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 ) BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Täyttöohje ja tietuekuvaus vuodelle 2013: TyEL-MEL-vakuutuskantatiedot

Täyttöohje ja tietuekuvaus vuodelle 2013: TyEL-MEL-vakuutuskantatiedot Eläketurakeskus 26.9.2013 1 (11) Täyttöohje ja tietuekuaus uodelle 2013: TyEL-MEL-akuutuskantatiedot Sisällysluettelo 1 Täyttöohje... 2 1.1 Yleistä... 2 1.2 Muutokset uodelle 2013... 2 1.3 Aikataulut...

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

Funktion raja-arvo ja jatkuvuus

Funktion raja-arvo ja jatkuvuus Funktion raja-arvo ja jatkuvuus Funktion raja-arvo Monisteen määritelmässä 32 s 55 määritellään funktion f) raja-arvo f) ja sitä selitetään huomautuksen 33 kohdassa a) Seuraavassa on a hiukan tarkempi

Lisätiedot

Kaasmarkun asemakaavan muutos, maa- ja metsätalousalue

Kaasmarkun asemakaavan muutos, maa- ja metsätalousalue Liite ULVILAN KAUPUNKI aankäyttöosasto OSALLISTUIS- JA ARVIOINTISUUNNITELA Kaasmarkun asemakaaan muutos, maa- ja metsätalousalue Diaari 8/0.0.0/ . Suunnittelualue Tämä osallistumis- ja ariointisuunnitelma

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista Elementtimenetelmän peusteet. KEHÄRAKENTEET. leistä ehäaenteista Kehäaenteen osina oleat palit oiat ottaa astaan aiia annattimen asitusia, jota oat nomaali- ja leiausoima seä taiutus- ja ääntömomentti.

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

SISÄLLYS. N:o 1247. Valtioneuvoston asetus. poliisikoulutuksesta annetun valtioneuvoston asetuksen muuttamisesta

SISÄLLYS. N:o 1247. Valtioneuvoston asetus. poliisikoulutuksesta annetun valtioneuvoston asetuksen muuttamisesta SUOMEN SÄÄDÖSKOKOELMA 2007 Julkaistu Helsingissä 20 päiänä joulukuuta 2007 N:o 1247 1248 SISÄLLYS N:o Siu 1247 altioneuoston asetus poliisikoulutuksesta annetun altioneuoston asetuksen muuttamisesta 4831

Lisätiedot

Funktio. Funktio on kahden luvun riippuvuuden ilmaiseva sääntö, joka annetaan usein laskulausekkeena.

Funktio. Funktio on kahden luvun riippuvuuden ilmaiseva sääntö, joka annetaan usein laskulausekkeena. n ja muuttujan arvon laskeminen on kahden luvun riippuvuuden ilmaiseva sääntö, joka annetaan usein laskulausekkeena. ESIMERKKI Tarkastele funktiota f() = + 7. a) Laske funktion arvo, kun =. b) Millä muuttujan

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot