KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki)

Koko: px
Aloita esitys sivulta:

Download "KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki)"

Transkriptio

1 KJR-00 Kontinuumimekaniikan perusteet, tentti (esimerkki) 1. Liikemäärän momentin taseen periaatteen soeltaminen kappalealkioon johtaa lokaaliin muotoon σ θ ( ρ r ) < 0, jossa alaindeksi tarkoittaa akiota derioinnin suhteen. Osoita suoraan laskemalla Karteesisessa koordinaatistossa, että ehdosta seuraa jännitksen smmetria. Kätä Karteesisen koordinaatiston esitksiä i i θ θ θ r < j < j θ θ k k ja θ i / θ < j /. θ k /. Kappaleen liikkeen kuaus Karteesisessa koordinaatistossa on < (1 ktx ), < (1 kt) Y ja < Z, jossa k on akio. Laske nopeuden ja kiihtden komponentit Lagrangen ja Eulerin esitksissä. 3. Kaksi aunua on kuan mukaisesti kiskoilla. Vaunujen ja kiskojen älissä ei ole kitkaa. Ylempi aunu kulkee akionopeudella aunuun. Massairta u ja siitä aluu hiekkaa alempaan λ on akio. Kirjoita alemman aunun massaa ja auhtia koskea alkuarotehtää. Hetkellä t < 0 alempi aunu on leossa ( 0 < 0) ja aunun massa on M 0. u 4. Määritä kuan ulokepalkin normaalioima N, leikkausoima Q ja taiutusmomentti M aksiaalikoordinaatin funktioina. Kätä palkkialkion liikemäärän taseen ja liikemäärän momentin taseen lokaaleja muotoja. f L P Määritä irtausnopeus ( ) ja paine p ( ) kuan len leitetssä tasapaksussa maalipinnassa (tihes θ ja iskositeetti λ akioita) lähtien Naier-Stokes htälöistä. Oletetaan, että < < 0. Ilmanpaine on akio p 0 ja ilman iskositeetti λ <. 45 h ilma 0 g p 0

2 Liikemäärän momentin taseen periaatteen soeltaminen kappalealkioon johtaa lokaaliin muotoon σ θ ( ρ r ) < 0, jossa alaindeksi tarkoittaa akiota derioinnin suhteen. Osoita suoraan laskemalla Karteesisessa koordinaatistossa, että ehdosta seuraa jännitksen smmetria. Kätä Karteesisen koordinaatiston esitksiä i i θ θ θ r < j < j θ θ k k ja θ i / θ < j /. θ k / Suunnattu deriaatta on differentiaalioperaattori joka aikuttaa kaikkeen termissä sen sijainnin oikealla puolella. Muutoin operaattoria käsitellään kuten ektoria tensorilausekkeessa. Karteesisen koordinaatiston kantaektorit oat akioita ja tässä mös jännits on akio derioinnin suhteen. Aukikirjoitettuna (sulut osoittaat laskujärjestksen) / i i ρ ρ ρ i i σ θ θ θ θ θ ( ρ r) < / ( j j ) ρ ρ ρ ( j j ) < 0 / θ θ θ θ k k ρ ρ ρ k k / ρ ρ ρ 0 k, j σ θ ( ρ r) < / ρ ρ ρ (, k 0 i ) < 0 / ρ j i 0 ρ ρ, / ρ ρ ρ k, j σ θ ( ρ r ) < / ( ρ ρ ρ, k i ) < 0 / ρ j i ρ ρ, / ρ( k j) ρ ( i k) ρ ( j i),,, σ θ ( ρ r ) < / ρ( k, j) ρ( i, k) ρ( j, i) < 0 / ρ( k, j) ρ ( i, k) ρ ( j, i) σ ( ρ r) < ( ρ, ρ ) k ( ρ, ρ ) j ( ρ, ρ ) i < 0 ρ ρ < ρ, < ρ ja ρ < ρ.

3 Kappaleen liikkeen kuaus Karteesisessa koordinaatistossa on < (1 ktx ), < (1 kt) Y ja < Z, jossa k on akio. Laske nopeuden ja kiihtden komponentit Lagrangen ja Eulerin esitksissä. Kappaleen liikkeen kuaus on kappaleen partikkelien ratojen parametriesits (aika on käräparametri). Kappalekoordinaatit ( XYZ,, ) identifioiat partikkelin. ässä kappaleen liikkeen kuaus ja sen käänteiskuaus oat 1 kt 0 0 X < 0 (1 kt) 0 Y Z X 1/(1 kt) 0 0 Y < 0 1/(1 kt) 0. Z θ Nopeuden ja ja kiihtden komponentit saadaan kappaleen paikkaektorin r < i θ j θ k θ osittaisderiaattoina ajan suhteen. Kiinteän koordinaatiston kantaektorit oat akioita, joten deriaatta puree ain komponentteihin. Nopeuden ja kiihtden Lagrange esitksen komponentit oat 1 kt 0 0 X k 0 0 X 0 (1 kt) 0 Y 0 k(1 kt) 0 < < Y, t Z Z a 1 kt X X a < 0 (1 kt) 0 Y 0 k 0 Y <. t a Z Z Nopeuden komponentit Eulerin esitksessä saadaan laskemalla ensiksi komponentit Lagrange esitksessä ja eliminoimalla tämän jälkeen ainekoordinaatit kappaleen liikkeen käänteiskuauksen aulla 0 0 1/(1 ) 0 0 k kt k 0 k(1 kt) 0 0 1/(1 kt) < <, 1 kt a /(1 kt) k a 0 k 0 0 1/(1 kt) < <. (1 kt) a

4 Kaksi aunua on kuan mukaisesti kiskoilla. Vaunujen ja kiskojen älissä ei ole kitkaa. Ylempi aunu kulkee akionopeudella u ja siitä aluu hiekkaa alempaan aunuun. Massairta λ on alkio. Kirjoita alemman aunun massaa ja auhtia koskea alkuarotehtää. Hetkellä t < 0 alempi aunu on leossa ( 0 < 0) ja aunun massa on M 0. u arkastellaan kappaletta, joka koostuu aunusta, sen sisällä oleista hiekasta ja aikaälissä aunuun tuleasta hiekasta. Kappaleeseen ei kohdistu ulkoisia oimia. Olkoon aunun ja sen sisältämän hiekan massa M() t ja aunun nopeus t (). Oheinen kua esittää tilanteita ajanhetkillä t ja t Χt Χt λχt u M M ΧM Χ Massan tase alitulle kappaleelle M Χ M, M, λχ t < 0 Χ M < λχt dm dt < λ. Liikemäärän tase alitulle kappaleelle ( M ΧM)( Χ ), M, λχ tu < 0 ΧM MΧ ΧMΧ, λχ tu < 0 ΧM Χ ΧM Χ M Χ t, λu < 0. Χt Χt Χt Χt Lopuksi tarkastellaan raja-aroa Χt 0. Liikemäärän tasehtälön iimeinen termi häiää ja saadaan aunun liikehtälö dm d d M, λu < ( M), λu < 0. dt dt dt Vaunun liikkeen alkuarotehtää koostuu massan ja liikemäärän taseista ja tunnetuista aunun massan ja nopeuden alkuaroista d ( M ), λ u < 0, dt dm dt < λ t = 0 ja M < M0, < 0 t < 0.

5 Määritä kuan ulokepalkin normaalioima N, leikkausoima Q, ja taiutusmomentti M aksiaalikoordinaatin funktioina. Kätä palkkialkion liikemäärän taseen ja liikemäärän momentin taseen lokaaleja muotoja. Palkin differentiaalihtälöt seuraaat liikemäärän taseen ja liikemäärän momentin taseen periaatteista soellettuina palkkialkioon. asopalkille dn f 0 d <, dq f d < 0 ja dm Q d, < 0. Ulokepalkin leikkausrasitukset saadaan differentiaalihtälöiden ratkaisuna. Ensimmäisen kertaluun differentiaalihtälön ksikäsitteinen ratkaisu edellttää htä reunaehtoa, joka kuaa tilannetta palkin apaassa päässä. Reuna-arotehtää normaalioimalle ja sen ratkaisu dn 0 d < ja N( L) < P N( ) < a ja N( L) < a < P, joten N( ) Reuna-arotehtää leikkausoimalle ja sen ratkaisu < P. dq f 0 d, < ja Q( L) <, P Q( ) < f a ja Q( L) < fl a <, P a <, P, fl, joten Q( ) < f(, L), P. Reuna-arotehtää momentille ja sen ratkaisu dm f ( L ) P 0 d,, < ja M( L ) < 0 1 M( ) < f(, L), P a ja f L P 45 1 M( L) <, f L, PL a < 0 1 a < f L PL, joten 1 M( ) < f(, L), P(, L).

6 Määritä irtausnopeus ( ) ja paine p ( ) kuan len leitetssä tasapaksussa maalipinnassa (tihes θ ja iskositeetti λ akioita) lähtien Naier-Stokes htälöistä. Oletetaan, että < < 0. Ilmanpaine on akio p 0 ja ilman iskositeetti λ ilma < 0. ehtäässä tarkastellaan Newtonin nesteen ajasta riippumatonta tasoirtausta Karteesisessa koordinaatistossa, jolloin päädtään jatkuuushtälön ja liikemäärän taseen, ja, suuntaisiin komponentteihin (Naier-Stokes htälöt) 45 g h p 0 < 0, p λ θ( ), ( ), f < 0, p λ θ( ), ( ), f < 0. ehtään kuauksen perusteella f < f <, /, p, ( ) ( ) ja < 0, joten jatkuuushtälö toteutuu automaattisesti ja liikemäärän taseet, ja, suunnissa p < 0,, λ < 0. ädennetään saadut htälöt irtausnopeutta ja painetta koskeaksi reuna-arotehtääksi. Virtausnopeus kiinteän seinämän kohdalla häiää. Neste-ilma rajapinnalla ilman nesteesen kohdistaman traktion tangentiaalikomponentti (iskoosi osuus) häiää, koska ilman iskositeetti oletetaan häiään pieneksi suhteessa nesteen iskositeettiin. Ilman nesteeseen kohdistaman traktion normaalikomponentti seuraa ilmanpaineesta. ehtäät paineelle ja irtausnopeudelle (huomaa, että osittaisderiaatat :n suhteen muuttuat taallisiksi deriaatoiksi, koska p, ( ) ( )) Reuna-arotehtää paineelle ja sen ratkaisu dp θ g < 0 ]0, h[ ja p( h) < p0 d p< a ja p( h) < h a< p0 a< p0, h, joten p< p0 (, h). Reuna-arotehtää nopeudelle ja sen ratkaisu

7 d θ g d, λ < 0 ]0, h[, (0) < 0 ja λ ( h) < 0 d d 1 d ( ) < a b ja (0) < b< 0 ja λ ( h) < λ( h a) < 0 λ d λ a<, h, λ joten θ g 1 ( ) < (, h). λ

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017 KJR-C00 Kontinuumimekaniikan perusteet, iikko 46/07. Kuan esittämä esiskootteri etenee akioauhdilla. Veden (tihes ) sisäänotto tapahtuu pohjassa olean aakasuoran aukon kautta. Sisääntulean eden auhti on

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, tentti

KJR-C2002 Kontinuumimekaniikan perusteet, tentti KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 48/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 48/2017 KJR-C00 Kontinuumimekaniikan perusteet, viikko 48/017 1. Kilpailun aikana moottoripörän avaitaan lentävän matkan lätökulman ollessa. Mallinnetaan moottoripörä kuskeineen partikkeliksi (massa m) ja unodetaan

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017 KJR-C00 Kontinuumimekaniikan perusteet, viikko 47/017 1. Määritä oheisen kuvan mukaisen kanaalin portin

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi S-4.35, FYSIIKKA III, Syksy 00, LH, Loppuiikko 38 LH-* Laske happimolekyylin keskimääräinen apaa matka 300 K lämpötilassa ja,0 baarin paineessa. Voit olettaa, että molekyyli on pallon muotoinen ja pallon

Lisätiedot

y 1 x l 1 1 Kuva 1: Momentti

y 1 x l 1 1 Kuva 1: Momentti BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Sarja Kon-4.303 HYDRAULIIKKA JA PNEUMATIIKKA erusteet Päiän teemat Sarja Neste kuin neste, onko sillä äliä? Tilauusirta, miten ja miksi? Mihin tilauusirtaa taritaan? Onko tilauusirran ja aineen älillä

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Demonstraatio 7, 6.7... Ratkaise dierentiaalihtälöpari = = Vastaus: DY-pari voidaan esittää muodossa ( = Matriisin ominaisarvot ovat i ja i ja näihin kuuluvat ominaisvektorit (

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-5300 Tuulioiman perusteet Aihepiiri 3 Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen DEE-5300: Tuulioiman perusteet ALBERT BETZ Theoretical

Lisätiedot

3 PERUSLAIT 3.1 JOHDANTO MASSAN TASE LIIKEMÄÄRÄN TASE LIIKEMÄÄRÄN MOMENTIN TASE ENERGIAN TASE...

3 PERUSLAIT 3.1 JOHDANTO MASSAN TASE LIIKEMÄÄRÄN TASE LIIKEMÄÄRÄN MOMENTIN TASE ENERGIAN TASE... 3 PERUSLAIT 3.1 JOHDANTO... 3 3. MASSAN TASE... 13 3.3 LIIKEMÄÄRÄN TASE... 0 3.4 LIIKEMÄÄRÄN MOMENTIN TASE... 34 3.5 ENERGIAN TASE... 44 3.6 TASEYHTÄLÖIDEN LOKAALIT MUODOT... 49 Viikko 46/1 VIIKON 46 OSAAMISTAVOITTEET

Lisätiedot

Y56 laskuharjoitukset 5 - mallivastaukset

Y56 laskuharjoitukset 5 - mallivastaukset Y56 Keät 010 1 Y56 laskuharjoitukset 5 - malliastaukset Harjoitus 1. Voiton maksimoia tuotannon taso & kiinteät kustannukset Taoitteena on ymmärtää kiinteiden kustannusten aikutus yrityksen tuotantopäätöksiin

Lisätiedot

Luku 12 THERMODYNAAMISTEN OMINAISUUKSIEN YHTÄLÖT

Luku 12 THERMODYNAAMISTEN OMINAISUUKSIEN YHTÄLÖT hermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 011 Luku 1 HERMODYNAAMISEN OMINAISUUKSIEN YHÄLÖ Copyright he McGraw-Hill Companies, Inc. ermission required

Lisätiedot

2.1 Palkin taipuma, kiertymä ja käyristymä. P y Q

2.1 Palkin taipuma, kiertymä ja käyristymä. P y Q . Palkin taipuma. Palkin taipuma, kiertymä ja käyristymä P Q y u, ( ) P y Q j = arctan y, j y sinj Kua.: Palkin deformaatio Tarkastellaan kuaa 4.. Palkin akselin pisteen P pystysiirtymää ( ) kutsutaan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

5 REUNA-ARVOTEHTÄVÄ 5.1 DIFFERENTIAALIYHTÄLÖT SIIRTYMÄTEHTÄVÄ VIRTAUSTEHTÄVÄ LÄMMÖNJOHTUMISTEHTÄVÄ...

5 REUNA-ARVOTEHTÄVÄ 5.1 DIFFERENTIAALIYHTÄLÖT SIIRTYMÄTEHTÄVÄ VIRTAUSTEHTÄVÄ LÄMMÖNJOHTUMISTEHTÄVÄ... 5 REUNA-ARVOTEHTÄVÄ 5.1 DIFFERENTIAALIYHTÄLÖT... 4 5. SIIRTYMÄTEHTÄVÄ... 14 5.3 VIRTAUSTEHTÄVÄ... 7 5.4 LÄMMÖNJOHTUMISTEHTÄVÄ... 4 L5/1 VIIKON 48 OSAAMISTAVOITTEET Viikon 48 jälkeen kurssin osallistuja

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017 KJR-C00 Kontinuumimeaniian perusteet viio 45/017 1. Oloon f t ) alojen onsentraatio [ f ] < g/m ) joessa joa riippuu siis seä paiasta että ajasta. Havaitsija on veneessä ja mittaa onsentraatiota suoraan

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

2 LIIKE, JÄNNITYS JA VENYMÄ

2 LIIKE, JÄNNITYS JA VENYMÄ 2 LIIKE, JÄNNITYS JA VENYMÄ 2.1 KAPPALEEN LIIKE... 4 2.2 LAGRANGEN JA EULERIN ESITYSTAVAT... 12 2.3 SIIRTYMÄ... 22 2.4 JÄNNITYS... 25 2.5 VENYMÄ JA VENYMÄNOPEUS... 38 Viikko 45/1 VIIKON 45 OSAAMISTAVOITTEET

Lisätiedot

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Fy04 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Fy04 Koe Kuopion Lyseon lukio (KK) sivu 1/2 F04 Koe 4.9.04 Kuopion Lseon lukio (KK) siu / Osio. Määritä ilmapistoolin luodin lähtönopeus. Osio. Vastaa ähintään kolmeen tehtäään.. Uudenuoden raketin massa noin 50 g ja raketin kiihts ruudin palamisen

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto

Lisätiedot

LAATTATEORIAA. Yleistä. Kuva 1.

LAATTATEORIAA. Yleistä. Kuva 1. LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7. BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2

Lisätiedot

Navierin-Stokesin menetelmä

Navierin-Stokesin menetelmä Naierin-Stokesin htälöt t ja MAC- menetelmä LuK-tutkielmaseminaari 30.. 009 Aleksi Leino Yhtälöt joita tässä esitksessä käsitellään oat: noeus t f ulkoinen oima iskositeetti Noeusektorikentän aikakehits

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

Asennus, kiertopumppu TBPA GOLD/COMPACT

Asennus, kiertopumppu TBPA GOLD/COMPACT I.TBPA8. Asennus, kiertopumppu TBPA GOLD/COMPACT. Yleistä Patteripiirin toisiopuolella olean kiertopumpun aulla armistetaan jäätymisahtitoiminto, kun käytetään pattereita, joissa ei ole jäätymishalkeamissuojaa.

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

FYSIIKAN VALINTAKOE HELSINGIN YLIOPISTOSSA

FYSIIKAN VALINTAKOE HELSINGIN YLIOPISTOSSA BJÖRN FANT, JYRKI KURITTU, KAARLE KURKI-SUONIO JA SEPPO MANNINEN TEHTÄVÄT FYSIIKAN VALINTAKOE HELSINGIN YLIOPISTOSSA 9.6.983 Tehtäät, ratkaisut tulokset ja arostelu. Kappale A on leossa kitkattomalla alustalla.

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Luento 16: Fluidien mekaniikka

Luento 16: Fluidien mekaniikka Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla

Lisätiedot

7. DIFFERENTIAALIYHTÄLÖT

7. DIFFERENTIAALIYHTÄLÖT 7. DIFFERENTIAALIYHTÄLÖT Tavallinen differentiaalihtälö koostuu tuntemattoman hden muuttujan funktion derivaatoista sekä funktiosta riippumattomista termeistä. Esimerkki differentiaalihtälöstä on Newtonin

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

N p Katseluavaruudessa tehtävät operaatiot. Karsinta eli takasivueliminointi. Katselutilavuus

N p Katseluavaruudessa tehtävät operaatiot. Karsinta eli takasivueliminointi. Katselutilavuus 5.2. Kateluaaruuea tehtäät operaatiot Karinta eli takaiueliminointi Karinta eli takaiueliminointi on toimenpie, joka ertaa monikulmioien uuntaa katelupiteen eli projektion kekipiteen kana. Jo näkmä käittää

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

4 MATERIAALIMALLIT 4.1 JOHDANTO ELASTINEN KIINTEÄ AINE VISKOOSI NESTE LÄMMÖN JOHTUMINEN...

4 MATERIAALIMALLIT 4.1 JOHDANTO ELASTINEN KIINTEÄ AINE VISKOOSI NESTE LÄMMÖN JOHTUMINEN... 4 MATERIAALIMALLIT 4.1 JOHDANTO... 6 4.2 ELASTINEN KIINTEÄ AINE... 19 4.3 VISKOOSI NESTE... 33 4.4 LÄMMÖN JOHTUMINEN... 42 Viikko 47/1 VIIKON 47 OSAAMISTAVOITTEET Viikon 47 jälkeen kurssin osallistuja

Lisätiedot

Työ 0. Esimerkki selostuspohjasta. Työvuoro 82 pari 3. Omanimi Omasukunimi oppilasnumero Parinnimi Parinsukunimi oppilasnumero

Työ 0. Esimerkki selostuspohjasta. Työvuoro 82 pari 3. Omanimi Omasukunimi oppilasnumero Parinnimi Parinsukunimi oppilasnumero Työ 0 Esimerkki selostuspohjasta Työvuoro 82 pari 3 Omanimi Omasukunimi oppilasnumero Parinnimi Parinsukunimi oppilasnumero Selostuksen laati Omanimi Omasukunimi Mittaukset suoritettu 26.1.2013 Selostus

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

y + 4y = 0 (1) λ = 0

y + 4y = 0 (1) λ = 0 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet 4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018 Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 406 6 laskuharjoituksien esimerkkiratkaisut Ratkaistaan differentiaaliyhtälö y = y () Tässä = d dy eli kyseessä on lineaarinen kertaluvun differentiaaliyhtälö: Yhtälön () homogenisoidulle

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin

Lisätiedot

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ. Rhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 4, ratkaisuehdotus (5 sivua) 26.11.2012 Tehtävä 1. Etsi neliön smmetriarhmän D 8 kaikki alirhmät. Mitkä niistä ovat normaaleja? Ratkaisu. Rhmää D 8

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite

Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite Hakemisto KATSO MYÖS: potenssi, juuret, polnomit, rationaalifunktiot, eksponenttifunktio, logaritmifunktio, trigonometriset funktiot, arcusfunktiot,

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

Demo: Kahden elektronin spintilojen muodostaminen

Demo: Kahden elektronin spintilojen muodostaminen Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.

Lisätiedot

POIKKIPINNAN GEOMETRISET SUUREET

POIKKIPINNAN GEOMETRISET SUUREET 1.10.018 POIKKIPINNAN GEOMETRISET SUUREET KOORDINAATISTON VALINTA: x akseli sauvan tai palkin akselin suuntainen akseli alaspäin akseli siten, että muodostuu oikeakätinen koordinaatisto Pintamomentti (pinnan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

lim Jännitystila Jännitysvektorin määrittely (1)

lim Jännitystila Jännitysvektorin määrittely (1) Jännitstila Tarkastellaan kuvan ukaista ielivaltaista koliulotteista kaaletta, jota kuoritetaan ja tuetaan siten, että se on tasaainossa. Kaaleen kuoritus uodostuu sen intaan kohdistuvista voiajakautuista,

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu.

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu. Tehtävä 1 Kuvan keskipakopumppu pumppaa vettä (ρ = 998 kg/m 3 ) tilavuusvirralla 180 l/s. Pumpun pesän korkeus on mm. Oletetaan, että sisäänvirtauksessa absoluuttisella nopeudella ei ole tangentiaalista

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot