Peruslaskutehtävät fy2 lämpöoppi kurssille

Koko: px
Aloita esitys sivulta:

Download "Peruslaskutehtävät fy2 lämpöoppi kurssille"

Transkriptio

1 Peruslaskutehtävät fy2 lämpöoppi kurssille Muista että kurssissa on paljon käsitteitä ja ilmiöitä, jotka on myös syytä hallita. Selvitä itsellesi kirjaa apuna käyttäen mitä tarkoittavat seuraavat fysiikan käsitteet. Huom, älä opettele määritelmiä sanasta sanaan ulkoa vaan yritä saada mieleesi kuva mitä kyseinen suure tai käsite tarkoittaa. 0 liike-energia, potentiaalienergia, työ, teho, paine, noste, suljettu systeemi, eristetty systeemi, avoin systeemi Mekaanisen energian säilymislaki 1 Pallo heitetään nopeudella 3,0 m/s nopeudella ylöspäin. Kuinka korkealle se nousee. 2 Heiluri päästetään 0,25 m:n korkeudelta heilumaan. a) Kuinka suuri on nopeus alhaalla, b) 0,125 m:n korkeudella. 3 Kappale, jonka massa on 1,0 kg liukuu jäällä nopeudella 8,0 m/s. Liukumiskitka jarruttaa kiekkoa 3,0 N:n voimalla. Kuinka pitkälle kiekko liukuu? 4 Auton massa on 570 kg ja sen alkunopeus mäen alla on 54 km/h. Autoon kohdistuu tien suunnassa 850 N:n suuruinen vakiovoima eteenpäin. Auto nousee 17 m korkean mäen päälle, jolloin sen nopeus on 52 km/h. Laske liikettä vastustavien voimien tekemä työ ja niiden keskimääräinen suuruus, kun mäen pituus on 150 m. Teho 5 Painonnostaja nostaa 150 kg 0,5 s:ssa 2,0 m:n korkeuteen. Kuinka suuri on teho? 6 Erään nurmijärveläisen omakotitalon vuotuinen energiankulutus on kwh. Jos suomalaisilla olisi puoli miljoona tällaista taloa, niin kuinka monta 1000 MW:n ydinvoimalaa tarvittaisiin tämän energiamäärän tuottamiseen, jos energia kuluisi ja sitä tuotettaisiin tasaisesti ilman kausihuippuja? Paine, noste ja Arkhimedeen laki (Arkhimedes/Noste eivät ole tässä kurssissa) 7 Arvioi yhden jalkasi koko ja massasi. Kuinka suurella paineella painat lattiaa kun seisot yhdellä jalalla tai kahdella jalalla. 8 Kuinka suuren voiman normaali ilmanpaine aiheuttaa silmäsi ulkopintaan, jos sen ala on noin 1,0 cm 2. 9 Kuinka suuri hydrostaattinen paine on 5,0 m:n syvyydellä. Kuinka suuri kokonaispaine siellä on? 10 Imukuppi tarttuu lattiaan kiinni siten, että lattian ja imukupin välissä on 0,15 barin paine. Ilma työntää imukuppia 1,0 barin paineella. Kuinka suurella voimalla imukuppia on vedettävä, jotta se irtoaa, jos imukupin säde on 5,0 cm? 1

2 11 Kuinka suurella voimalla 5,0 kg:n puukappaletta on tuettava, jotta se pysyy paikallaan a) ilmassa tai b) ilmassa? 12 Kuinka monta % jäästä on veden alla, jos se kelluu. 13 Kuinka monta kg jäätä tarvitaan kannattamaan 200 kg:n massainen jääkarhu, kun karhu lähtee matkaan jäälautalla. 14 Kun metallipallo kiinnitetään jousivaakaan näyttää se 3,0 N:n painoa. Mittalasiin kaadetaan nestettä 150 ml. Kun pallo upotetaan kokonaan nesteeseen, nousee neste 220 ml:n korkeudelle ja jousivaaka näyttää 2,6 N. Määritä a) kappaleen massa, b) sen tiheys ja c) nesteen tiheys. Ratkaisuja/vastauksia 1-14 Nämä ovat vain pikaisia ratkaisuja auttamaan laskujen ratkaisussa. Yo-kokeen vastauksissa pitää olla selkeä perustelu. Myös mahdollisten virhelähteiden ja/tai tulosten mielekkyyden pohtiminen on terveellistä. Tässä on MathPadilla laskettuja tuloksia, mieti mihin tehtävään ne liittyvät (etsi samalla virheet ja tee tehtävissä yksikkötarkastelut: 3^2/(2*9.81):0.459 sqrt(2*9.81*0.125): ^2/(2*3): *9.81*2/0.5: /(365*24): e6* /1000e6: *1*0.01^2: *9.81*5: *9.81* : *π*0.05^2: *9.81: /9.81:0.306 (3/9.81)/(( )*0.01^3): (3-2.6)/(9.81*( )*0.01^3): Mekaanisen energian säilymislaki 1 2 mv2 mgh h v2 2g! 0,46m 2 Mekaanisen energian säilymislaki: a) 2

3 mgh 1 2 mv2 v 2gh! 2,2m / s b) Laitetaan nollataso 0,125 m:n korkeudelle mgh 1 2 mv2 v 2gh! 1,6m / s 3 Energian säilymislaki 1 2 mv2 Fs s mv2 2F 11m 4 Katso Mikon sivut Hyllissä. 5 Teho: P mgh t 6 Teho: 5900W P E t E Pt Omakotitalon teho P t Wh h x 0, W W 7 Paine: p mg A 8 voima: F pa! 10N! 3424,658W! 1, 71 9 Hydrostaattinen paine ja kokonaispaine: p h!gh 49000Pa p p h + p 0 " Pa 10 Paine ero on 0,85 bar Pa Voima: F pa! 670N 11 a) mg! 49N b) Katso Mikon Powerpoint termodynamiikansuureet.ppt F 100 N 12 Arkhimedeen laki: 3

4 gv jää!veden!alla g V jää!veden!alla! jää V jää V jää! jää V jää!veden!alla V jää! jää! jää 13 Arkhimedeen laki: 14 a) m karhu g + g! " vesi gv jää!veden!alla 0 V jää!veden!alla " jää jää!on!kokonaan!vedessä m karhu g + g! " vesi g " jää 0 m karhu " vesi " jää! 1 m pallo g 3N m pallo 3N g! 0, 306kg b)! m V " 4400kg / m3 c) Arkhimedeen laki (Noste on voimien erotus) N gv N gv " 580kg / m3 Pohdiskele mitä seuraavat käsitteet tarkoittavat: Lämpö, ideaalikaasu, reaalikaasu, ominaislämpökapasiteetti, kaasun tilayhtälö, Maxwellin demoni, lämpökapasiteetti, sisäenergia. Miten kaasun paine selitetään ideaalikaasumallin avulla? Mitä on kaasun/nesteen/kiinteän aineen lämpöenergia. Missä se on? Miten mittaisit Maan ilmakehän keskilämpötilan, jos sinulla olisi aivan älyttömästi voimavaroja, miten tehtävä suoritettaisiin realistisesti? 4

5 Faasikaaviot? Miksi uloshengitys näkyy talvella? Mitä on savu pullossa kun se avataan? Lämpölaajeneminen 15 Kuinka monta mm 55 m kuparilankaa lyhenee, kun alussa lämpötila on 25 C ja lopussa 18 C. Muista myös kevään 07 yo-koetehtävä!! Kaasun tilayhtälö 16 Alussa paine on 1,0 bar ja lopussa 3,0 bar. Kuinka paljon on loppulämpötila, kun se alussa oli 72 C ja tilavuus ei muutu ,0 l:n painesäiliö on puolillaan vettä. Ilma on 1,5 barin paineessa. Astiaan pumpataan lisää 100,0 l vettä. Kuinka suuri on paine lopussa, kun lämpötila pysyy muuttumattomana. 18 Kuinka monta moolia kaasua on säiliössä, jonka tilavuus on 0,123 m 3, ja jonka paine on 5,2 bar ja lämpötila 350 C. 19 Edellisen tehtävän säiliön tilavuus kaksinkertaistetaan, jolloin lämpötila pienenee 50 asteeseen. Laske paine. 20 Pakastimen tilavuus on 500 l, sen ovi (A 0,85 m 2 ) avataan, jolloin ilma lämpenee + 5,0 C:een. Ovi suljetaan, jolloin ilman lämpötila jääähtyy 15 C:een. Kuinka suuri on oveen kohdistuva voima ulkopuolelta ja kuinka suuri sisäpuolelta. Kuinka suuri on erotus. Miten havaitset ilmiön kotonasi? Lämpöenergia Näissä tehtävissä oletetaan, että astian lämpökapasiteetti on mitätön (mikä ei ole realistista, mutta se pitää laskut helpompina. 21 Kuinka paljon energiaa tarvitaan kun 2,0 kg vettä lämmitetään 20 C:sta 95 C:een. 22 Kuinka kauan edellisen tehtävän lämmitykseen kuluu, jos lämmitysteho on 750 W 23 Astiassa on 2,0 kg vettä 20 C:ssa ja se lisätään vesiastiaan, jossa on 3 kg 60 asteista vettä. Määritä loppulämpötila. 24 Astiassa on 2,0 kg elohopeaa 20 C:ssa ja se lisätään vesiastiaan, jossa on 3 kg 60 asteista vettä. Määritä loppulämpötila. 25 a) Kuinka paljon energiaa tarvitaan, kun 2,0 kg jäätä lämmitetään -40 C:sta 0 C:een. b) Kuinka paljon energiaa tarvitaan, kun 2,0 kg 0 C jäätä sulatetaan. 26 Kuinka paljon aikaa kuluu, kun 5,0 kg 15 C:sta jäätä lämmitetään, sulatetaan ja lämmitetään kiehuvaksi ja lopulta höyrystetään kuiviin 850 W:n teholla? 27 Komposti on jäässä ( 5 C) Kompostissa olevan jätteen lämpökapasiteetti vastaa 60 kg jäätä. Kuinka paljon 100 C vettä tarvitaan, jotta komposti saadaan sulamaan. 28 1,2 kg 15 C jäätä ja 2,5 kg 55 C vettä sekoitetaan. Määritä loppulämpötila. 5

6 29 Oletetaan, että videolla olevassa mittauksessa uppokuumentimen lämmitysteho oli 310 W. Määritä monisteen tiedoista veden ominaislämpökapasiteetti ja veden höyrystymislämpö. Laske suureitten suhde ja vertaa taulukkokirjasta löytyvien arvojen suhteeseen. Kuinka suuri on virhe%. Ratkaisut Alla on jälleen MathPadilla laskettuja laskujen tuloksia. Tarkista olenko näppäillyt väärin. 55*16.8e-6*(-18-25): *( ): *(273,15-72) : *250/150: *123/( *( )): *123*( )/(246*( )): *2*(95-20): *1000/750: (2*20+3*60)/5: (0.14*2* *3*60)/(0.14*2+4.19*3): *2*40: *0.14*15+5*333+5*4.19*100+5*2260: *1000/850: /60: /60/60:4.925 (2090*60* *60)/(4190*100): *1.2* *1.2: *2.5*55: : /(4190*2.5): *41.739/3.7: Lämpölaajeneminen l l 0 (1+!t) l l 0 + l 0!t l " l 0 l 0!t 1 l " l 0 55m 16,8 10 "6 ("18 " 25)K K l " l 0 "0,04m "40mm 16 Kaasun tilanyhtälö, V on vakio. p 2 p 1 3bar (273,15! 72)K 1bar 17 Kaasun tilanyhtälö, T on vakio. V 1 p 2 V 2 p 2 V 1 V 2 1,5bar 250l 150l 2,5bar 6 819K (603,25! 273,15) C " 546 C

7 18 Kaasun tilayhtälö pv nrt n pv RT 19 Kaasun tilanyhtälö 5,2bar 123l 0, bar l molk (273, )K! 12, 345mol! 12mol V 1 p V 2 2 p 2 V 1 5,2bar 123l (273,15! 50)K V 2 246l (273, )K " 0, 931bar " 0, 93bar 20 V on vakio, Kaasun tilayhtälöstä: p 2 p 2 p 2! F A F (p 2! )A 21 Lämpöenergia 22 Teho Q cm!t Q 4,19kJ / (kgk) 2kg (95! 20)K 628,5kJ " 630kJ P E t t E P J 750W 838s! 840s 23 Lämpöenergiaa siirtyy lämpimämmästä kylmenpään, lopussa sama lämpötila. cm 2 (T! 60 C) cm 1 (T! 20) T m 1 20 C + m 2 60 C m 1 + m 2 2kg20 C + 3kg60 C 5kg 44 C 24 Kuten edellä, mutta nyt ominaislämpökapasiteetit eivät supistu: c 2 m 2 (T! 60 C) cm 1 (T! 20) T m 20 C + m 60 C 1 2 c 1 m 1 + c 2 m 2 0,14kJ / (kgk) 2kg20 C + 4,19kJ(kgK) 3kg60 C 0,14kJ / (kgk) 2kg + 4,19kJ(kgK) 3kg 59,128 C! 59 C 7

8 25 a) Qcm T 2,09kJ/(kgK) 2kg 40K 167,2kJ b) Qsm 333kJ/kg 2kg 666 kj 26 Lasketaan koko energia, aika saadaan jakamalla se teholla. (5*0.14*15+5*333+5*4.19*100+5*2260)kJ kj *1000/850 s s295,5 min 4,9 h 27 Kompostin lämmittämiseen ja sulattamiseen tarvitaan energiaa yhtä paljon kuin kuuma vesi voi luovuttaa (T1). Todellisuudessa energiaa vuotaa ympäristöön ja kompostin lämmittämiseen. Vesi tietysti vuotaa pois kompostista sillä se on tuskin vesitiivis. c jää!t + s c vesi!t c jää!t + s c vesi!t 2090J / (kgk) 60kg 5K J 60kg 4190J / (kgk) 100K! 48,181kg"50 kg 28 Taas energia säilyy. Veden sulattamiseen kuluu c jää!t + s 2090J / (kgk) 1,2kg 15K J 1,2kg! J Veden jäähtymisestä saadaan c vesi!t 4190J / (kgk) 2,5kg 55K J Kaikki jää sulaa. Tässä vaiheessa vedeltä on kulunut ( )J J, joten sen lämpötila on J 55 C! 4190J / (kgk) 2,5kg C Loppulämpötila saadaan samalla tavalla kuin tehtävässä 23. T 1,2kg0 C + 2,5kg41,739 C 3, 7kg 28,202 C! 28 C 29 tehtäneen tunnilla tai ainakin kokeessa T1 ja 2 30 Lyijyhaulipussia pudotetaan 500 kertaa 2,0 metrin korkeudelta. Kuinka monta astetta haulipussin lämpötila nousee, jos puolet mekaanisesta energiasta muuttuu haulien lämmöksi. 31 Kiväärillä ammutaan luoti, jonka massa on 10,0 g ja nopeus 550 m/s vesiastiaan, jossa on 1 kg vettä. Kuinka monta astetta veden lämpötila nousee, jos kaikki liike-energia kuluu veden lämmittämiseen. Oletetaan, että luodin lämpötila on sama kuin veden loppulämpötila. Voisiko tällaisella järjestelyllä olla mahdollista mitata luodin nopeus? Eli jos luodin nopeutta ei tunneta, niin mitataan lämpötilan kasvu ja päätellää nopeus energian säilymislain avulla? 8

9 32 Kuinka paljon energiaa tulee Maan poikkipinta-alan kokoiselle alueelle sekunnissa. Kuinka pitkä aika kuluisi, jos tämä kaikki energia kuluisi kokonaan ilmakehän lämmittämiseen jotta lämpötila nousisi yhden asteen. Käytä taulukkokirjan tietoja kun arvioit ilmakehän massa, ominaislämpökapasiteettia ja muita laskussa tarvittavia tietoja. Yleensä laskuissa ilmakehän ulkorajana pidetään 200 km:n korkeutta. Myös googlettamalla mass atmosphere saat tietoa arvioita ilmakehän massasta. Mitä tarkoitetaan käsitteillä sisäenergia, Termodynamiikan 1. pääsääntö, 2. pääsääntö, entropia, lämpövoimakone, lämpöpumppu, termodynaaminen hyötysuhde. Rakaisut Q mgh cm!t mgh!t gh c 31 Tutki kuinka suuri merkitys luodin alkulämpötilalla on!! Q c vesi!t + c luoti m luoti m luoti v2 c vesi!t!t c vesi!t 0,5m luoti 32 Aurinkovakio löytyy taulukkokirjasta tähtitieteen kohdalta, se kertoo Auringon säteilytehon neliömetriä kohden Maan etäisyydellä Auringosta. c ilmakehä! 1000J / (kgk) m! kg P 1, 4kW / m 2 "( m) 2 Pt cm!t t cm!t P 1000J / (kgk) kg 1K 27750s! 8h W / m 2 "( m) Onneksi kaikki Auringosta tuleva energia ei lämmitä ilmakehää. 9

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? Kysymys 1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? 2. EXTRA-PÄHKINÄ (menee yli aiheen): Heität vettä kiukaalle. Miksi vesihöyry nousee voimakkaasti kiukaasta ylöspäin?

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

Miltä työn tekeminen tuntuu

Miltä työn tekeminen tuntuu Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa eräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808 C

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2 FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää

Lisätiedot

0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C.

0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C. LH12-1 1 kg 2 C asteista vettä sekoitetaa yhde baari paieessa 2kg jäätä, joka lämpötila o -5 C Laske etropia muutos ja lämpötila, ku tasapaio o saavutettu 3 3 Vedelle c p 4,18 1 J/(kgK) jäälle c p 2, 9

Lisätiedot

f) p, v -piirros 2. V3likoe klo

f) p, v -piirros 2. V3likoe klo i L TKK / Energia- ja ympiiristotekniikan osasto 040301000 /040302000 TEKNILLINEN TERMODYNAMIIKKA, prof. Pert ti Sarkomaa 2. V3likoe 11.12.2002 klo 16.15-19.15 TEORIAOSA (yht. max 42 pistett3) Teoriakysymyksiin

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello 1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten

Lisätiedot

PULLEAT JA VALTAVAT VAAHTOKARKIT

PULLEAT JA VALTAVAT VAAHTOKARKIT sivu 1/6 PULLEAT JA VALTAVAT VAAHTOKARKIT LUOKKA-ASTE/KURSSI Soveltuu ala-asteelle, mutta myös yläkouluun syvemmällä teoriataustalla. ARVIOTU AIKA n. 1 tunti TAUSTA Ilma on kaasua. Se on yksi kolmesta

Lisätiedot

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1)

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1) LH0- Lämövoimakoneen kiertorosessin vaiheet ovat: a) Isokorinen aineen kasvu arvosta arvoon 2, b) adiabaattinen laajeneminen, jolloin aine laskee takaisin arvoon ja tilavuus kasvaa arvoon 3 ja c) isobaarinen

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 Alkudemonstraatio: Käsi lämpömittarina Laitetaan kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä.

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2 Aalto-yliopisto/Insinööritieteiden korkeakoulu/energiatalous ja voimalaitostekniikka 1(5) TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) Ilmaa komprimoidaan 1 bar (abs.) paineesta 7 bar

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / 14.11.2016 v. 03 / T. Paloposki Tämän päivän ohjelma: Vielä vähän entropiasta... Termodynamiikan 2. pääsääntö Entropian rooli 2. pääsäännön yhteydessä

Lisätiedot

Tasapainotilaan vaikuttavia tekijöitä

Tasapainotilaan vaikuttavia tekijöitä REAKTIOT JA TASAPAINO, KE5 Tasapainotilaan vaikuttavia tekijöitä Fritz Haber huomasi ammoniakkisynteesiä kehitellessään, että olosuhteet vaikuttavat ammoniakin määrään tasapainoseoksessa. Hän huomasi,

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Elastisuus: Siirtymä

Elastisuus: Siirtymä Elastisuus: Siirtymä x Elastisuus: Siirtymä ja jännitys x σ(x) σ(x) u(x) ℓ0 u(x) x ℓ0 x Elastisuus: Lämpövenymä ja -jännitys Jos päät kiinnitetty eli ε = 0 Jos pää vapaa eli σ = 0 Elastisuus: Venymätyypit

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

V T p pv T pv T. V p V p p V p p. V p p V p

V T p pv T pv T. V p V p p V p p. V p p V p S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 31.10.2016 TERVETULOA! v. 02 / T. Paloposki Tämän päivän ohjelma: Virtaussysteemin energiataseen soveltamisesta Kompressorin energiantarve, tekninen

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

Uponor G12 -lämmönkeruuputki. Asennuksen pikaohje

Uponor G12 -lämmönkeruuputki. Asennuksen pikaohje Uponor G12 -lämmönkeruuputki Asennuksen pikaohje poraajille Uponor G12 -lämmönkeruuputken asennus neljässä vaiheessa Uponor G12 -putket asennetaan periaatteessa samalla menetelmällä kuin tavanomaiset keruuputket.

Lisätiedot

Energiatehokkuuden analysointi

Energiatehokkuuden analysointi Liite 2 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Energiatehokkuuden analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste 8 3 Paine Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste i Ilma on ainetta ja se vaatii oman tilavuutensa. Ilmalla on massa. Maapallon ympärillä on ilmakehä. Me asumme ilmameren pohjalla. Me olemme

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima

Lisätiedot

13. Sulan metallin nostovoima

13. Sulan metallin nostovoima 13. Sulan metallin nostovoima Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Jos putkessa, jonka poikkipinta-ala on A, painetaan männällä nestepinnat eri korkeuksille, syrjäytetään nestettä tilavuuden

Lisätiedot

Kaasu Neste Kiinteä aine Plasma

Kaasu Neste Kiinteä aine Plasma Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

Viikkoharjoitus 2: Hydrologinen kierto

Viikkoharjoitus 2: Hydrologinen kierto Viikkoharjoitus 2: Hydrologinen kierto 30.9.2015 Viikkoharjoituksen palautuksen DEADLINE keskiviikkona 14.10.2015 klo 12.00 Palautus paperilla, joka lasku erillisenä: palautus joko laskuharjoituksiin tai

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset. Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä

Lisätiedot