Luku 12 THERMODYNAAMISTEN OMINAISUUKSIEN YHTÄLÖT

Koko: px
Aloita esitys sivulta:

Download "Luku 12 THERMODYNAAMISTEN OMINAISUUKSIEN YHTÄLÖT"

Transkriptio

1 hermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 011 Luku 1 HERMODYNAAMISEN OMINAISUUKSIEN YHÄLÖ Copyright he McGraw-Hill Companies, Inc. ermission required for reproduction or display. aoitteet Johdetaan perusyhtälöt niiden yleisimpien termodynaamisten ominaisuuksien älille, joita ei kyetä mittaamaan suoraan helposti mitattaien suureiden aulla. Johdetaan Maxwellin yhtälöt, jotka oat perustana monille termodynaamiselle yhtälöille. Johdetaan Clapeyronin yhtälö ja lasketaan höyrystymisentalpia, ja mittaustuloksista. Johdetaan yleiset yhtälöt c, c p, du, dh ja ds, jotka päteät puhtaille aineille. Esitetään Joule-homson -kerroin. Kehitetään menetelmä h, u ja s laskentaan reaali - kaasuille, käyttämällä yleistettyjä entalpia ja entropia poikkemataulukoita. 1

2 HIEMAN MAEMAIIKKAA- OSIAISDERIVAAA JA NIIDEN RIIUVUUDE ilapostulaatti: elkän kokoonpuristuan aineen tila on täysin määrätty jos tunnetaan kahden intensiiisen suureen arot. ilan kaikki muut suureet oidaan lausua noiden kahden suureen aulla. Funktion f(x) deriaatta x:n suhteen esittää f:n suhteellista muutosta x:n muuttuessa. Funktion deriaatta jossain pisteessä esittää functionkulmakerrointa kyseisessä pisteessä. 3 Osittaisdifferentiaalit z(x, y):n muuttuminen x:n mukana kun y pidetään akiona kutsutaan z:tan osittaisderiaataksi x suhteen ja esitetään seuraaasti Osittaisderiaatan (z/x) y geometrinen esitys. Symboli esittää funktion differentiaalista muutosta, aian kuin symbol d. Ne eroaat siinä, että d kuaa kaikkien muuttujien aikutusta, kun taas edustaa osittaista differentiaalista muutosta yhden muuttujan aikutuksesta. d ja esittämät muutokset oat identtisiä riippumattomille muuttujille, mutta eiät riippuille muuttujille. 4

3 Saadaksemme yhtälön z(x,y):n kokonaisdifferentiaalin muutokselle, kun x ja y muuttuat yhtäaikaa tarkastellaan pientä aluetta pinnalla z(x,y) (kua). Kun riippumattomat muuttujat x ja y muuttuat x:n ja y:n erran riipua muuttuja z muuttuu z:n erran, joka oidaan lausua seuraaasti zzx ( xy, y) zxy (, ) Lisäämällä ja ähentämällä z(x, y+ y), saamme ai zzx ( xy, y) zxy (, y) zxy (, yzxy (, ) zx ( xy, y) zxy (, y) zxy (, y) zxy (, ) z x y x y Ottamalla raja-arot kun x 0 ja y 0 ja käyttämällä osittaisderiaattojen määritelmää, saadaan z z dz dx dy x y y x ämä on riippuan muuttujan kokonaisdifferentiaalin perusyhtälö lausuttuna riippuien muuttujien osittaisderiaattojen aulla riippumattomien muuttujien suhteen. Funktion z(x, y) kokonaisderiaatan dz geometrinen kuaus. 5 Osittaisdifferentiaalien riippuuudet Differentioinnin järjestyksellä ei ole merkitystä muuttujille, koska ne oat jatkuia pistefunktioita ja niillä on eksaktit diferentiaalit. Joten, Käänteisyyden merkitys funktiolle z + xy 3y z = 0. Käänteisyysrelaatio Jaksollisuusrelaatio 6 3

4 MAXWELLIN YHÄLÖ Ominaisuuksien,,, ja s osittaisderiaattojen älisiä yhtälöitä yksinkertaiselle kokoonpuristualle systeemille kutsutaan Maxwellin yhtälöiksi. Ne saadaan neljästä Gibbs in yhtälöstä hyödyntämällä termodynaamisten ominaisuuksien differentiaalien exactness???. Helmholtz funktio Gibbs funktio Maxwell in yhtälöt Maxwell yhtälöt oat äärimmäisen arokkaita temodynamiikassa, koska tarjoaat keinot laskea entropian muutoksia, joita ei oida mitata suoraan, mittaamalla ominaisuuksien, ja muutoksia. Nämä Maxwellin yhtälöt päteät ai yksinkertaislle kokoonpuristuille systemeille. 7 ai arkastellaan Maxwellin kolmatta yhtälöä s d s s g f g f d sat d d ämän prosessi aikana myös paine pysyy akiona. Siksi saadaan sat s g g 0 dh ds d dh ds h fg s fg f f fg fg CLAEYRONIN YHÄLÖ Faasimuutoksen aikana paine on kyllästyspaine, joka riippuu ain lämpötilasta ja on riippumaton ominaistilauudesta. Mikä tarkoittaa sat =f( sat ). Siksi, osittaisderiaatta oidaan lausua kokonaisderiaattana (d/d)sat, joka on kyllästyskäyrän kulmakerroin --kaaiossa tunnetussa kyllästystlassa. Kulmakerroin on riippumaton ominaistilauudesta ja siksi sitä oidaan käsitellä akiona integroitaessa kahden kylästystilan älillä samassa lämpötilassa. Isotermiselle neste-höyry faasimuutokselle, esimerkiksi integrointi antaa Sijoittamalla tulos edelliseen yhtälöön saamme d d sat h fg fg 8 4

5 Clapeyronin yhtälö Clapeyronin yhtälö mahdollistaa höyrystymisentaplian h fg ja kylläisen höyryn ja nesteen ominaistilauuden määrittämisen tietyssä lämpötilassa yksinkertaisesti mittaamalla kyllästyskäyrän kulmakerroin - kaaiossa. - kaaiossa kyllästyskäyrän deriaatta on akio, tai on akio. Clapeyronin yhtälön yleinen muoto, jossa alaindeksit 1 ja kuaaat eri faaseja. 9 Clapeyronin yhtälöä oidaan yksinkertaistaa nestre-höyry ja kiinteähöyry faasimuutoksiin käyttämällä muutamaa approksimaatiota. Alhaisissa paineissa Käsitellään höyryä ideaalikaasuna Sijoitetaan nämä yhtälöt Clapeyronin yhtälöön Clapeyron Clausius yhtälöä oidaan käyttää kyllästystilan paineen määrittämiseen lämpötilan funktiona. Sitä oidaan myös käyttää kiinteä-höyry alueella koraamalla äliaineen h fg h ig :llä (sublimaatio entalpia). Integrointi kahden kyllästystilan älillä Clapeyron Clausius yhtälö 10 5

6 YLEISE RIIUVUUDE SUUREILLE du, dh, ds, c, JA c p ilapostulaatti äittää, että yksinkertaisen kokoonpuristuan systeemin tila on täysin määrätty kahden riippumattoman intensiiisen tilasuureen aulla. Siksi, pitäisi olla mahdollista laskea systeemin kaikki ominaisuudet, kuten sisäenergia, entalpia ja entropia, missä tahansa tilassa, kun kahden riippumattoman intensiiisen tilasuureen arot oat tunnettuja. Näiden suureiden laskeminen mitattaissa oleista suureista riippuu yksinkertaisten ja luotettaien yhtälöiden olemassa olosta näiden kahden ryhmän älillä. ässä jaksossa johdetaan yleiset yhtälöt sisäenergian, entalpian ja entropian muutoksille paineen, ominaislämmön, lämpötilan aulla ja yksistään ominaislämmöille. Johdetaan ielä joitakin yleisiä yhtälöitä, joissa on ominaislämpöjä muuttujina. Näiden yhtälöiden johtaminen mahdollistaa näiden suureiden muutosten laskemisen. Suureiden arot tunnetuissa tiloissa oidaan määrittää, kun on alittu referenssitila, jonkan alinta on melko satunnaista. 11 Sisäenergian muutokset Jos sisäenergia on :n ja :n funktio, eli u=u(,) jolloin sen kokonaisdifferentiaali on u u du d d Käytetään C:n määritelmää ja saadaan u du cd d Nyt alitaan entropian olean :n ja :n funktio, eli s=s(,) ja otetaan kokonaisdifferentiaali, s s ds d d Sijoittamalla tämä ds yhtälöön du=ds-d saadaan s s du d d 1 6

7 Yhtälöiden 1-5 ja 1-7 d:n ja d kertoimet yhdistämällä saadaan s c u s Käytetään Maxwellin kolmatta yhtälöä (1-8), saamme Sijoittamalla tämä yhtälöön 1-5, saadaan yhtälö du:lle u du cd d Yksinkertaisen kokoonpuristuan systeemin tilanmuutos tilasta ( 1, 1 ) tilaan (, ) määräytyy integraalista u u1 cd d Entalpian muutokset Yleinen yhtälö dh:lle johdetaan seuraaaksi. Johdetaan entalpialle yhtälö :n ja :n funktiona, h=h(,), ja otetaan sen kokonaisdifferentiaali, h h dh d d Käytetään c :n määritelmää, Seuraaaksi entropia on :n ja :n funktio, s=s(,) ja otetaan kokonaisdifferentiaali s s ds d d Sijoittamalla ds yhtälö dh=ds+d saadaan h dh c d d s s ds d d 14 7

8 Merkitsemällä d:n ja d:n kertoimet yhtälöissä 1-31 ja 1-33 yhtäsuuriksi, saadaan s c Neljännen Maxwelli yhtälön aulla saadaan Sijoittamalla tämä yhtälön 1-31, saadaan etsitty yhtälö dh:lle dh cd d Yksinkertaisen kokoonpuristuan systeemin entalpian muutos tilojen ( 1, 1 ) ja (, ) älillä saadaan integroimalla odellisuudessa taritaan u -u 1 tai h -h 1 riippuen käytö tarkoituksesta. oinen saadaan entalpian määritelmän aulla h h u u h s h 1 h h1 cd d Entropian muutokset Ensimmäinen yhtälö saadaan koraamalla ensimmäinen osittaisderiaatta kokonaisdifferentiaalin ds yhtälössä yhtälöllä 1-8 ja toinen osittaisderiaatta kolmannella Maxwellin yhtälöllä ja saadaan c ds d d ja c s s1 d d 1 1 oinen yhtälö saadaan koraamalla ds:n kokonaisdifferentiaalin yhtälön ensimmäinen osittaisderiaatta yhtälöllä 1-34 ja toinen osittaisderiaatta neljännellä Maxwelin yhtälöllä, jolloin saadaan ja c ds d d 1 c ss1 d d

9 Ominaislämmöt c ja c p Alhaisissa paineissa kaasut käyttätyät kuten idealikaasu ja niiden ominaislämmöt riippuat ain lämpötilasta. Näitä ominaislämpöjä kutsutaan nolla paine tai ideaalikaasu ominaislämmöiksi (c 0 ja c p0 ) ja ne oat helppo Määrittää. Siksi olisi toiottaaa saada yleiset yhtälöt ominaislämmöille korkeampiin paineisiin (tai pienemille ominaistilauuksille) c 0 ja c p0 ja äliaineen -- käyttätymisen aulla. Yhtälöt saadaan sijoittamalla 1-5 yhtälöihin 1-38 ja 1-40, jolloin saadaan c c c p :n poikeaminen c p0 :sta paineen noustessa, saadaan integroimalla 1-43 nolla aineesta mihin tahansa paineeseen isotermiä pitkin c cp0 d 0 17 oinen tarpeellinen yhtälö on ominaislämpöjä c ja c p yhdistää yhtälö. Sen edut oat ilmeiset: täytyy määritellä ain yksi ominaislämpö (yleensä c p ) ja laskea toinen tästä yhtälöstä ja äliaineen -- ominaisuuksista. Yhtälö johdetaan yhdistämällä ds:n yhtälöt 1-38 ja 1-40 ja ratkaisemalla d : c c c c d d d Valitaan =(,) ja differentioidaan, niin sadaan d d d Yhtälöiden termien d ja d kertoimet oat yhtäsuuria, jolloin saadaan tulokseksi: c c 18 9

10 Vaihtoehtoinen muoto tälle yhtälölle saadaan jaksollisesta yhtälöstä: 1 Sijoittamalla tulos edellisen kalon yhtälöön saadaan c c ämä yhtälö oidaan lausua kahden termodynaamisen suureen, tilauuslaajenemisen ja isotermisen kokoonpuristuuuden, aulla 1 1 Sijoittamalla nämä yhtälöt ylläoleaan yhtälöön saamme kolmannen yleisen yhtälön erotukselle c p -c : c Mayer in yhtälö c 19 Mayer yhtälö Johtopäätöksiä Mayerin yhtälöstä: 1. Yhtälön oikea puoli on aina suurempi tai yhtäsuuri kuin nolla. Siksi,. c p ja c erotus lähestyy nollaa kun absoluuttinen lämpötila lähestyy nollaa. 3. Nämä kaksi ominaislämpöä oat yhtäsuuria täysin kokoonpuristumattomille aineille, koska on akio. Ominaislämpöjen erotus on hyin pieni ja jätetään usein huomiotta äliaineille, jotka oat lähes kokoonpuristumattomia, kuten nesteet ja kiinteät aineet. ilauuden paisuntakyky (kutsutaan myös tilauuslaajenemisen kertoimeksi) on tilauuden laajenemista lämpötilan muuttuessa paineen ollessa akio. 0 10

11 Ideaalikaasujen ja kokoonpuristumattomien äliaineiden sisäenergiat ja ominaislämmöt riippuat ain lämpötilasta. 1 ESIMERKKI 1-9: Ideaalikaasujen ominaislämpöjen erotus Osoita, että yhtälö c -c =R pätee ideaalikaasulle. Ratkaisu: On osoitettaa, että ideaalikaasun ominaislämpöjen erotus on yhtäsuuri kuin sen kaasuakio. Analyysi: ämä yhtälö oidaan helposti todistaa oikeaksi osoittamalla, että Yhtälön 1-46 oikea puoli on yhtäsuuri kuin ideaalikaasun kaasuakio R: Sijoittamalla Siksi c c R R R R R R c c R 11

12 JOULE-HOMSON -KERROIN Nesteen lämpätilan käyttätymistä kuristusprosessissa (h = akio) kuataan Joule- homson kertoimella Joule-homson kerroin on h=akio käyrän kulmakerroin --kaaiossa. Nesteen lämpötila oi kasaa, laskea tai pysyä akiona kuristusprosessissa. h = akio käyrä - -kaaiossa. 3 Väliaineen akio-entalpia käyriä - - kaaiossa. Kuristusprosessi etenee akioentalpia käyrää pitkin laskean paineen suuntaan, eli oikealta asemmalle. Siksi, nesteen lämpötila kasaa kuristusprosessissa, joka tapahtuu käännepistekäyrän oikealla puolella. Kuitenkin, lämpötila laskee kuristusprosesissa, joka tapahtuu käännepistekäyrän asemmalla puolella. Jäähdytysaikutusta ei oi siten esiintyä, ellei nesteen lämpötila ei ole maksimi inersiolämpötilan alapuolella. ämä on ongelma äliaineille, joiden maksimi inersiolämpötila on huoneen lämpötilan alapuolella. 4 1

13 Seuraaaksi johdetaan yleinen yhtälö Joule-homson kertoimelle ominaislämpöjen, paineen, ominaistilauuden ja lämpötilan aulla. Se oidaan johtaa entalpian muutoksen yleisesti yhtälöstä: dh cd d Entalpia ollessa akio, dh=0. Yhtälö oidaan tällöin kirjoittaa muotoon 1 c h J Mikä on taoiteltu yhtälö. Joule-homson kerroin oidaan siten määrittää äliaineen ominaislämmön (akio paineessa ) ja -- riippuuuksien aulla. Luonnollisesti on myös mahdollista määrittää ominaislämpö akiopaineessa Joule-homson kertoimen aulla yhdessä äliaineen -- ominaisuuksien kanssa. 5 ESIMERKKI 1-10 Ideaalikaasun Joule-homson kerroin Osoita, että ideaalikaasun Joule-homson kerroin on nolla. Ratkaisu On osoitettaa, että µ J =0 ideaalikaasulle. Analyysi Ideaalikaasulle =R/ ja siksi R Sijoittamalla tämä yhtälöön R 1 J ( ) 0 c c c Ideaalikaasun lämpötila säilyy akiona kuristusprosessissa, koska h = akio ja = akio käyrät yhtyät - -kaaiossa. 6 13

14 REAALIKAASUJEN h, u JA s Alhaisessa paineessa kaasut käyttätyät kuten ideaalikaasut ja noudattaat yhtälöä = R. Ideaalikaasujen ominaisuudet oat melko helppoja arioda, koska u, h, c, and c p riippuat ain lämpöilasta. Korkeissa paineissa, kaasut poikkeaat merkittäästi ideaalikaasun käyttätymisestä ja tämän poikkeaman huomiointi tulee tarpeelliseksi. Luussa 3 suureiden, ja poikkeama otettiin huomioon joko käytämällä monimutkaisempia tila- yhtälöitä tai käyttämällä kokoonpuristumiskerrointa Z kokoonpuristuuuskäyrästöistä. Seuraaaksi aroidaan entalpian, sisäenergian ja entropian muutoksia epäideaalisille (reaali-) kaasuille, käyttäen du:lle, dh:lle ja ds:lle aiemmin johdettuja yhtälöitä. 7 Reaalikaasujen entalpian muutokset Reaalikaasun entalpia riippuu yleensä paineesta ja lämpötilasta. Siten prosessin entalpian muutos oidaan arioida dh yleisestä yhtälöstä h h1 c d d 1 1 Isotermiselle prosessille (1-1* ja *-) d = 0 ja ensimmäinen termi häiää. Vakiopaineiselle prosessille (1*-*) d = 0 ja toinen termi häiää. Vaihtoehtoinen prosessipolku reaalikaasujen entalpian muutosten ariointiin. 8 14

15 Merkitsemällä ideaalikaasutilaa tähdellä (*), oime kirjoittaa reaalikaasun entalpian muutokselle tilojen 1- älillä h ja h* eroa kutsutaan entalpian poikkeamaksi ja se kuaa kaasun entalpian aihtelua paineen muuttuessa akiolämpötilassa. Entalpian poikkeaman laskeminen edellyttää kaasun -- käyttäytymisen tuntemista. Jos tätä tietoa ei ole where Z is the cokäytettäissä, oidaan käyttää yhtälöä = ZR, jossa Z on kokoonpuristuuuskerroin. Sijoittamalla, 9 Entalpian poikkema tekijä Z h arot esitetään R (redusoitu paine) ja R (redusoitu lämpötila) funktiona yleistetyssä entalpian poikkema kaaiossa. Z h käytetään, kun määritetään kaasun entalpian poikkeama tunnetuissa ja ideaalikaasun entalpiasta samassa lämpötilassa. Reaali kaasulle prosessissa 1- Ideaalikaasun taulukoista Reaalikaasujen sisäenergian muutokset Käytetään määritelmää 30 15

16 Reaalikaasujen entropian muutokset Ds:n yleinen yhtälö Kuan lähestymistaalla Isotermisessä prosessissa Vaihtoehtoinen prosessipolku entropian muutosten ariointiin prosessissa Entropian poikkeama Entropian poikkeama tekijä Z s arot oat esitetty yleistetyssä entropian poikkeama kaaiossa R (redusoitu paine) ja R (redusoitu lämpötila) funktiona. Z s käytetään, kun määritetään kaasun entropian poikkeama tunnetuissa ja ideaalikaasun entropiasta samassa lämpötilassa. Ideaalikaasun yhtälöstä Reaalikaasu prosessissa

17 YHEENVEO Hieman matematiikkaa Osittaisderiaatat ja niihin liittyät yhtälöt Osittaisdifferentiaalit Osittaisdifferentiaalien yhtälöt Maxwellin yhtälöt Clapeyronin yhtälö Yleiset yhtälöt : du, dh, ds, c ja c p Sisäenergian muutokset Entalpian muutokset Entropian muutokset Ominaislämmöt c ja c p Joule-homson kertoimet Reaalikaasujen h, u ja s Reaalikaasujen entalpian muutokset Reaalikaasujen sisäenergian muutokset Reaalikaasujen entropian muutokset 33 17

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Luku 13 KAASUSEOKSET

Luku 13 KAASUSEOKSET Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2010 Luku 13 KAASUSEOKSET Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Clausiuksen epäyhtälö

Clausiuksen epäyhtälö 1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / 7.11.2016 v. 02 / T. Paloposki Tämän päivän ohjelma: Sisäenergia (kertaus) termodynamiikan 1. pääsääntö Entropia termodynamiikan 2. pääsääntö 1 Termodynamiikan

Lisätiedot

Termodynaamiset syklit Todelliset tehosyklit

Termodynaamiset syklit Todelliset tehosyklit ermodynaamiset syklit odelliset tehosyklit Luennointi: k Kati Miettunen Esitysmateriaali: k Mikko Mikkola HYS-A00 ermodynamiikka (FM) 09..05 Syklien tyypit Sisältö Kaasusyklit s. höyrysyklit Suljetut syklit

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Luku 3 Puhtaiden aineiden ominaisuudet

Luku 3 Puhtaiden aineiden ominaisuudet Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 3 Puhtaiden aineiden ominaisuudet Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

1 Clausiuksen epäyhtälö

1 Clausiuksen epäyhtälö 1 PHYS-C0220 ermodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Clausiuksen epäyhtälö Carnot n koneen syklissä lämpötilassa H ja L vastaanotetuille lämmöille Q H ja Q L pätee oisin ilmaistuna,

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Luento 7: Atomien ja molekyylien väliset voimat ja kineettinen kaasuteoria

Luento 7: Atomien ja molekyylien väliset voimat ja kineettinen kaasuteoria Luento 7: Atomien ja molekyylien äliset oimat ja kineettinen kaasuteoria kirjan kappaleet.,.,. ja.. Osan pohjana on käytetty luentomonistetta Termofysiikan perusteet, I. apari ja H. Vehkamäki (http://www.courses.physics.helsinki.fi/fys/termo/termofysiikka_h.pdf)

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki)

KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki) KJR-00 Kontinuumimekaniikan perusteet, tentti (esimerkki) 1. Liikemäärän momentin taseen periaatteen soeltaminen kappalealkioon johtaa lokaaliin muotoon σ θ ( ρ r ) < 0, jossa alaindeksi tarkoittaa akiota

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin: Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu

Lisätiedot

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan

Lisätiedot

ν = S Fysiikka III (ES) Tentti Ratkaisut

ν = S Fysiikka III (ES) Tentti Ratkaisut S-45 Fysiikka III (ES) etti 8500 Ratkaisut Ideaalikaasu suorittaa oheise kua esittämä kiertoprosessi abca Pisteessä a lämpötila o 0 K a) Kuika mota moolia kaasua o? b) Määritä kaasu lämpötila pisteissä

Lisätiedot

Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Luku 7 ENTROPIA

Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Luku 7 ENTROPIA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 7 ENTROPIA Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

η = = = 1, S , Fysiikka III (Sf) 2. välikoe

η = = = 1, S , Fysiikka III (Sf) 2. välikoe S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon

Lisätiedot

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 30.10.2017 v. 03 / T. Paloposki Tämän päivän ohjelma: Entropia Termodynamiikan 2. pääsääntö Palautuvat ja palautumattomat prosessit 1 Entropia Otetaan

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

7 Termodynaamiset potentiaalit

7 Termodynaamiset potentiaalit 82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta

Viivaintegraali: Pac- Man - tulkinta Viivaintegraali: "Pac- Man" - tulkinta Otetaan funk6o f(x,y), joka riippuu muu@ujista x ja y. Jokaiselle x,y tason pisteellä funk6olla on siis joku arvo. Tyypillisiä fysikaalis- kemiallisia esimerkkejä

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1): 1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208 IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa

Lisätiedot

S , Fysiikka III (Sf) tentti/välikoeuusinta

S , Fysiikka III (Sf) tentti/välikoeuusinta S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Thermodynamics is Two Laws and a Li2le Calculus

Thermodynamics is Two Laws and a Li2le Calculus Thermodynamics is Two Laws and a Li2le Calculus Termodynamiikka on joukko työkaluja, joiden avulla voidaan tarkastella energiaan ja entropiaan lii2yviä ilmiötä kaikissa luonnonilmiöissä ja lai2eissa Voidaan

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia

Lisätiedot

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1 DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold

Lisätiedot

X JOULEN JA THOMSONIN ILMIÖ...226

X JOULEN JA THOMSONIN ILMIÖ...226 X JOULEN JA HOMSONIN ILMIÖ...6 10.1 Ideaalikaasun tilanyhtälö ja sisäenergia... 6 10. van der Waals in kaasun sisäenergia... 7 10..1 Reaalikaasun energiayhtälö... 7 10.. van der Waalsin kaasun entroia...

Lisätiedot

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit FYSA241, kevät 2012 uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty järjestelmä

Lisätiedot

VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ

VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ II LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ 7. Lämpö ja työ... 70 7.2 Kaasun tekemä laajenemistyö... 7 7.3 Laajenemistyön erityistapauksia... 73 7.3. Työ isobaarisessa tilanmuutoksessa... 73 7.3.2 Työ isotermisessä

Lisätiedot

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi S-4.35, FYSIIKKA III, Syksy 00, LH, Loppuiikko 38 LH-* Laske happimolekyylin keskimääräinen apaa matka 300 K lämpötilassa ja,0 baarin paineessa. Voit olettaa, että molekyyli on pallon muotoinen ja pallon

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

, jossa X AF on johdon reaktanssi vikapaikkaan asti. Nyt voidaan laskea reaktanssi asemalta A vikapaikkaan F. U X

, jossa X AF on johdon reaktanssi vikapaikkaan asti. Nyt voidaan laskea reaktanssi asemalta A vikapaikkaan F. U X . Tiedetään, että 3-aiheisessa oikosulkuiassa ika on asemien ja älisellä johdolla ja että katkaisija on auennut asemalla. Tiedetään iallisen johdon pituus (6 km), (myötä)reaktanssi pituutta kohti (,33

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

Luku Pääsääntö (The Second Law)

Luku Pääsääntö (The Second Law) Luku 3 2. Pääsääntö (he Second Law) Some things happen naturally, some things don t Spontaneous must be interpreted as a natural tendency that may or may not be realized in prac=ce. hermodynamics is silent

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Y56 laskuharjoitukset 5 - mallivastaukset

Y56 laskuharjoitukset 5 - mallivastaukset Y56 Keät 010 1 Y56 laskuharjoitukset 5 - malliastaukset Harjoitus 1. Voiton maksimoia tuotannon taso & kiinteät kustannukset Taoitteena on ymmärtää kiinteiden kustannusten aikutus yrityksen tuotantopäätöksiin

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 Keskiviikko 12.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2018) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen

Lisätiedot

8. Monen muu*ujan funk/on differen/aalilaskenta

8. Monen muu*ujan funk/on differen/aalilaskenta 8. Monen muu*ujan funk/on differen/aalilaskenta Esim 1. Ideaalikaasun /lanyhtälö p = nrt V Paine riippuu /lavuudesta, ainemäärästä ja lämpö/lasta: p = p(n, T, V) Esim 2. Hiukkasen aaltofunk/o kolmiulo*eisessa

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre. 2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

DEE Kryogeniikka

DEE Kryogeniikka DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold tip tirling aim com mod.jpg Introduced about

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2015 4. ermodynaamiset potentiaalit 1 ermodynaaminen tasapaino kanonisessa joukossa Mikrokanoninen

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

LUKU 16 KEMIALLINEN JA FAASITASAPAINO

LUKU 16 KEMIALLINEN JA FAASITASAPAINO Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 16 KEMIALLINEN JA FAASITASAPAINO Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot