15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m

Koko: px
Aloita esitys sivulta:

Download "15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m"

Transkriptio

1 Ketaustehtäät. c) Len kietokulma on t,5 ad/s (6 s) 9 ad.. a) Ratanopeus on 5, 35 m 53 cm/s. s 3. b) Tasapainoasemassa palloon kohdistuat paino G ja langan jännitsoima T. Pallon liikehtälö on F ma. n Kun suunta lös on positiiinen, saadaan skalaaihtälö T G m. Langan jännitsoiman suuuus on (4,7 m/s) T m mg,34 m,65kg,65kg 9,8m/s 4,9 N. 4. c) Saanoihin aikuttaa momentti on molemmissa tapauksissa htä suui. Yhtälöstä M M eli F F saadaan töntöoiman suuuudeksi F F 87 N,3m 38 N.,3 m 5. c) Tasapainotilanteessa momenttien summa on nolla minkä tahansa akselin suhteen. Kun kietosuunta astapäiään on positiiinen, momenttien summa pisteen A suhteen on M A = F F =. Etuhampaiden puistusoiman suuuus on F 7 N 3mm F 8 N. mm 6. b) Thjän tölkin painopiste on kokeudella cm 5,5cm. Pohjalla olean juoman kokeus saadaan htälöstä π h V. Nestepinta on kokeudella 3 V cm h,598448cm. π π(3,5cm) Oletetaan, että juoman tihes on htä suui kuin eden tihes, kg/dm 3. Silloin juoman massa on g ja sen painopiste on kokeudella,598448cm, 994cm. 87

2 Koko ssteemin painopiste pödänpinnan suhteen on kokeudella 5g 5,5cm g,994cm,8cm. 5g 7. c) o s h Kitkamomentin tekemä tö muuntaa pöimisen otaatioenegian potentiaalienegiaksi ja slinteiin kohdistua painon tekemä tö etenemisen tanslaatioenegian potentiaalienegiaksi, kun ieiminen tapahtuu liukumatta. Kitka on lepokitkaa. Oletetaan, että liikeastuksia ei ole. Mekaanisen enegian säilmislain mukaan on m J mgh. Nousukokeus on h s sin, jossa s on ieimismatka. Sijoitetaan mekaanisen enegian säilmislain htälöön kulmanopeuden ja hitausmomentin htälöt ja J m ja atkaistaan alkunopeus: m m mgh gh 4 3 gh m gh gssin 9,8,m sin 5,6m/s s 8. b) Radallaan olean satelliitin liikehtälö on F man. Kun suunta kohti Maan keskipistettä on positiiinen, saadaan skalaaihtälö mm m, jossa M on Maan massa, m satelliitin massa ja atanopeus. Satelliitin atanopeus on 4 M 6,6759 Nm /kg 5,974 kg 7,5km/s. 75 km 6378 km 9. c) Kien nopeus ajan funktiona on gt. Lakipisteessä nopeus on = m/s, m/s jolloin nousuaika on t, s. g 9,8 m/s 88

3 . c) Alkunopeuden pstkomponentti on sin 367 m/s sin 36 5,87m/s. o Lakipisteessä kappaleen nopeuden pstkomponentti. Yhtälöstä gt 5,87 m/s nousuaika on t, 6776s. Lentoaika on,6776 s 3, s. g 9,8m/s π.a) Kietokulma on 7575 ad 3,ad. 8 o 8 o b) Kietokulma on 5ad π. a) Pulsain kieosaika on T,56 ms. n 64 /s ad Kulmanopeus on πn π s s π 3. a) Napakelkan atanopeus on, josta kelkan kieosaika on T π π 4,5 m T,3973 s s.,5 m/s b) Pöimisnopeus on n, 88. T,3973s s c) Newtonin I lain mukaan kelkka jatkaa suoaiiaisesti liikettään adan tangentin suuntaan. 4. a) Pöän säde on = 4,5 cm, joten sen pöähtäessä hden kieoksen hiihtäjä m etenee matkan s π. Lenkin aikana kieoksia tulee π,45m 37. b) Renkaan kulmanopeus on πn π,5ad/s 5π ad/s 5,7 ad/s. Kietokulma on t 5π ad/s 66s 5654,86678 ad. Pöäilijän kuudessa minuutissa pöäilemä matka on s 5654,86678 ad,34 m,9 km. Rengas pöähtää kokonaisia kieoksia 5654,86678 ad 9 kpl. π 89

4 5. a) Koska kiekot on hdistett luistamattomalla hihnalla toisiinsa, niiden atanopeudet oat htä suuet: eli, josta saadaan. Koska säteiden suhde on 8,cm, kulmanopeuksien suhde on 5: (=,5:). cm 5 b) Kun pienemmän kiekon pöimisnopeus on 5, /s, sen kulmanopeus on πn π 5, ad/s 3,4593 ad/s. Isomman kiekon kulmanopeus on 3, 4593ad/s,56637 ad/s. 5 Tämän kulmanopeuden saauttamiseen kuluu aikaa kiihdttämisen alusta lukien,56637 ad/s t s.,5 ad/s 6. a) Akselin kulmakiihts on 4,3ad/s,5 ad/s t,4s,575 ad/s,6 ad/s. b) Kiihdtksen aikana kietokulma on t t,5 ad/s,4s,575 ad/s (,4s) 5, 784 ad. o 8 Kietokulman suuuus asteina on 5,784 ad 5, π 7. a) Rummun keskikulmakiihts aikaälillä, s 6, s on 4 ad/s, ad/s 4 ad/s k 9 ad/s. t t 6, s, s 6, s ad s ω t s 9

5 b) Jotta keskikulmakiihts ja hetkellinen kiihts olisiat htä suuet, astaaien suoien on oltaa hdensuuntaiset. Kuaajalle kohtaan, s piiett tangentti on hdensuuntainen keskikulmakiihtttä kuaaan suoan kanssa. Näin ollen hetkellä, s hetkellinen kulmakiihts on sama kuin keskikulmakiihts älillä, s 6, s. m/s 3,6 8. a) Auton kulmanopeus on,58 ad/s. 53m b) Auton adalla pitään oiman suuuus on m/s 3,6 F m 5 kg 8 kn. 53m c) Auton pitää adalla (tiellä) auton enkaiden ja tienpinnan älinen lepokitka. Jos kitka on liian pieni, auto suistuu tieltä. Jos auto lähtee liukumaan, kseessä ei ole enää lepokitka, aan lepokitka on muuttunut liukukitkaksi. d) Vaikka auton ataauhti on akio, nopeuden suunta kuitenkin muuttuu koko ajan. Autolla on nomaalikiihtttä, joka suunta on kohti adan keskipistettä. 9. Linnun liikehtälö aakasuunnassa on F. man Valitaan suunta kohti adan keskipistettä positiiiseksi. F F F G π π 5 m Linnun ataauhti mpäadalla on 5,895 m/s. Voiman suuuus T 6 s (5,895 m/s) aakasuunnassa on F man m,3 kg,74 N. 5 m Koska linnulla ei ole kiihtttä pstsuunnassa, linnun liikehtälö pstsuunnassa on F eli F G. Kun alitaan suunta lös positiiiseksi, skalaaihtälöstä F G = saadaan F G mg,3 kg9,8m/ s 3,39 N. Nostooiman suuuus on F F F (,74 N) (3,39 N) 3, N. Nostooiman suuntakulma psttasoon nähden: F,74 N tan, F 3,39 N josta 3. 9

6 . a) Oletetaan, että kstillä hetkillä tangenttikiihts on nolla. Lentäjään kohdistuat paino G ja penkistä tukioima N. G N + N a n G b) Lentäjän liikehtälö on F ma n eli N G ma. n Soitaan suunta kohti adan keskipistettä positiiiseksi. Ratkaistaan skalaaihtälöstä N G ma tukioiman suuuus: N man G m G. Tukioiman suuuus oi maksimissaan olla N 9G eli m mg 9mg. Yhtälöstä g 9g eli 8g säteen suuuudelle saadaan ehto: 5 m/s 3,6,km. 8g 8 9,8m/s n. Kun astusoimat oat pienet, autoon kohdistuat oimat oat paino ja tienpinnan tukioima. Auton adan säteeksi oletetaan kohtisuoa etäiss adan keskipisteeseen. Auton tiellä pitää kokonaisoima suuntautuu kaateen keskipistettä kohti ja on aakasuoa. Liikehtälö aakasuunnassa on F ma. Pstsuunnassa liikehtälö on F, koska autolla ei ole kiihtttä pstsuunnassa. n Kun alitaan suunnat keskipistettä kohti ja lös positiiisiksi, saadaan skalaaihtälöt Nsin m ja N cos α mg =. Tukioiman suuuudelle saadaan htälö N mg. cos 9

7 mg Kun htälö N sijoitetaan htälöön cos josta auhdiksi saadaan Nsin m, saadaan mg sin m, cos g cos sin gtan 4 m 9,8 m/s tan, m/s.. Ympäadalla liikkualla etuilla on nomaalikiihtttä ja tangenttikiihtttä, koska sen atanopeus muuttuu. Kuiossa etui liikkuu mötäpäiään. a t a n a a t a n a Alkutilanne: Alussa etuin nomaalikiihtden suuuus on a n 95 ( m/s) 3,6,896 m/s 54 m ja tangenttikiihtden suuuus 6 95 m/s m/s 3,6 3,6 at,88384m/s. t s Vetuin kiihtden suuuus alussa on a a a t n (,88384m/s ) (,8958m/s ),6m/s. Kiihtden ja mpäadan säteen älinen kulma: a,88384m/s tan, t an,896m/s josta kulma 34,4559. Nopeuden ja kiihtden älinen kulma on 9 934,

8 Lopputilanne: Lopussa etuin nomaalikiihtden suuuus on a n 6 m/s 3,6,544 m/s 54 m ja tangenttikiihtden suuuus on htä suui kuin alkutilanteessakin: 6 95 m/s m/s 3,6 3,6 at t s Vetuin kiihts lopussa on a a a,88384 m/s. t n (,88384 m/s ) (,544m/s ),m/s. Kiihtden ja mpäadan säteen älinen kulma: a,88384 m/s tan, josta saadaan 59,834. t an,544 m/s Nopeuden ja kiihtden älinen kulma on 9 959, Puupalan liikehtälö on F ma, jossa puupalan kiihts on nomaalikiihtden ja tangenttikiihtden ektoisumma: a a a. n t Puupala ps mpäadalla kitkan F N takia. Soitaan suunta keskipistettä kohti positiiiseksi. Skalaaihtälö F ma saadaan muotoon N m a a eli n t mg m an a t, josta kitkakeoin on a a g Puupalan nomaalikiihtden suuuus on a n = = (αt) = (,5 ad/s 6,5 s),5 m 3,9694 m/s. Puupalan tangenttikiihtden suuuus on a t = α =,5 ad/s,5 m =,375 m/s. Kitkakeoin on a a (3,9694 m/s ) (,375 m/s ) n t g 9,8 m/s.,4. n t 94

9 4. Koska kappale liukuu kitkatta -säteisen pallo pintaa alaspäin, oidaan soeltaa mekaanisen enegian säilmislakia. Esineeseen kohdistua paino tekee tötä ja muuntaa potentiaalienegiaa liike-enegiaksi, jolloin saadaan htälö mgh m. Itoamishetkellä kappale on pudonnut pstsuunnassa matkan h cos. Sijoittamalla josta auhdin neliö on h cos htälöön mgh g ( cos ). m saadaan m mg ( cos ), Kun kappale liukuu pallopinnalla, säteen suunnassa aikuttaat painon G mg säteen suuntainen komponentti pallon keskipistettä kohti ja pinnan tukioima pallon pinnasta kappaleeseen. Kappaleen liikehtälö on F ma eli G. N ma n Soitaan suunta pallon keskipistettä kohti positiiiseksi. Sijoitetaan skalaaihtälöön n mg cos N m auhdin neliön htälö g( cos ) ja otetaan huomioon, että kappaleen g( cos ) itoamishetkellä tukioima N. Saadaan htälö mg cos m eli cos ( cos ), josta cos cos ja edelleen 3cos. Yhtälöstä cos saadaan kulmaksi 48,. 3 Esineen itoamiskokeus pallon alaeunasta mitattuna on cos ( cos48, ), Palloon kohdistuat heilahduksen aikana langan jännitsoima T ja paino G. Ilmanastus on pieni, koska pallo on pieni. Pallon liikehtälö on F ma eli T G ma n. Valitaan suunnat alas ja kohti adan keskipistettä positiiisiksi. Pallo alkaa poiketa mpäadalta, kun jännitsoima T. Tällöin kulma on = 5 9 = 35. Näin ollen skalaaihtälö saadaan muotoon G ma eli n mg sin m. l n Pallon nopeuden neliölle saadaan htälö glsin. 95

10 Kun pallo alkaa poiketa mpäadalta, se on noussut kokeudelle h l lsin. Alussa pallolla oli liike-enegiaa ja lopussa liike-enegiaa ja potentiaalienegiaa. Ympäadalta poikkeamisen hetkellä pallolla on ielä nopeutta ja siksi potentiaalienegian lisäksi liikeenegiaa. Palloon kohdistua paino tekee tötä palloon ja muuntaa liike-enegiaa osittain potentiaalienegiaksi. l sin mg sin G l T E p = o G Mekaanisen enegian säilmislain mukaan on m m mgh. Sijoittamalla tähän htälöön nopeuden neliön ja nousukokeuden htälöt saadaan m m( gl sin ) mg( l l sin ) m glsinglglsin 3glsin gl gl(3sin). Pallon lähtönopeudeksi saadaan gl (3sin ) 9,8 m/s,85 m (3sin 35 ) 5,6 m/s. 6. A s =, m B + F F N Momentti akselin A suhteen on M F s 35 N, m 7 Nm. Momentti akselin B suhteen on M F s 55N,m Nm. A B Voimien esultantin suuuus on R = 55 N + 35 N = 9 N ja suunta alas. Kaikkien momenttien ääntöaikutus on nolla minkä tahansa akselin suhteen, Kun kietosuunta astapäiään on positiiinen, momenttien summa akselin A suhteen on M A NF s. 96

11 Resultanttioiman suhteen astakkaissuuntaisen oiman N aikutussuoan paikka akselista A lukien on Fs 35N,m,78m. N 9 N 7. 3, m 3, m A G Leena N G isä + Leenan ja isän tulee asettua ei puolille tukipistettä eli laudan keskikohtaa A. Olkoon isän etäiss tukipisteestä. Jotta lauta ps tasapainossa, on momenttien summan oltaa nolla minkä tahansa laudan akselin suhteen eli M. Kun suunta astapäiään on positiiinen, keskipisteen suhteen on M Misä MLeena eli Gisä GLeena 3, m. Isän etäiss tukipisteestä on GLeena 3, m mleena g3, m mleena 3, m G m g m isä isä isä 3 kg 3, m,5 m. 8 kg Isän etäiss Leenasta on silloin,5 m + 3, m 4, m. A 8. a) Jos kietosuunta mötäpäiään on negatiiinen, momentti on M F 35 N,7 m 6, Nm. b) Voiman aikutussuoan etäiss keskiöstä on nt pienempi kuin a-kohdassa. Vääntöaen pituus on nt uusi,7 m cos 45,8m. Momentti on M F uusi 35 N,8m 4, Nm. uusi = cos 45 F 45 97

12 9. Puupölkkn aikuttaat oimat oat pölkkn kohdistua paino G, aakasuoan maanpinnan tukioima N, potaan eunan tukioima N ja töntöoima F. m Takastellaan tilannetta, jossa pölkk on juui itoamassa maan pinnalta. Tällöin maanpinnan tukioima N on nolla. Lasketaan momenttien summa akselin A suhteen, tällöin oiman töntöoiman aet. p m N momentti on nolla. Selitetään ensin pölkkn kohdistuan painon ja p F a = h h A 7,7 cm G b N p,66 m Töntöoiman F asi on a h h,33 m,77 m,53 m. Painon G asi b saadaan Pthagoaan lauseen aulla: b ( h), josta saadaan b ( h ) (,33 m) (,53 m),875 m. Häkstään ain aen positiiinen ao. Takastellaan tilannetta, kun pölkk on juui itoamassa maan pinnalta. Kun kietosuunta astapäiään on positiiinen, momenttien summa akselin A suhteen on M A = Fa + Gb =. Yhtälöstä saadaan pienimmäksi töntöoimaksi Gb F a, 53m 44kg 9,8m/s,875m N. 3. a) Paksumman pään massa on suuempi. Painopiste ei ole keskellä kattakeppiä, aan lähempänä paksua päätä. Painopisteestä tuettuna kattakeppi ps tasapainossa. Silloin kepin päiden momenttien summa on nolla tukipisteen kautta kulkean akselin suhteen. Lhempi eli paksumpi pää on askaampi, koska tähän osaan kohdistua paino on suuempi ja ääntöasi näin ollen pienempi. Pidemmän osan ääntöasi on suuempi, joten siihen kohdistua paino on pienempi kuin lhemmän osan. Lhemmän osan massa on siis suuempi kuin pidemmän osan massa. 98

13 b) m 3 m m Sijoitetaan koodinaatisto kuan mukaisesti siten, että kuula m sijaitsee oigossa. Lasketaan limmän kappaleen paikka. Kolmion kaikki kulmat oat 6. Ylimmän kappaleen paikan -koodinaatti on 4cm 7cm. Yhtälöstä tan6 saadaan limmän kappaleen paikan -koodinaatiksi 7cm 7cm tan 6,44cm. Tällöin kuulien koodinaatit oat Kuula Massa/kg /cm /cm m, m,5 4 m 3,45 7,44 3 Painopisteen paikan -koodinaatti on m m m 3 3 mm m3,kg,5kg4cm3,45kg7cm, kg,5kg 3,45kg 83cm ja -koodinaatti m m m 3 3 mm m3,kg,5kg 3,45kg,44cm, kg,5 kg 3,45 kg 59cm. Painopiste on tässä koodinaatistossa kohdassa (83 cm, 59 cm). 3. a) Ripusta kappale jostakin kohdasta. Kiinnitä luotilanka (lanka, jonka toisessa päässä on paino) ipustuspisteeseen ja piiä luotilankaa kättäen tästä pisteestä lähtien kappaleen pintaan suoa iia alas. Ripusta sitten kappale muistakin kohdista esimekiksi kolme ketaa ja piiä luotisuoat. Suoat leikkaaat kappaleen painopisteen kohdalla. 99

14 b) Painopisteen paikka pstsuunnassa on m m m 8,7 kg,m 7,3kg 6,m 5,9 kg m 5,5m mm m3 8,7kg7,3kg5,9kg Painopiste sijaitsee 5,5 m lipputangon testä löspäin. 3.,65 m, m Säiliö ps pstssä, jos sen painopisteen kautta kulkea luotisuoa kulkee tukipinnan,m kautta. Rajatapauksessa saadaan htälö tan, josta kalteuuskulma on 7.,65m 33. Kuassa a pöä muuttaa ain oiman suuntaa, se ei ole nostettaana kuomana. Langan jännitsoima on htä suui kuin punnukseen kohdistuan painon suuuus. Vaaka nättä langan jännitsoiman suuuuden eli aa an nättö on htä suui kuin punnukseen kohditua paino eli G punnus =,5 N. Kuassa b pöään ja punnukseen kohdistuan painon suuuinen oima kuomittaa kahta alemman pöän ipustuslankaa. Vaaka nättää langan jännitsoiman suuuuden eli ( Gpunnus Gpöä ) (,5N,N),85N. 34. a) Yhden pöähdksen aikana oiman F aikutuspiste siit matkan π. Voiman F aikutuspiste siit matkan (π π )/ löspäin. Ketjun etämisessä teht tö on htä suui kuin kappaleen nostamisessa teht tö, jolloin W π π W eli F π F josta saadaan F F,.

15 Säteiden lähentessä toisiaan, niiden eotus lähenee nollaa. Tällöin taittaa etooima pienenee, jos kuoma ps samana. Diffeentiaalitaljalla oidaan nostaa sitä suuempi kuoma, mitä pienempi pöien säteiden eotus on. b) Tasapainoehdosta F F saadaan kuomaksi F F 85 N cm 5cm cm 5, 3 kn. 35. a) Väite on ääin. Kappale on tasapainossa etenemisen suhteen, jos kokonaisoima on nolla, ja pöimisen suhteen, jos kokonaismomentti on nolla. Esimekiksi kuan tilanteessa kokonaisoima on nolla, mutta silti oimat aiheuttaat kappaleeseen sitä kääntämään pkiän momentin. F F b) Väite on ääin. Jos kokonaismomentti on nolla, niin kappale on leossa pöimisen suhteen tai sitten se pöii tasaisesti. Tällöin pöimissuunnassa oiman momentti on htä suui kuin astusoimien aiheuttama momentti. Jos esimekiksi auton, polkupöän tai junan pöät pöiät akiona psällä kulmanopeudella, pöään kohdistuien momenttien summa on nolla. Tällöin pöimistä astustaien oimien (laakeeiden kitka ja ieimisastus) momentti on htä suui mutta aikuttaa astakkaiseen kietosuuntaan kuin pöimistä lläpitäien oimien momentit. Kun kappale ieii alas kalteaa pintaa tasaisella nopeudella, pöimistä lläpitää oima on pinnasta pöään kohdistua kitka. 36.,4 m T β N A + N N G t T α,65 m T G k,4 m tan α = 3,8687,65 m Tukitanko on tasapainossa, joten siihen kohdistuien oimien summa on nolla eli F ja momenttien summa on nolla eli M. Valitaan kietosuunta astapäiään positiiiseksi, jolloin momenttihtälö kietoakselin A suhteen on

16 l M A lt Gt lgk, joka jakamalla pituudella l ksinketaistuu muotoon Gt T Gk. Koska T Tsin, aijein jännitsoiman suuuus on G m t t, kg m Gk mk g 5, kg 9,8 s T 4,839 N N. sin sin sin 3,8687 Valitaan suunta oikealle positiiiseksi. Koska aakasuunnassa on oimassa ehto, saadaan htälö N T, josta F N T Tcos 4,839 N cos3, ,56 N. Valitaan suunta lös positiiiseksi. Koska pstsuunnassa on oimassa ehto F, saadaan htälö N Gt Gk T, josta N Gt Gk T ( mt mk) gtsin (, kg 5, kg) 9,8 m/s 4,839 N sin 3,8687 5,8863 N. Seinän tankoon kohdistaman kokonaisoiman suuuus on N N N (88,56 N) (5,8863 N) 88 N. N 5,8863 N Voiman suunnan määittää kulma saadaan htälöstä tan, josta N 88,56 N kulma on 3,8. Kstt tukitangon seinään kohdistama oima on oiman N astaoima ja siten Newtonin III lain mukaan htä suui, mutta suunnaltaan astakkainen. Vaijeiin BC kohdistua jännitsoiman suuuus on N aijein suuntaan. Tukitangon AB seinään kohdistaman oiman suuuus on 88 N ja suuntakulma seinän nomaalin suhteen 3,8 (kuio). 3,8 N 37. a) Sauan hitausmomentti on ml J, josta sauan pituudeksi saadaan J, kgm l 7, 6 m. m, 5 kg b) Sauan hitausmomentti muuttuu pöimisakselin paikan muuttuessa. Esimekiksi toisen pään mpäi pöiessään sauan hitausmomentti on suuempi kuin a-kohdassa J ml 3. c) Hitausmomentti kuaa kappaleen kkä astustaa pöimisen muutoksia, ts. hitausmomentti kuaa kappaleen pöimisen hitautta. Kappaleen pöimisen hitaus aikuttaa leossa olean kappaleen pöimään saattamiseen sekä htä lailla jo pöiän kappaleen kulmanopeuden muuttamiseen eli kiihdttämiseen tai jauttamiseen.

17 38. Sauan pää liikkuu pitkin mpäataa, jonka säde on l =,5 m. Pään atanopeus on = l. Sauaan kohdistua paino tekee tötä ja muuntaa sauan potentiaalienegiaa pöimisenegiaksi, koska saua pääsee pöimään toisen päänsä kautta kulkean akselin mpäi. Sauan painopisteen kokeuden muutos on l/. Ratkaistaan sauan kulmanopeus l l 3g lopputilanteessa htälöstä J mg eli ml mg, josta saadaan. 3 l Sauan apaan pään nopeus on 3g l l gl l 3 3 9,8m/s,5m 3,9m/s. 39. Momentti, joka aikuttaa keskeltä akseloituun umpinaiseen tankoon on M = F. Pöimisen liikehtälö on M = Jα eli F J. Yhtälö saadaan muotoon F m, josta kulmakiihts on F 4 N, m ad 8. m,5kg (, m) s 4. Koska liikeastusoimia oidaan pitää ähäisinä, soelletaan mekaanisen enegian säilmislakia. Slinteiin kohdistua paino tekee tötä ja muuntaa potentiaalienegiaa liike- ja otaatioenegiaksi: mgh m J eli mgh m mr, R josta saadaan mgh m m. Kappaleen nopeus on 4 mgh m m kg 75 kg kg 9,8 m/s,7 m 5, m/s. 4. Soitaan ämpäin potentiaalienegian nollataso ämpäin ala-asemaan. Pudonneella ämpäillä ei ole potentiaalienegiaa lopussa, mutta on liike-enegiaa. Osa alussa olleesta potentiaalienegiasta kuluu liikeastusten oittamiseen. Ämpäin potentiaalienegian muutos on htä suui kuin kitkamomenttia astaan tehdn tön ja ssteemin liike-enegian summa lopussa: E W E E eli pot kin ot mgh W m J μ. M Kitkatö saadaan muotoon W F s M. Koska kulmanopeus on h h h, kietmälle saadaan htälö π n π π, jossa h on p π pudotuskokeus. 3

18 Oletetaan, että kösi ei en eikä liu u, jolloin htälö mgh Wμ m J, saadaan muotoon mgh M m J h mgh M m J M J hmg m ( ) ( ). Ratkaistaan htälöstä nopeus: M hmg ( ) J m M,4 Nm hmg 3, m kg 9,8m/s,9 m 6,5 m/s. J,8 kgm m kg (,9 m) 4. Pallon ieimistä alaspäin oidaan takastella kättäen mekaanisen enegian säilmislakia, kun ilmanastus ja ieimisastus oat ähäisiä. Valitaan potentiaalienegian nollatasoksi pallon alustasta itoamisen taso. Pallon ieiessä liukumatta alas palloon kohdistua paino tekee tötä ja muuntaa pallon potentiaalienegiaa tanslaatioenegiaksi ja kitkamomentti potentiaalienegiaa otaatioenegiaksi. Vieimisen loppuaiheessa pallon siitessä alimmasta pisteestä nollatasolle astaaasti otaatio- ja tanslaatioenegiaa muuntuu potentiaalienegiaksi: Koska mgh m J J. 5 m ja, mekaanisen enegian säilmislaki saadaan muotoon mgh m m eli 5 mgh m m eli 7 gh, josta nopeus potentiaalienegian nollatasolla on gh. 7 4

19 Pallon iottua alustasta palloon kohdistua paino muuntaa tanslaatioenegiaa potentiaalienegiaksi. Yhtälöstä m mgh saadaan nousukokeudeksi h gh h,95m,68m. g g a) Autot etäät toisiaan puoleensa oimalla, jonka suuuus on mm Nm kg 6kg 5 F 6,6759, N. kg (,5m) Molemmat autot etäät toisiaan puoleensa htä suuella mutta astakkaissuuntaisella oimalla (Newtonin III laki). b) Satelliitin liikehtälö on F m a. sat n Gaitaatiooima pakottaa satelliitin mpäadalle. Valitaan suunta kohti Maan keskipistettä positiiiseksi, jolloin saadaan skalaaihtälö m m ( R) R sat Maa m jossa R on Maan säde. Nopeus on sat m R 6,378 m 4 Maa 6,6759 Nm /kg 5,974 kg 6 5,6 km/s. 44. Keplein III laista T T saadaan Pluton keskietäisdeksi Auingosta 3 3 T (49,6 m) (46,8a) T (, a) 6 5,886 m 5886 km. 45. a) Olkoon lentokoneen massa m. Gaitaatiokentän oimakkuus, km kokeudella maanpinnasta on g mm 4 F M Nm 5,974 kg 6,6759 9,76 m/s. m m kg (6378 km, km) 5

20 46. Gaitaatiooiman takia Mas kietää adallaan Auingon mpäi. Masin liikehtälö Auinkoa kietäällä adalla on F ma. Kun suunta kohti Auingon keskipistettä on M A m positiiinen, skalaaihtälöstä m saadaan Auingon massaksi M A 6,6759 Nm /kg (4,3 m/s) 7,9 m 3,989 kg. n 47. Putoamiskiihts toisen planeetan pinnalla on g m m m Planeetta Maa Maa Planeetta Pl ( Maa ) Maa 4 Nm 5,974 kg 6,6759 9,8 m/s. 3 kg (6378 m) 48. Valitaan suunta alas positiiiseksi. Yhtälöstä s gt saadaan putoamisajaksi s 35m t,675s,7 s. g 9,8m/s Loppunopeus on gt gt 9,8m/s,675s 6m/s. 49. Oletetaan, että hppääjä putoaa suoaan alas. Lasketaan hppääjän nopeus metin pudotuksen jälkeen. Oletetaan, että hppääjään kohdistua ilmanastus on ähäinen. Hppääjään kohdistua paino tekee tötä ja muuntaa potentiaalienegiaa liike-enegiaksi. Mekaanisen enegian säilmislaista mgh m saadaan nopeudeksi gh 9,8m/s m 48,56 m/s. Alkuaiheen jälkeen liike on hidastuaa. Aautuneeseen ajoon kohdistua ilmanastus hidastaa liikettä. Lasketaan aika, jonka kuluessa nopeus pienenee aoon 5, m/s. Loppunopeus on at, josta ajaksi saadaan t a 5, m/s 48,56 m/s, m/s Tässä ajassa kuljettu matka on, 768s. s t at 48,56 m/s,768 s (, m/s ) (,768 s) 58,35 m. Laskuajohppääjän on hpättää ähintään kokeudelta m + 58,35 m 7 m. 6

21 5. Valitaan koodinaatisto siten, että oigo on heittopisteessä. Soitaan suunta alas positiiiseksi. Kun ilmanastusta ei oteta huomioon, pallon liikettä oidaan pitää tasaisesti kiihtänä. g a) Pallon putoamana matka saadaan htälöstä h t gt eli t th. Lentoaika saadaan kättäen toisen asteen atkaisukaaaa: g 4 ( h) gh t g g 9,8 m/s 5 m/s (5 m/s) 9,8 m/s 4 m. Ratkaisuna saadaan t 3,5857 s ja t 6,6 s, joka hlätään. Pallo tömää maahan 3,5 s:n kuluttua. b) Pallon nopeus on gt 5 m/s 9,8m/s 3,5857 s 5 m/s. Pallon nopeus oidaan atkaista mös mekaanisen enegian säilmislain aulla: mgha ma mghl ml. Valitaan potentiaalienegian nollatasoksi maanpinta (h l = ). Loppunopeudeksi saadaan gh 9,8m/s 4 m (5m/s) 5m/s. l a a 5. Ilmanastusta ei oteta huomioon. Kien löspäin nousemisen aikana kieen kohdistua paino tekee tötä ja muuntaa liike-enegian potentiaalienegiaksi. Putoamisen aikana paino tekee tötä ja muuntaa potentiaalienegian liike-enegiaksi. Soitaan otkon pohja potentiaalienegian nollatasoksi. Yhtälöstä mgh m m putoamisnopeuden suuuudeksi otkon pohjalla saadaan gh (8m/s) 9,8m/s 49m 35,85 m/s. Soitaan suunta lös positiiiseksi, jolloin otkon pohjaan osumisen nopeus on = 35,85 m/s. Koska liike on tasaisesti kiihtää, loppunopeus saadaan htälöstä gt. 8 m/s ( 35,85 m/s) Tapahtumaan kulunut aika on t 5,5s. g 9,8m/s Kii putoaa 5,5 sekunnin kuluttua otkoon nopeudella 36 m/s. 7

22 5. Ilmanastusta ei oteta huomioon, jolloin kien liike on pstsuunnassa tasaisesti kiihtää ja aakasuunnassa tasaista. Yhtälöstä h gt saadaan putoamisajaksi h 3m t,554s. g 9,8m/s Kantama on t m/s,554s 56 m. Lasketaan nopeuden suunta ja suuuus maahan osumisen hetkellä. Soitaan suunta löspäin positiiiseksi. Nopeuden suuuus saadaan htälöstä ( gt) ( 9,8 m/s,554 s) ( m/s) 33 m/s. Kien nopeus -suunnassa on gt. Koska kii heitetään antatömältä aakasuoaan, on = m/s, joten gt. Nopeuden suuntakulma aakatasoon nähden saadaan htälöstä gt 9,8 m/s,554 s tan, josta 49. m/s Kien kantama on 56 m aakasuuntaan, nopeuden suuuus 33 m/s ja suuntakulma 49. Nopeuden suunta on aakatasosta inosti alaspäin. 53. a) ) Ei, koska nopeus ei ole akio pstsuoassa heittoliikkeessä. ) Ei, koska pstsuoassa heittoliikkeessä nopeus muuttuu positiiisesta negatiiiseksi. 3) Kllä, koska kiihts on akio ja negatiiinen (hidastua liike) ja nopeus muuttuu kuassa positiiisesta negatiiiseksi. 4) Ei, koska kiihtden tulee olla piioksessa akio. 5) Kllä, koska kiihts on akio ja negatiiinen. b) Kii, joka putoaa edessä: kieen kohdistuat oimat oat paino, noste ja eden astus. Kausellissa olea henkilö: henkilöön kohdistuat oimat oat paino, lepokitka ja seinästä henkilöön kohdistua tukioima. F mg mg 8

23 54. a) Slinteiin kohdistua paino tekee tötä ja muuntaa potentiaalienegiaa liikeenegiaksi. Kitkamomentti tekee tötä ja muuntaa osan potentiaalienegiasta otaatioenegiaksi. Lähtökokeus katon eunasta mitattuna on h 6,m sin 35 3,4446m. Ssteemin ulkoiset astustaat oimat, kuten ilmanastus, oidaan olettaa ähäisiksi. Silloin slintein potentiaalienegia muuntuu ieimisen aikana etenemisen ja pöimisen liike-enegiaksi ja mekaanisen enegian säilmislakia oidaan soeltaa: mgh m J ja edelleen mgh m m eli 3 gh. 4 4 Slintein nopeus katon eunalla on 4gh 4 9,8m/s 3,4446 m 6,797 m/s ,797 m/s Slintein kulmanopeus on 37 ad/s.,8 m b) Katon eunan jälkeen slintein liikettä oidaan takastella inona heittoliikkeenä, jonka alkunopeus 6, 797 m/s. Alkunopeuden aakakomponentin suuuus on cos356,797 m/s cos35 5,4959 m/s. Alkunopeuden pstkomponentin suuuus on sin 356,797 m/s sin 35 3,8488 m/s. Pstsuunnassa slintei putoaa heiton aikana 5, metin matkan, joten htälöstä t gt eli gt t saadaan putoamisaika kättäen toisen asteen htälön atkaisukaaaa: t g g ( ) 4 ( ) 9,8m/s 3,8488 m/s (3,8488 m/s) 4 9,8m/s ( 5, m) Yhtälön atkaisut oat t =,6989 s (tai t =,47545 s). Häkstään ain ajan positiiinen ao. Tässä ajassa slintei liikkuu aakasuunnassa matkan t 5, m/s,6989s 3,8 m.. 9

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Voimakuvioita kirja Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Kirja lattialla Kirja, jota painetaan kepillä Kirja, jota painetaan seinään Kirja,

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Jäykän kappaleen tasokinematiikka harjoitustehtäviä

Jäykän kappaleen tasokinematiikka harjoitustehtäviä namiikka 1 Liite lukuun 5. Jäkän kappaleen taskinematiikka - hajitustehtäviä 5.1 Vauhtipöä pöii vapaasti pöimisnpeudella 1800 / min mötäpäivään, kun siihen alkaa vaikuttaa hetkellä t = 0 vastapäiväinen

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

2. Tasasivuinen kolmio

2. Tasasivuinen kolmio Ympäri piirretn mprän säde r a a = = = = sin sin sin γ 4 p( p a)( p )( p ) Sisään piirretn mprän säde r r = a++ = p = ( p a)( p )( p ) p γ γ a m w Korkeusjana a = = = sin = asin Keskijana m m = a + ( )

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Kurssikoe, FY5 Pyöriminen ja gravitaatio,

Kurssikoe, FY5 Pyöriminen ja gravitaatio, Kussikoe, FY5 Pöiinen j gittio, 5.4.6 Vst in iiteen tehtäään. Jokisess tehtäässä ksii pisteäää on kuusi pistettä. Voit psti tehdä ekintöjä ös tehtääppeiin, niitä ei huoioid ioinniss. Plut ös tehtääppei..

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

2 = 31415,92... 2 31 000 m

2 = 31415,92... 2 31 000 m Pyamidi Geometia tehtävien atkaisut sivu 6 40 Ympyän halkaisija d 00 m ja säde 00 m. a) kehän pituus p π d d 00 m π 68,... 60 ( m) b) pinta-ala π 00 m π 00 45,9... 40 a) ( ) 000 m a) kehän pituus 60 m

Lisätiedot

y 1 x l 1 1 Kuva 1: Momentti

y 1 x l 1 1 Kuva 1: Momentti BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN

5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN 5 KURSSI: Pyöimie ja gaitaati (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN s s KULMASUUREET; kietkulma ϕ =, kietymä = kietkulma muuts ϕ = 360 = π ad (MAOL s 34 (34)) PYÖRIMISLIIKE φ s kulmapeus = ϕ ad ω, yksikkö:[

Lisätiedot

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Integraalilaskenta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Integraalilaskenta (MAA Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka 1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Usean muuttujan funktiot

Usean muuttujan funktiot Usean muuttujan funktiot Johdantoa Kertauksen vuoksi seuraavassa kuviossa on joitakin asioita, joita olemme laskeneet hden muuttujan funktioista f() : [a, b] R Kuvion kärä on funktion f() kuvaaja = f()

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Miltä työn tekeminen tuntuu

Miltä työn tekeminen tuntuu Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Sähköstatiikka ja magnetismi Mekaniikan kertausta

Sähköstatiikka ja magnetismi Mekaniikan kertausta Sähöstatiia ja magnetismi Meaniian etausta Antti Haato 17.05.013 Newtonin 1. lai Massan hitauden lai Jatavuuden lai Kappaleen nopeus on vaio tai appale pysyy paiallaan, jos siihen ei vaiuta voimia. Newtonin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Moottorisahan ketjun kytkentä

Moottorisahan ketjun kytkentä Moottorisahan ketjun kytkentä Moottorisaha kiihdytetään tyhjäkäynniltä kierrosnopeuteen 9600 r/min n. 120 krt/h. Mikä on teräketjun keskipakoiskytkimen kytkentäaika ja kuinka paljon kytkin lämpenee, kun

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

TTY FYS-1010 Fysiikan työt I LP 2.1 Vauhtipyörä Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I LP 2.1 Vauhtipyörä Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 24.3.2016 LP 2.1 Vauhtipyörä 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Hitausmomentin

Lisätiedot