Peruslaskutehtävät fy2 lämpöoppi kurssille
|
|
- Kauko Hänninen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Peruslaskutehtävät fy2 lämpöoppi kurssille Muista että kurssissa on paljon käsitteitä ja ilmiöitä, jotka on myös syytä hallita. Selvitä itsellesi kirjaa apuna käyttäen mitä tarkoittavat seuraavat fysiikan käsitteet. Huom, älä opettele määritelmiä sanasta sanaan ulkoa vaan yritä saada mieleesi kuva mitä kyseinen suure tai käsite tarkoittaa. 0 liike-energia, potentiaalienergia, työ, teho, paine, noste, suljettu systeemi, eristetty systeemi, avoin systeemi Mekaanisen energian säilymislaki 1 Pallo heitetään nopeudella 3,0 m/s nopeudella ylöspäin. Kuinka korkealle se nousee. 2 Heiluri päästetään 0,25 m:n korkeudelta heilumaan. a) Kuinka suuri on nopeus alhaalla, b) 0,125 m:n korkeudella. 3 Kappale, jonka massa on 1,0 kg liukuu jäällä nopeudella 8,0 m/s. Liukumiskitka jarruttaa kiekkoa 3,0 N:n voimalla. Kuinka pitkälle kiekko liukuu? 4 Auton massa on 570 kg ja sen alkunopeus mäen alla on 54 km/h. Autoon kohdistuu tien suunnassa 850 N:n suuruinen vakiovoima eteenpäin. Auto nousee 17 m korkean mäen päälle, jolloin sen nopeus on 52 km/h. Laske liikettä vastustavien voimien tekemä työ ja niiden keskimääräinen suuruus, kun mäen pituus on 150 m. Teho 5 Painonnostaja nostaa 150 kg 0,5 s:ssa 2,0 m:n korkeuteen. Kuinka suuri on teho? 6 Erään nurmijärveläisen omakotitalon vuotuinen energiankulutus on kwh. Jos suomalaisilla olisi puoli miljoona tällaista taloa, niin kuinka monta 1000 MW:n ydinvoimalaa tarvittaisiin tämän energiamäärän tuottamiseen, jos energia kuluisi ja sitä tuotettaisiin tasaisesti ilman kausihuippuja? Paine, noste ja Arkhimedeen laki (Arkhimedes/Noste eivät ole tässä kurssissa) 7 Arvioi yhden jalkasi koko ja massasi. Kuinka suurella paineella painat lattiaa kun seisot yhdellä jalalla tai kahdella jalalla. 8 Kuinka suuren voiman normaali ilmanpaine aiheuttaa silmäsi ulkopintaan, jos sen ala on noin 1,0 cm 2. 9 Kuinka suuri hydrostaattinen paine on 5,0 m:n syvyydellä. Kuinka suuri kokonaispaine siellä on? 10 Imukuppi tarttuu lattiaan kiinni siten, että lattian ja imukupin välissä on 0,15 barin paine. Ilma työntää imukuppia 1,0 barin paineella. Kuinka suurella voimalla imukuppia on vedettävä, jotta se irtoaa, jos imukupin säde on 5,0 cm? m@hyl.edu.hel.fi 1
2 11 Kuinka suurella voimalla 5,0 kg:n puukappaletta on tuettava, jotta se pysyy paikallaan a) ilmassa tai b) ilmassa? 12 Kuinka monta % jäästä on veden alla, jos se kelluu. 13 Kuinka monta kg jäätä tarvitaan kannattamaan 200 kg:n massainen jääkarhu, kun karhu lähtee matkaan jäälautalla. 14 Kun metallipallo kiinnitetään jousivaakaan näyttää se 3,0 N:n painoa. Mittalasiin kaadetaan nestettä 150 ml. Kun pallo upotetaan kokonaan nesteeseen, nousee neste 220 ml:n korkeudelle ja jousivaaka näyttää 2,6 N. Määritä a) kappaleen massa, b) sen tiheys ja c) nesteen tiheys. Ratkaisuja/vastauksia 1-14 Nämä ovat vain pikaisia ratkaisuja auttamaan laskujen ratkaisussa. Yo-kokeen vastauksissa pitää olla selkeä perustelu. Myös mahdollisten virhelähteiden ja/tai tulosten mielekkyyden pohtiminen on terveellistä. Tässä on MathPadilla laskettuja tuloksia, mieti mihin tehtävään ne liittyvät (etsi samalla virheet ja tee tehtävissä yksikkötarkastelut: 3^2/(2*9.81):0.459 sqrt(2*9.81*0.125): ^2/(2*3): *9.81*2/0.5: /(365*24): e6* /1000e6: *1*0.01^2: *9.81*5: *9.81* : *π*0.05^2: *9.81: /9.81:0.306 (3/9.81)/(( )*0.01^3): (3-2.6)/(9.81*( )*0.01^3): Mekaanisen energian säilymislaki 1 2 mv2 mgh h v2 2g! 0,46m 2 Mekaanisen energian säilymislaki: a) m@hyl.edu.hel.fi 2
3 mgh 1 2 mv2 v 2gh! 2,2m / s b) Laitetaan nollataso 0,125 m:n korkeudelle mgh 1 2 mv2 v 2gh! 1,6m / s 3 Energian säilymislaki 1 2 mv2 Fs s mv2 2F 11m 4 Katso Mikon sivut Hyllissä. 5 Teho: P mgh t 6 Teho: 5900W P E t E Pt Omakotitalon teho P t Wh h x 0, W W 7 Paine: p mg A 8 voima: F pa! 10N! 3424,658W! 1, 71 9 Hydrostaattinen paine ja kokonaispaine: p h!gh 49000Pa p p h + p 0 " Pa 10 Paine ero on 0,85 bar Pa Voima: F pa! 670N 11 a) mg! 49N b) Katso Mikon Powerpoint termodynamiikansuureet.ppt F 100 N 12 Arkhimedeen laki: m@hyl.edu.hel.fi 3
4 gv jää!veden!alla g V jää!veden!alla! jää V jää V jää! jää V jää!veden!alla V jää! jää! jää 13 Arkhimedeen laki: 14 a) m karhu g + g! " vesi gv jää!veden!alla 0 V jää!veden!alla " jää jää!on!kokonaan!vedessä m karhu g + g! " vesi g " jää 0 m karhu " vesi " jää! 1 m pallo g 3N m pallo 3N g! 0, 306kg b)! m V " 4400kg / m3 c) Arkhimedeen laki (Noste on voimien erotus) N gv N gv " 580kg / m3 Pohdiskele mitä seuraavat käsitteet tarkoittavat: Lämpö, ideaalikaasu, reaalikaasu, ominaislämpökapasiteetti, kaasun tilayhtälö, Maxwellin demoni, lämpökapasiteetti, sisäenergia. Miten kaasun paine selitetään ideaalikaasumallin avulla? Mitä on kaasun/nesteen/kiinteän aineen lämpöenergia. Missä se on? Miten mittaisit Maan ilmakehän keskilämpötilan, jos sinulla olisi aivan älyttömästi voimavaroja, miten tehtävä suoritettaisiin realistisesti? m@hyl.edu.hel.fi 4
5 Faasikaaviot? Miksi uloshengitys näkyy talvella? Mitä on savu pullossa kun se avataan? Lämpölaajeneminen 15 Kuinka monta mm 55 m kuparilankaa lyhenee, kun alussa lämpötila on 25 C ja lopussa 18 C. Muista myös kevään 07 yo-koetehtävä!! Kaasun tilayhtälö 16 Alussa paine on 1,0 bar ja lopussa 3,0 bar. Kuinka paljon on loppulämpötila, kun se alussa oli 72 C ja tilavuus ei muutu ,0 l:n painesäiliö on puolillaan vettä. Ilma on 1,5 barin paineessa. Astiaan pumpataan lisää 100,0 l vettä. Kuinka suuri on paine lopussa, kun lämpötila pysyy muuttumattomana. 18 Kuinka monta moolia kaasua on säiliössä, jonka tilavuus on 0,123 m 3, ja jonka paine on 5,2 bar ja lämpötila 350 C. 19 Edellisen tehtävän säiliön tilavuus kaksinkertaistetaan, jolloin lämpötila pienenee 50 asteeseen. Laske paine. 20 Pakastimen tilavuus on 500 l, sen ovi (A 0,85 m 2 ) avataan, jolloin ilma lämpenee + 5,0 C:een. Ovi suljetaan, jolloin ilman lämpötila jääähtyy 15 C:een. Kuinka suuri on oveen kohdistuva voima ulkopuolelta ja kuinka suuri sisäpuolelta. Kuinka suuri on erotus. Miten havaitset ilmiön kotonasi? Lämpöenergia Näissä tehtävissä oletetaan, että astian lämpökapasiteetti on mitätön (mikä ei ole realistista, mutta se pitää laskut helpompina. 21 Kuinka paljon energiaa tarvitaan kun 2,0 kg vettä lämmitetään 20 C:sta 95 C:een. 22 Kuinka kauan edellisen tehtävän lämmitykseen kuluu, jos lämmitysteho on 750 W 23 Astiassa on 2,0 kg vettä 20 C:ssa ja se lisätään vesiastiaan, jossa on 3 kg 60 asteista vettä. Määritä loppulämpötila. 24 Astiassa on 2,0 kg elohopeaa 20 C:ssa ja se lisätään vesiastiaan, jossa on 3 kg 60 asteista vettä. Määritä loppulämpötila. 25 a) Kuinka paljon energiaa tarvitaan, kun 2,0 kg jäätä lämmitetään -40 C:sta 0 C:een. b) Kuinka paljon energiaa tarvitaan, kun 2,0 kg 0 C jäätä sulatetaan. 26 Kuinka paljon aikaa kuluu, kun 5,0 kg 15 C:sta jäätä lämmitetään, sulatetaan ja lämmitetään kiehuvaksi ja lopulta höyrystetään kuiviin 850 W:n teholla? 27 Komposti on jäässä ( 5 C) Kompostissa olevan jätteen lämpökapasiteetti vastaa 60 kg jäätä. Kuinka paljon 100 C vettä tarvitaan, jotta komposti saadaan sulamaan. 28 1,2 kg 15 C jäätä ja 2,5 kg 55 C vettä sekoitetaan. Määritä loppulämpötila. m@hyl.edu.hel.fi 5
6 29 Oletetaan, että videolla olevassa mittauksessa uppokuumentimen lämmitysteho oli 310 W. Määritä monisteen tiedoista veden ominaislämpökapasiteetti ja veden höyrystymislämpö. Laske suureitten suhde ja vertaa taulukkokirjasta löytyvien arvojen suhteeseen. Kuinka suuri on virhe%. Ratkaisut Alla on jälleen MathPadilla laskettuja laskujen tuloksia. Tarkista olenko näppäillyt väärin. 55*16.8e-6*(-18-25): *( ): *(273,15-72) : *250/150: *123/( *( )): *123*( )/(246*( )): *2*(95-20): *1000/750: (2*20+3*60)/5: (0.14*2* *3*60)/(0.14*2+4.19*3): *2*40: *0.14*15+5*333+5*4.19*100+5*2260: *1000/850: /60: /60/60:4.925 (2090*60* *60)/(4190*100): *1.2* *1.2: *2.5*55: : /(4190*2.5): *41.739/3.7: Lämpölaajeneminen l l 0 (1+!t) l l 0 + l 0!t l " l 0 l 0!t 1 l " l 0 55m 16,8 10 "6 ("18 " 25)K K l " l 0 "0,04m "40mm 16 Kaasun tilanyhtälö, V on vakio. p 2 p 1 3bar (273,15! 72)K 1bar 17 Kaasun tilanyhtälö, T on vakio. V 1 p 2 V 2 p 2 V 1 V 2 1,5bar 250l 150l 2,5bar m@hyl.edu.hel.fi 6 819K (603,25! 273,15) C " 546 C
7 18 Kaasun tilayhtälö pv nrt n pv RT 19 Kaasun tilanyhtälö 5,2bar 123l 0, bar l molk (273, )K! 12, 345mol! 12mol V 1 p V 2 2 p 2 V 1 5,2bar 123l (273,15! 50)K V 2 246l (273, )K " 0, 931bar " 0, 93bar 20 V on vakio, Kaasun tilayhtälöstä: p 2 p 2 p 2! F A F (p 2! )A 21 Lämpöenergia 22 Teho Q cm!t Q 4,19kJ / (kgk) 2kg (95! 20)K 628,5kJ " 630kJ P E t t E P J 750W 838s! 840s 23 Lämpöenergiaa siirtyy lämpimämmästä kylmenpään, lopussa sama lämpötila. cm 2 (T! 60 C) cm 1 (T! 20) T m 1 20 C + m 2 60 C m 1 + m 2 2kg20 C + 3kg60 C 5kg 44 C 24 Kuten edellä, mutta nyt ominaislämpökapasiteetit eivät supistu: c 2 m 2 (T! 60 C) cm 1 (T! 20) T m 20 C + m 60 C 1 2 c 1 m 1 + c 2 m 2 0,14kJ / (kgk) 2kg20 C + 4,19kJ(kgK) 3kg60 C 0,14kJ / (kgk) 2kg + 4,19kJ(kgK) 3kg 59,128 C! 59 C m@hyl.edu.hel.fi 7
8 25 a) Qcm T 2,09kJ/(kgK) 2kg 40K 167,2kJ b) Qsm 333kJ/kg 2kg 666 kj 26 Lasketaan koko energia, aika saadaan jakamalla se teholla. (5*0.14*15+5*333+5*4.19*100+5*2260)kJ kj *1000/850 s s295,5 min 4,9 h 27 Kompostin lämmittämiseen ja sulattamiseen tarvitaan energiaa yhtä paljon kuin kuuma vesi voi luovuttaa (T1). Todellisuudessa energiaa vuotaa ympäristöön ja kompostin lämmittämiseen. Vesi tietysti vuotaa pois kompostista sillä se on tuskin vesitiivis. c jää!t + s c vesi!t c jää!t + s c vesi!t 2090J / (kgk) 60kg 5K J 60kg 4190J / (kgk) 100K! 48,181kg"50 kg 28 Taas energia säilyy. Veden sulattamiseen kuluu c jää!t + s 2090J / (kgk) 1,2kg 15K J 1,2kg! J Veden jäähtymisestä saadaan c vesi!t 4190J / (kgk) 2,5kg 55K J Kaikki jää sulaa. Tässä vaiheessa vedeltä on kulunut ( )J J, joten sen lämpötila on J 55 C! 4190J / (kgk) 2,5kg C Loppulämpötila saadaan samalla tavalla kuin tehtävässä 23. T 1,2kg0 C + 2,5kg41,739 C 3, 7kg 28,202 C! 28 C 29 tehtäneen tunnilla tai ainakin kokeessa T1 ja 2 30 Lyijyhaulipussia pudotetaan 500 kertaa 2,0 metrin korkeudelta. Kuinka monta astetta haulipussin lämpötila nousee, jos puolet mekaanisesta energiasta muuttuu haulien lämmöksi. 31 Kiväärillä ammutaan luoti, jonka massa on 10,0 g ja nopeus 550 m/s vesiastiaan, jossa on 1 kg vettä. Kuinka monta astetta veden lämpötila nousee, jos kaikki liike-energia kuluu veden lämmittämiseen. Oletetaan, että luodin lämpötila on sama kuin veden loppulämpötila. Voisiko tällaisella järjestelyllä olla mahdollista mitata luodin nopeus? Eli jos luodin nopeutta ei tunneta, niin mitataan lämpötilan kasvu ja päätellää nopeus energian säilymislain avulla? m@hyl.edu.hel.fi 8
9 32 Kuinka paljon energiaa tulee Maan poikkipinta-alan kokoiselle alueelle sekunnissa. Kuinka pitkä aika kuluisi, jos tämä kaikki energia kuluisi kokonaan ilmakehän lämmittämiseen jotta lämpötila nousisi yhden asteen. Käytä taulukkokirjan tietoja kun arvioit ilmakehän massa, ominaislämpökapasiteettia ja muita laskussa tarvittavia tietoja. Yleensä laskuissa ilmakehän ulkorajana pidetään 200 km:n korkeutta. Myös googlettamalla mass atmosphere saat tietoa arvioita ilmakehän massasta. Mitä tarkoitetaan käsitteillä sisäenergia, Termodynamiikan 1. pääsääntö, 2. pääsääntö, entropia, lämpövoimakone, lämpöpumppu, termodynaaminen hyötysuhde. Rakaisut Q mgh cm!t mgh!t gh c 31 Tutki kuinka suuri merkitys luodin alkulämpötilalla on!! Q c vesi!t + c luoti m luoti m luoti v2 c vesi!t!t c vesi!t 0,5m luoti 32 Aurinkovakio löytyy taulukkokirjasta tähtitieteen kohdalta, se kertoo Auringon säteilytehon neliömetriä kohden Maan etäisyydellä Auringosta. c ilmakehä! 1000J / (kgk) m! kg P 1, 4kW / m 2 "( m) 2 Pt cm!t t cm!t P 1000J / (kgk) kg 1K 27750s! 8h W / m 2 "( m) Onneksi kaikki Auringosta tuleva energia ei lämmitä ilmakehää. m@hyl.edu.hel.fi 9
Termodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotRATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt
Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotMekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:
Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei
Lisätiedot3.4 Liike-energiasta ja potentiaalienergiasta
Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate
LisätiedotMuunnokset ja mittayksiköt
Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?
Lisätiedot1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?
Kysymys 1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? 2. EXTRA-PÄHKINÄ (menee yli aiheen): Heität vettä kiukaalle. Miksi vesihöyry nousee voimakkaasti kiukaasta ylöspäin?
LisätiedotMEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta
MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana
LisätiedotKOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma
KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,
LisätiedotTERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT
TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä
LisätiedotFYSIIKAN HARJOITUSTEHTÄVIÄ
FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on
LisätiedotMiltä työn tekeminen tuntuu
Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu
LisätiedotLuvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
LisätiedotLiike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotTyö 3: Veden höyrystymislämmön määritys
Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotLÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON
LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
LisätiedotNESTEIDEN ja ja KAASUJEN MEKANIIKKA
NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
LisätiedotMolaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
LisätiedotREAKTIOT JA ENERGIA, KE3. Kaasut
Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotLämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
LisätiedotSovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
Lisätiedotln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.
S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.
LisätiedotKemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
LisätiedotFYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
LisätiedotLämpöopin pääsäännöt
Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia
Lisätiedot1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.
S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai
LisätiedotMuita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:
Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu
Lisätiedotvetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
LisätiedotTEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A
TEHTÄVIEN RATKAISUT 8-1. Jousivaa an lukema suolavedessä on pienempi kuin puhtaassa vedessä, koska suolaveden tiheys on suurempi kuin puhtaan veden ja siksi noste suolavedessä on suurempi kuin puhtaassa
LisätiedotTEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg
TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla
LisätiedotPuhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
LisätiedotLuku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
LisätiedotIlman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:
ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.
LisätiedotLUKION FYSIIKKAKILPAILU PERUSSARJA
PERUSSARJA Vastaa huolellisesti ja siististi! Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoite, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-
LisätiedotFYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!
FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää
LisätiedotTeddy 1. välikoe kevät 2008
Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?
LisätiedotIntegroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj
S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
LisätiedotTekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan
Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan 1. Kolmiossa yksi kulma on 60 ja tämän viereisten sivujen suhde 1 : 3. Laske
LisätiedotLämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö
Lämpöopin pääsäännöt 0. pääsääntö Jos systeemit A ja C sekä B ja C ovat termisessä tasapainossa, niin silloin myös A ja B ovat tasapainossa. Eristetyssä systeemissä eri lämpöiset kappaleet asettuvat lopulta
LisätiedotMamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus
Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske
LisätiedotTyössä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja
LisätiedotIdeaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?
Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
Lisätiedota) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?
Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.
Lisätiedot= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
LisätiedotKonventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla
Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan
LisätiedotKIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT
KIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT Lämpölaajeneminen Pituuden lämpölaajeneminen: l = αl o t lo l l = l o + l = l o + αl o t l l = l o (1 + α t) α = pituuden lämpötilakerroin esim. teräs: α = 12 10
LisätiedotFysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka
LisätiedotKaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I
Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä
LisätiedotLuku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.
Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen
LisätiedotLuku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde
Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa
LisätiedotTermodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
Lisätiedot1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2
FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
LisätiedotFYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka
FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka Oppilaan nimi: Pisteet: / 77 p. Päiväys: Koealue: kpl 13-18, s. 91-130 1. SUUREET. Täydennä taulukon tiedot. suure suureen tunnus suureen yksikkö matka aika
LisätiedotFysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi
Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:
LisätiedotOikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:
A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808
Lisätiedot0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C.
LH12-1 1 kg 2 C asteista vettä sekoitetaa yhde baari paieessa 2kg jäätä, joka lämpötila o -5 C Laske etropia muutos ja lämpötila, ku tasapaio o saavutettu 3 3 Vedelle c p 4,18 1 J/(kgK) jäälle c p 2, 9
LisätiedotTUNTEMATON KAASU. TARINA 1 Lue etukäteen argonin käyttötarkoituksista Jenni Västinsalon kandidaattitutkielmasta sivut 12-15. Saa lukea myös kokonaan!
TUNTEMATON KAASU KOHDERYHMÄ: Työ soveltuu lukiolaisille, erityisesti kurssille KE3 ja FY2. KESTO: Noin 60 min. MOTIVAATIO: Oppilaat saavat itse suunnitella koejärjestelyn. TAVOITE: Työn tavoitteena on
LisätiedotLämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka
Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää
LisätiedotOikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:
A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa eräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808 C
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
Lisätiedot. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä
LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
LisätiedotTKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.
1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista
Lisätiedot1. (*) Luku 90 voidaan kirjoittaa peräkkäisen luonnollisen luvun avulla esimerkiksi
Matematiikan pulmasivu Koonnut Martti Heinonen martti.heinonen@luukku.com Vaikeustaso on merkitty tähdillä: yhden tähden (*) tehtävä on helpoin ja kolmen (***) haastavin. 1. (*) Luku 90 voidaan kirjoittaa
LisätiedotVastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.
Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol
LisätiedotMATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.
AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka
LisätiedotKiiännö!! b) Fysiikan tunnilla tutkittiin lääkeruiskussa olevan ilman paineen riippuvuutta lämpötilasta vakiotilavuudessa ruiskuun kiinnitetyn
FYSKKA (FY02l: 2. KURSS: Lämpö vasraa KUUTEEN (6) TEHnÄVÄÄN il KOE 21.02.2013 1. a) Suuren matkustajalentokoneen lentokorkeus maahan nähden on 10,5 km, vauhti980 km/h ja massa 310 000 kg. Laske lentokoneen
LisätiedotTKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.
1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on
LisätiedotTyössä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja
LisätiedotFY9 Fysiikan kokonaiskuva
FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin
LisätiedotLuento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta
LisätiedotAineen olomuodot. Fysiikka 2 tiivistelmä. Lämpö. Nimityksiä: systeemit. Paine. Lämpötila F A
http://www.foxitsoftware.com For evaluation only. 7..0 Aineen olomuodot Fysiikka tiivistelmä Juhani Kaukoranta Raahen lukio 0 Kiinteä Pitää oman muotonsa astiassa Neste Saa astian muodon Kaasu Jos kansi,
LisätiedotLuento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
LisätiedotKryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1
DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
LisätiedotKun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa:
1 PAINE Kaasujen ja nesteiden paineen mittaus on yksi yleisimmistä prosessiteollisuuden mittauskohteista. Prosesseja on valvottava, jotta niiden vaatimat olosuhteet, kuten paine, lämpötila ja konsentraatiot
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
LisätiedotLämpöoppia. Haarto & Karhunen. www.turkuamk.fi
Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien
LisätiedotKuivauksen fysiikkaa. Hannu Sarkkinen
Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m
Lisätiedotf) p, v -piirros 2. V3likoe klo
i L TKK / Energia- ja ympiiristotekniikan osasto 040301000 /040302000 TEKNILLINEN TERMODYNAMIIKKA, prof. Pert ti Sarkomaa 2. V3likoe 11.12.2002 klo 16.15-19.15 TEORIAOSA (yht. max 42 pistett3) Teoriakysymyksiin
LisätiedotFysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka
Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi
LisätiedotTarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello
1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten
Lisätiedot2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)
2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja
Lisätiedot