Peruslaskutehtävät fy2 lämpöoppi kurssille

Koko: px
Aloita esitys sivulta:

Download "Peruslaskutehtävät fy2 lämpöoppi kurssille"

Transkriptio

1 Peruslaskutehtävät fy2 lämpöoppi kurssille Muista että kurssissa on paljon käsitteitä ja ilmiöitä, jotka on myös syytä hallita. Selvitä itsellesi kirjaa apuna käyttäen mitä tarkoittavat seuraavat fysiikan käsitteet. Huom, älä opettele määritelmiä sanasta sanaan ulkoa vaan yritä saada mieleesi kuva mitä kyseinen suure tai käsite tarkoittaa. 0 liike-energia, potentiaalienergia, työ, teho, paine, noste, suljettu systeemi, eristetty systeemi, avoin systeemi Mekaanisen energian säilymislaki 1 Pallo heitetään nopeudella 3,0 m/s nopeudella ylöspäin. Kuinka korkealle se nousee. 2 Heiluri päästetään 0,25 m:n korkeudelta heilumaan. a) Kuinka suuri on nopeus alhaalla, b) 0,125 m:n korkeudella. 3 Kappale, jonka massa on 1,0 kg liukuu jäällä nopeudella 8,0 m/s. Liukumiskitka jarruttaa kiekkoa 3,0 N:n voimalla. Kuinka pitkälle kiekko liukuu? 4 Auton massa on 570 kg ja sen alkunopeus mäen alla on 54 km/h. Autoon kohdistuu tien suunnassa 850 N:n suuruinen vakiovoima eteenpäin. Auto nousee 17 m korkean mäen päälle, jolloin sen nopeus on 52 km/h. Laske liikettä vastustavien voimien tekemä työ ja niiden keskimääräinen suuruus, kun mäen pituus on 150 m. Teho 5 Painonnostaja nostaa 150 kg 0,5 s:ssa 2,0 m:n korkeuteen. Kuinka suuri on teho? 6 Erään nurmijärveläisen omakotitalon vuotuinen energiankulutus on kwh. Jos suomalaisilla olisi puoli miljoona tällaista taloa, niin kuinka monta 1000 MW:n ydinvoimalaa tarvittaisiin tämän energiamäärän tuottamiseen, jos energia kuluisi ja sitä tuotettaisiin tasaisesti ilman kausihuippuja? Paine, noste ja Arkhimedeen laki (Arkhimedes/Noste eivät ole tässä kurssissa) 7 Arvioi yhden jalkasi koko ja massasi. Kuinka suurella paineella painat lattiaa kun seisot yhdellä jalalla tai kahdella jalalla. 8 Kuinka suuren voiman normaali ilmanpaine aiheuttaa silmäsi ulkopintaan, jos sen ala on noin 1,0 cm 2. 9 Kuinka suuri hydrostaattinen paine on 5,0 m:n syvyydellä. Kuinka suuri kokonaispaine siellä on? 10 Imukuppi tarttuu lattiaan kiinni siten, että lattian ja imukupin välissä on 0,15 barin paine. Ilma työntää imukuppia 1,0 barin paineella. Kuinka suurella voimalla imukuppia on vedettävä, jotta se irtoaa, jos imukupin säde on 5,0 cm? 1

2 11 Kuinka suurella voimalla 5,0 kg:n puukappaletta on tuettava, jotta se pysyy paikallaan a) ilmassa tai b) ilmassa? 12 Kuinka monta % jäästä on veden alla, jos se kelluu. 13 Kuinka monta kg jäätä tarvitaan kannattamaan 200 kg:n massainen jääkarhu, kun karhu lähtee matkaan jäälautalla. 14 Kun metallipallo kiinnitetään jousivaakaan näyttää se 3,0 N:n painoa. Mittalasiin kaadetaan nestettä 150 ml. Kun pallo upotetaan kokonaan nesteeseen, nousee neste 220 ml:n korkeudelle ja jousivaaka näyttää 2,6 N. Määritä a) kappaleen massa, b) sen tiheys ja c) nesteen tiheys. Ratkaisuja/vastauksia 1-14 Nämä ovat vain pikaisia ratkaisuja auttamaan laskujen ratkaisussa. Yo-kokeen vastauksissa pitää olla selkeä perustelu. Myös mahdollisten virhelähteiden ja/tai tulosten mielekkyyden pohtiminen on terveellistä. Tässä on MathPadilla laskettuja tuloksia, mieti mihin tehtävään ne liittyvät (etsi samalla virheet ja tee tehtävissä yksikkötarkastelut: 3^2/(2*9.81):0.459 sqrt(2*9.81*0.125): ^2/(2*3): *9.81*2/0.5: /(365*24): e6* /1000e6: *1*0.01^2: *9.81*5: *9.81* : *π*0.05^2: *9.81: /9.81:0.306 (3/9.81)/(( )*0.01^3): (3-2.6)/(9.81*( )*0.01^3): Mekaanisen energian säilymislaki 1 2 mv2 mgh h v2 2g! 0,46m 2 Mekaanisen energian säilymislaki: a) 2

3 mgh 1 2 mv2 v 2gh! 2,2m / s b) Laitetaan nollataso 0,125 m:n korkeudelle mgh 1 2 mv2 v 2gh! 1,6m / s 3 Energian säilymislaki 1 2 mv2 Fs s mv2 2F 11m 4 Katso Mikon sivut Hyllissä. 5 Teho: P mgh t 6 Teho: 5900W P E t E Pt Omakotitalon teho P t Wh h x 0, W W 7 Paine: p mg A 8 voima: F pa! 10N! 3424,658W! 1, 71 9 Hydrostaattinen paine ja kokonaispaine: p h!gh 49000Pa p p h + p 0 " Pa 10 Paine ero on 0,85 bar Pa Voima: F pa! 670N 11 a) mg! 49N b) Katso Mikon Powerpoint termodynamiikansuureet.ppt F 100 N 12 Arkhimedeen laki: 3

4 gv jää!veden!alla g V jää!veden!alla! jää V jää V jää! jää V jää!veden!alla V jää! jää! jää 13 Arkhimedeen laki: 14 a) m karhu g + g! " vesi gv jää!veden!alla 0 V jää!veden!alla " jää jää!on!kokonaan!vedessä m karhu g + g! " vesi g " jää 0 m karhu " vesi " jää! 1 m pallo g 3N m pallo 3N g! 0, 306kg b)! m V " 4400kg / m3 c) Arkhimedeen laki (Noste on voimien erotus) N gv N gv " 580kg / m3 Pohdiskele mitä seuraavat käsitteet tarkoittavat: Lämpö, ideaalikaasu, reaalikaasu, ominaislämpökapasiteetti, kaasun tilayhtälö, Maxwellin demoni, lämpökapasiteetti, sisäenergia. Miten kaasun paine selitetään ideaalikaasumallin avulla? Mitä on kaasun/nesteen/kiinteän aineen lämpöenergia. Missä se on? Miten mittaisit Maan ilmakehän keskilämpötilan, jos sinulla olisi aivan älyttömästi voimavaroja, miten tehtävä suoritettaisiin realistisesti? 4

5 Faasikaaviot? Miksi uloshengitys näkyy talvella? Mitä on savu pullossa kun se avataan? Lämpölaajeneminen 15 Kuinka monta mm 55 m kuparilankaa lyhenee, kun alussa lämpötila on 25 C ja lopussa 18 C. Muista myös kevään 07 yo-koetehtävä!! Kaasun tilayhtälö 16 Alussa paine on 1,0 bar ja lopussa 3,0 bar. Kuinka paljon on loppulämpötila, kun se alussa oli 72 C ja tilavuus ei muutu ,0 l:n painesäiliö on puolillaan vettä. Ilma on 1,5 barin paineessa. Astiaan pumpataan lisää 100,0 l vettä. Kuinka suuri on paine lopussa, kun lämpötila pysyy muuttumattomana. 18 Kuinka monta moolia kaasua on säiliössä, jonka tilavuus on 0,123 m 3, ja jonka paine on 5,2 bar ja lämpötila 350 C. 19 Edellisen tehtävän säiliön tilavuus kaksinkertaistetaan, jolloin lämpötila pienenee 50 asteeseen. Laske paine. 20 Pakastimen tilavuus on 500 l, sen ovi (A 0,85 m 2 ) avataan, jolloin ilma lämpenee + 5,0 C:een. Ovi suljetaan, jolloin ilman lämpötila jääähtyy 15 C:een. Kuinka suuri on oveen kohdistuva voima ulkopuolelta ja kuinka suuri sisäpuolelta. Kuinka suuri on erotus. Miten havaitset ilmiön kotonasi? Lämpöenergia Näissä tehtävissä oletetaan, että astian lämpökapasiteetti on mitätön (mikä ei ole realistista, mutta se pitää laskut helpompina. 21 Kuinka paljon energiaa tarvitaan kun 2,0 kg vettä lämmitetään 20 C:sta 95 C:een. 22 Kuinka kauan edellisen tehtävän lämmitykseen kuluu, jos lämmitysteho on 750 W 23 Astiassa on 2,0 kg vettä 20 C:ssa ja se lisätään vesiastiaan, jossa on 3 kg 60 asteista vettä. Määritä loppulämpötila. 24 Astiassa on 2,0 kg elohopeaa 20 C:ssa ja se lisätään vesiastiaan, jossa on 3 kg 60 asteista vettä. Määritä loppulämpötila. 25 a) Kuinka paljon energiaa tarvitaan, kun 2,0 kg jäätä lämmitetään -40 C:sta 0 C:een. b) Kuinka paljon energiaa tarvitaan, kun 2,0 kg 0 C jäätä sulatetaan. 26 Kuinka paljon aikaa kuluu, kun 5,0 kg 15 C:sta jäätä lämmitetään, sulatetaan ja lämmitetään kiehuvaksi ja lopulta höyrystetään kuiviin 850 W:n teholla? 27 Komposti on jäässä ( 5 C) Kompostissa olevan jätteen lämpökapasiteetti vastaa 60 kg jäätä. Kuinka paljon 100 C vettä tarvitaan, jotta komposti saadaan sulamaan. 28 1,2 kg 15 C jäätä ja 2,5 kg 55 C vettä sekoitetaan. Määritä loppulämpötila. 5

6 29 Oletetaan, että videolla olevassa mittauksessa uppokuumentimen lämmitysteho oli 310 W. Määritä monisteen tiedoista veden ominaislämpökapasiteetti ja veden höyrystymislämpö. Laske suureitten suhde ja vertaa taulukkokirjasta löytyvien arvojen suhteeseen. Kuinka suuri on virhe%. Ratkaisut Alla on jälleen MathPadilla laskettuja laskujen tuloksia. Tarkista olenko näppäillyt väärin. 55*16.8e-6*(-18-25): *( ): *(273,15-72) : *250/150: *123/( *( )): *123*( )/(246*( )): *2*(95-20): *1000/750: (2*20+3*60)/5: (0.14*2* *3*60)/(0.14*2+4.19*3): *2*40: *0.14*15+5*333+5*4.19*100+5*2260: *1000/850: /60: /60/60:4.925 (2090*60* *60)/(4190*100): *1.2* *1.2: *2.5*55: : /(4190*2.5): *41.739/3.7: Lämpölaajeneminen l l 0 (1+!t) l l 0 + l 0!t l " l 0 l 0!t 1 l " l 0 55m 16,8 10 "6 ("18 " 25)K K l " l 0 "0,04m "40mm 16 Kaasun tilanyhtälö, V on vakio. p 2 p 1 3bar (273,15! 72)K 1bar 17 Kaasun tilanyhtälö, T on vakio. V 1 p 2 V 2 p 2 V 1 V 2 1,5bar 250l 150l 2,5bar 6 819K (603,25! 273,15) C " 546 C

7 18 Kaasun tilayhtälö pv nrt n pv RT 19 Kaasun tilanyhtälö 5,2bar 123l 0, bar l molk (273, )K! 12, 345mol! 12mol V 1 p V 2 2 p 2 V 1 5,2bar 123l (273,15! 50)K V 2 246l (273, )K " 0, 931bar " 0, 93bar 20 V on vakio, Kaasun tilayhtälöstä: p 2 p 2 p 2! F A F (p 2! )A 21 Lämpöenergia 22 Teho Q cm!t Q 4,19kJ / (kgk) 2kg (95! 20)K 628,5kJ " 630kJ P E t t E P J 750W 838s! 840s 23 Lämpöenergiaa siirtyy lämpimämmästä kylmenpään, lopussa sama lämpötila. cm 2 (T! 60 C) cm 1 (T! 20) T m 1 20 C + m 2 60 C m 1 + m 2 2kg20 C + 3kg60 C 5kg 44 C 24 Kuten edellä, mutta nyt ominaislämpökapasiteetit eivät supistu: c 2 m 2 (T! 60 C) cm 1 (T! 20) T m 20 C + m 60 C 1 2 c 1 m 1 + c 2 m 2 0,14kJ / (kgk) 2kg20 C + 4,19kJ(kgK) 3kg60 C 0,14kJ / (kgk) 2kg + 4,19kJ(kgK) 3kg 59,128 C! 59 C 7

8 25 a) Qcm T 2,09kJ/(kgK) 2kg 40K 167,2kJ b) Qsm 333kJ/kg 2kg 666 kj 26 Lasketaan koko energia, aika saadaan jakamalla se teholla. (5*0.14*15+5*333+5*4.19*100+5*2260)kJ kj *1000/850 s s295,5 min 4,9 h 27 Kompostin lämmittämiseen ja sulattamiseen tarvitaan energiaa yhtä paljon kuin kuuma vesi voi luovuttaa (T1). Todellisuudessa energiaa vuotaa ympäristöön ja kompostin lämmittämiseen. Vesi tietysti vuotaa pois kompostista sillä se on tuskin vesitiivis. c jää!t + s c vesi!t c jää!t + s c vesi!t 2090J / (kgk) 60kg 5K J 60kg 4190J / (kgk) 100K! 48,181kg"50 kg 28 Taas energia säilyy. Veden sulattamiseen kuluu c jää!t + s 2090J / (kgk) 1,2kg 15K J 1,2kg! J Veden jäähtymisestä saadaan c vesi!t 4190J / (kgk) 2,5kg 55K J Kaikki jää sulaa. Tässä vaiheessa vedeltä on kulunut ( )J J, joten sen lämpötila on J 55 C! 4190J / (kgk) 2,5kg C Loppulämpötila saadaan samalla tavalla kuin tehtävässä 23. T 1,2kg0 C + 2,5kg41,739 C 3, 7kg 28,202 C! 28 C 29 tehtäneen tunnilla tai ainakin kokeessa T1 ja 2 30 Lyijyhaulipussia pudotetaan 500 kertaa 2,0 metrin korkeudelta. Kuinka monta astetta haulipussin lämpötila nousee, jos puolet mekaanisesta energiasta muuttuu haulien lämmöksi. 31 Kiväärillä ammutaan luoti, jonka massa on 10,0 g ja nopeus 550 m/s vesiastiaan, jossa on 1 kg vettä. Kuinka monta astetta veden lämpötila nousee, jos kaikki liike-energia kuluu veden lämmittämiseen. Oletetaan, että luodin lämpötila on sama kuin veden loppulämpötila. Voisiko tällaisella järjestelyllä olla mahdollista mitata luodin nopeus? Eli jos luodin nopeutta ei tunneta, niin mitataan lämpötilan kasvu ja päätellää nopeus energian säilymislain avulla? 8

9 32 Kuinka paljon energiaa tulee Maan poikkipinta-alan kokoiselle alueelle sekunnissa. Kuinka pitkä aika kuluisi, jos tämä kaikki energia kuluisi kokonaan ilmakehän lämmittämiseen jotta lämpötila nousisi yhden asteen. Käytä taulukkokirjan tietoja kun arvioit ilmakehän massa, ominaislämpökapasiteettia ja muita laskussa tarvittavia tietoja. Yleensä laskuissa ilmakehän ulkorajana pidetään 200 km:n korkeutta. Myös googlettamalla mass atmosphere saat tietoa arvioita ilmakehän massasta. Mitä tarkoitetaan käsitteillä sisäenergia, Termodynamiikan 1. pääsääntö, 2. pääsääntö, entropia, lämpövoimakone, lämpöpumppu, termodynaaminen hyötysuhde. Rakaisut Q mgh cm!t mgh!t gh c 31 Tutki kuinka suuri merkitys luodin alkulämpötilalla on!! Q c vesi!t + c luoti m luoti m luoti v2 c vesi!t!t c vesi!t 0,5m luoti 32 Aurinkovakio löytyy taulukkokirjasta tähtitieteen kohdalta, se kertoo Auringon säteilytehon neliömetriä kohden Maan etäisyydellä Auringosta. c ilmakehä! 1000J / (kgk) m! kg P 1, 4kW / m 2 "( m) 2 Pt cm!t t cm!t P 1000J / (kgk) kg 1K 27750s! 8h W / m 2 "( m) Onneksi kaikki Auringosta tuleva energia ei lämmitä ilmakehää. 9

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Työ 3: Veden höyrystymislämmön määritys

Työ 3: Veden höyrystymislämmön määritys Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan

Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan 1. Kolmiossa yksi kulma on 60 ja tämän viereisten sivujen suhde 1 : 3. Laske

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

TUNTEMATON KAASU. TARINA 1 Lue etukäteen argonin käyttötarkoituksista Jenni Västinsalon kandidaattitutkielmasta sivut 12-15. Saa lukea myös kokonaan!

TUNTEMATON KAASU. TARINA 1 Lue etukäteen argonin käyttötarkoituksista Jenni Västinsalon kandidaattitutkielmasta sivut 12-15. Saa lukea myös kokonaan! TUNTEMATON KAASU KOHDERYHMÄ: Työ soveltuu lukiolaisille, erityisesti kurssille KE3 ja FY2. KESTO: Noin 60 min. MOTIVAATIO: Oppilaat saavat itse suunnitella koejärjestelyn. TAVOITE: Työn tavoitteena on

Lisätiedot

Aineen olomuodot. Fysiikka 2 tiivistelmä. Lämpö. Nimityksiä: systeemit. Paine. Lämpötila F A

Aineen olomuodot. Fysiikka 2 tiivistelmä. Lämpö. Nimityksiä: systeemit. Paine. Lämpötila F A http://www.foxitsoftware.com For evaluation only. 7..0 Aineen olomuodot Fysiikka tiivistelmä Juhani Kaukoranta Raahen lukio 0 Kiinteä Pitää oman muotonsa astiassa Neste Saa astian muodon Kaasu Jos kansi,

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä. Lääketieteellisten alojen valintakokeen 009 esimerkkitehtäviä Tehtävä 4 8 pistettä Aineistossa mainitussa tutkimuksessa mukana olleilla suomalaisilla aikuisilla sydämen keskimääräinen minuuttitilavuus

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1)

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1) LH0- Lämövoimakoneen kiertorosessin vaiheet ovat: a) Isokorinen aineen kasvu arvosta arvoon 2, b) adiabaattinen laajeneminen, jolloin aine laskee takaisin arvoon ja tilavuus kasvaa arvoon 3 ja c) isobaarinen

Lisätiedot

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3

Lisätiedot

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello 1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten

Lisätiedot

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa:

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa: 1 PAINE Kaasujen ja nesteiden paineen mittaus on yksi yleisimmistä prosessiteollisuuden mittauskohteista. Prosesseja on valvottava, jotta niiden vaatimat olosuhteet, kuten paine, lämpötila ja konsentraatiot

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2 Aalto-yliopisto/Insinööritieteiden korkeakoulu/energiatalous ja voimalaitostekniikka 1(5) TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) Ilmaa komprimoidaan 1 bar (abs.) paineesta 7 bar

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA IKI-Kiuas Oy teetti tämän tutkimuksen saatuaan taloyhtiöiltä positiivista palautetta kiukaistaan. Asiakkaat havaitsivat sähkölaskujensa pienentyneen,

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Kaikista aurinkoisin

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö 1. Selitä fysikaalisesti, miksi: a) sateessa kastuneet vaatteet tuntuvat kylmältä, b) pyykit kuivuvat myös pakkasessa, c) uunista pudonneen hehkuvan hiilenpalan

Lisätiedot

Tekijä: Markku Savolainen. STIRLING-moottori

Tekijä: Markku Savolainen. STIRLING-moottori Tekijä: Markku Savolainen STIRLING-moottori Perustietoa Perustietoa Palaminen tapahtuu sylinterin ulkopuolella Moottorin toiminta perustuu työkaasun kuumentamiseen ja jäähdyttämiseen Työkaasun laajeneminen

Lisätiedot

ALFÉA EXCELLIA DUO. : 11 16 kw ( ) 190 L

ALFÉA EXCELLIA DUO. : 11 16 kw ( ) 190 L DUO : 11 16 kw ( ) COP.3 S 19 L Alféa Excellia KORKEA SUORITUSKYKY: Loistava ratkaisu lämmityssaneerauksiin Korkean suorituskyvyn omaavan AIféa Excellia avulla pystytään tuottamaan 6 C asteista käyttövettä

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

V T p pv T pv T. V p V p p V p p. V p p V p

V T p pv T pv T. V p V p p V p p. V p p V p S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden

Lisätiedot

Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä.

Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä. Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä. Alla on a)-vaiheen monivalintakysymyksiä. Pääsykokeessa on joko samoja tai samantapaisia. Perehdy siis huolella niihin.

Lisätiedot

Ekotehokas rakentaja Työmaan energian käyttö. 17.11.2014 Hannu Kauranen

Ekotehokas rakentaja Työmaan energian käyttö. 17.11.2014 Hannu Kauranen Ekotehokas rakentaja Työmaan energian käyttö 17.11.2014 Hannu Kauranen Miksi työmaalla lämmitetään Rakennusvaihe Lämmitystarve Käytettävä kalusto Maarakennusvaihe Maan sulana pito Roudan sulatus Suojaus,

Lisätiedot

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 8.1 Kiertoprosessin ja termodynaamisen koneen määritelmä... 196 8.2 Termodynaamisten koneiden hyötysuhde... 197 8.2.1 Lämpövoimakone... 197 8.2.2 Lämpöpumpun

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

4 Aineen olomuodot. 4.2 Höyrystyminen POHDI JA ETSI

4 Aineen olomuodot. 4.2 Höyrystyminen POHDI JA ETSI 4 Aineen olomuodot 4.2 Höyrystyminen POHDI JA ETSI 4-1. a) Vesi asettuu astiassa vaakatasoon Maan vetovoiman ja veden herkkäliikkeisyyden takia. Painovoima tekee työtä, kunnes veden potentiaalienergia

Lisätiedot

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS AVOIME SARJA VASTAUKSET JA PISTEITYS 1. Käytössäsi on viivoitin, 10 g:n punnus, 2 :n kolikko sekä pyöreä kynä. Määritä kolikon ja viivoittimen massa. Selosta vastauksessa käyttämäsi menetelmät sekä esitä

Lisätiedot

Esimerkkikuvia ja vinkkejä mittaukseen

Esimerkkikuvia ja vinkkejä mittaukseen Esimerkkikuvia ja vinkkejä mittaukseen Tässä on esitetty esimerkkinä paikkoja ja tapauksia, joissa lämpövuotoja voi esiintyä. Tietyissä tapauksissa on ihan luonnollista, että vuotoa esiintyy esim. ilmanvaihtoventtiilin

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Keräimet asennetaan

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Kaasu Neste Kiinteä aine Plasma

Kaasu Neste Kiinteä aine Plasma Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien

Lisätiedot

PRO Greenair Heat Pump -laitesarja. Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla

PRO Greenair Heat Pump -laitesarja. Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla PRO Greenair Heat Pump -laitesarja Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla Raikas sisäilma energiatehokkaalla ilmanvaihdolla PRO Greenair Heat Pump -laitesarja Sisäänrakennettu ilmalämpöpumppu

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

2.11 Väliaineen vastus

2.11 Väliaineen vastus Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

mv 2 - MEKAANISEN ENERGIAN SÄILYMISLAKI: E p + E k = vakio - TYÖ W = Fs, W = Fcosα s - MEKAANINEN ENERGIAPERIAATE: a a

mv 2 - MEKAANISEN ENERGIAN SÄILYMISLAKI: E p + E k = vakio - TYÖ W = Fs, W = Fcosα s - MEKAANINEN ENERGIAPERIAATE: a a . KURSSI: Lämpö (FOTONI : PÄÄKOHDAT) ENERGIA: = kyky tehdä työtä YLEINEN ENERGIAN SÄILYMISLAKI: E kok = vakio MEKAANINEN ENERGIA: potentiaalienergia; E p =mgh, liikeenergia; E k = 1 mv MEKAANISEN ENERGIAN

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine Termiikin ennustaminen radioluotauksista Heikki Pohjola ja Kristian Roine Maanpintahavainnot havaintokojusta: lämpötila, kostea lämpötila (kosteus), vrk minimi ja maksimi. Lisäksi tuulen nopeus ja suunta,

Lisätiedot

ENERGIATEHOKAS KARJATALOUS

ENERGIATEHOKAS KARJATALOUS ENERGIATEHOKAS KARJATALOUS PELLON GROUP OY / Tapio Kosola ENERGIAN TALTEENOTTO KOTIELÄINTILALLA Luonnossa ja ympäristössämme on runsaasti lämpöenergiaa varastoituneena. Lisäksi maatilan prosesseissa syntyvää

Lisätiedot

Kirami SUB Merialumiininen uppokamiina. Käyttöohjeet

Kirami SUB Merialumiininen uppokamiina. Käyttöohjeet Kirami SUB Merialumiininen uppokamiina Käyttöohjeet Tiedot & Asennus Tekniset tiedot: Uppokamiina 3mm merialumiinia (AlMg3) Kolme kiinnityskorvaa Ilmanottoa säätelevä kansi Teräksinen ilmanohjauspelti

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään DI, TkT Sisältö Puulla lämmittäminen Suomessa Tulisijatyypit Tulisijan ja rakennuksessa Lämmön talteenottopiiput Veden lämmittäminen varaavalla

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Seitsemännen luennon aihepiirit Aurinkosähkön energiantuotanto-odotukset Etelä-Suomessa Mittaustuloksia Sähkömagnetiikan mittauspaneelista ja Kiilto Oy:n 66 kw:n aurinkosähkövoimalasta

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Palkittua työtä Suomen hyväksi Ministeri Mauri Pekkarinen luovutti SULPUlle Vuoden 2009 energia teko- palkinnon SULPUlle. Palkinnon vastaanottivat SULPUn hallituksen

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

HOXTER gmbh,kirchgasse 1, 91217 Hersbruck Tel.: 09151 8659 163 SIVU 2

HOXTER gmbh,kirchgasse 1, 91217 Hersbruck Tel.: 09151 8659 163 SIVU 2 TEKNISET TIEDOT Tel.: 09151 8659 163 SIVU 2 SISÄLLYS TAKAT 4 HAKA 37/50 4 HAKA 63/51 8 HAKA 67/51h 12 HAKA 89/45h 16 ECKA 67/45/51h 18 VESIKIERTOISET TAKAT 26 HAKA 37/50 W, WI 26 HAKA 63/51W, WI 30 HAKA

Lisätiedot

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! B 1 (6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE 28.5.2015 OSION 2 TEHTÄVÄT Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) LUE VASTAUSOHJEET C-OSAN (VASTAUSLOMAKKEEN) KANNESTA

Lisätiedot