Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto"

Transkriptio

1 Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto

2 Yläilmakehän luotaukset Synoptiset säähavainnot antavat tietoa meteorologisista parametrestä vain maan pinnalla Ilmakehän kolmiulotteisen rakenteen tunteminen on tärkeää ilmakehän käyttäytymisen ymmärtämiseksi Lämpötilan, kosteuden ja tuulen pystyprofiilit ovat tärkeitä syöttötietoja numeerisille sääennustemalleille

3 Yläilmakehän luotaukset Ylemmästä ilmakehästä saadaan suoraa mittaustietoa radioluotauksilla Radioluotain on mittalaitepaketti, joka nousee yleensä stratosfääriin asti vety-tai heliumpalloon kiinnitettynä Luotain voidaan myös ampua raketilla tai pudottaa lentokoneesta

4 Radioluotain Radioluotaimet mittaavat lämpötilaa kosteutta ilmanpainetta Lisäksi voidaan käyttää erikoisluotaimia, joissa on otsonin, radioaktiivisuuden jne. mittaus Mittaustiedot lähetetään maaasemalle radiolähettimellä Luotaimen kulloinenkin korkeus saadaan laskettua hydrostatiikan tilanyhtälön avulla käyttäen paine-, lämpötila- ja kosteushavaintoja

5 Pallon nousunopeus Koska kaasu pallossa laajenee paineen laskiessa, täytyy nousunopeutta laskettaessa eri korkeuksilla huomioida sekä ilman että täytteenä olevan kaasun tiheyden lasku sekä pallon halkaisijan muutos Pallossa olevan kaasun tiheys on suoraan verrannollinen ilman tiheyteen ja pallon tilavuus käänteisesti verrannollinen ilman tiheyteen. Tästä saadaan kaasu D z z D kaasu 0 0 ilma ilma ilma ilma z z 0

6 Pallon nousunopeus Palloon kohdistuvat pystysuuntaiset voimat ovat nostevoima F n, painovoima F g ja ilmanvastus F d 3 Fn D ilma kaasu g 6 F m m g g pallo luotain F C Aw 1 2 d 2 D P Pallon nousunopeus saadaan olettamalla stationaarinen tilanne eli F n +F g +F d =0. Nousunopeudeksi saadaan: w P D 3 g 6 m m g 2 ilma kaasu C D D 2 8 pallo luotain 1

7 Pallon nousunopeus Laskemalla edellä mainituilla kaavoilla ja käyttäen standardiilmakehän tiheysjakaumaa saadaan vetytäytteiselle pallolle, jonka tilavuus on maanpinnalla 1 m 3 ja paino 100 g oheinen nousunopeusprofiili. Nousunopeus siis kasvaa pallon noustessa ilmakehässä ylemmäs. Pallon läpimitta myös kasvaa kunnes pallo puhkeaa.

8 Ylätuulet Tuulen nopeus ja suunta ylemmissä ilmakerroksissa saadaan määritettyä seuraamalla pallon liikettä Palloa voidaan seurata visuaalisesti optisella teodoliitillä radioteodoliitillä tutkalla paikannusjärjestelmällä (GPS, Loran-C)

9 Tuulen mittaaminen Voima, jonka tuuli kohdistaa palloon voidaan kirjoittaa F V t P mpl CD missä V P on pallon nopeus ja V tuulen nopeus Olettamalla että pallon nopeus on lähellä tuulen nopeutta saadaan missä aikavakio V 2 A V VP VP mpl CDAV V VP VP V t t mpl C AV Koska luotauspallon massa on hyvin pieni ja D poikkipinta-ala suuri, seuraa se tarkasti ilman liikkeitä P

10 Pilot-pallo Pilot-pallo on luotaimeton pallo, jonka avulla voidaan määrittää vain tuulen pystyprofiili Pallo täytetään tunnetulla määrällä vetyä tai heliumia, käyttäen punnuksia nosteen määrittämiseen Kun pallon noste sekä itse pallon paino ja kaasun tiheys tunnetaan, saadaan laskettua pallon läpimitta Korkeus maanpinnasta määritetään integroimalla nousunopeutta punnus

11 Tuulen mittaminen pilot-pallolla Liikkeelle laskettua palloa seurataan optisella teodoliitilla, P säännöllisin väliajoin luetaan korkeuskulma ja atsimuuttikulma Pallon paikkakoordinaatit määritetään mitattujen kulmien ja pallon korkeuden avulla Perättäisten paikkakoordinaattien ja aikavälin avulla saadaan tuulen nopeus ja suunta ko. korkeudella z R pallo S maan pinta y S x I

12 Tuulen mittaaminen P z PALLO y PALLO R S I x S maan pinta Oheisten kuvien perusteella voidaan kirjoittaa yhtälöryhmä x y z S S sin S cos R sin R cos

13 Tuulen mittaaminen P y S PALLO x Kun pallon korkeus maan pinnasta tunnetaan, saadaan I yhtälöryhmä supistettua kahteen yhtälöön, joissa kummassakin on vain yksi tuntematon x y z cot sin z cot cos z R PALLO S maan pinta Kulmat siis mitataan teodoliitillä ja korkeus saadaan joko luotaimen lähettämistä paine-, lämpötila- ja kosteusdatoista käyttäen hydrostatiikan yhtälöä, tai vaihtoehtoisesti arvioitua pallon nousunopeudesta

14 Luotauspallon nopeus saadaan siis yhtälöistä Tuulen mittaaminen n n n n n n n n t t y y t y v t t x x t x u

15 Radioluotain Luotaimella varustetut pallot lähettävät tietoa, josta pallon korkeus voidaan laskea Luotaimen paikka voidaan havaita optisen teodoliitin lisäksi Radioteodoliitilla, jolla havaitaan mistä suunnasta luotaimen lähettämä radiosignaali tulee Navigointijärjestelmällä (GPS, Loran-C)

16 Radioluotain Radioluotaimessa olevat lämpötila-, kosteus- ja paineanturit on kalibroitu tehtaalla Jokaisen radioluotaimen mukana seuraavat tehdaskalibroinnista saadut kalibrointikertoimet esimerkiksi reikänauhalla tai luotaimen sisäisellä muistipiirillä Ennen luotausta tehdään vielä ns. maakalibrointi, jossa mittareita verrataan tunnettuihin standardeihin ja tehdaskalibroinnin jälkeen tapahtunut kalibroinnin ryömintä saadaan korjattua

17 Radioluotain Maakalibroinnin jälkeen pallo lähetetään matkaan Luotaimen radiolla lähettämää dataa vastaanotetaan ja tallennetaan tietokoneen kovalevylle Aiemmin data lähetettiin taajuusmoduloituna analogiadatana, nykyisin digitaalisessa muodossa Vastaanotin

18 Radioluotaus Lopputuloksena on luotaus, joka esittää ilman lämpötilaa, kosteutta sekä tuulen suuntaa ja nopeutta maanpinnalta stratosfääriin asti

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 03 Fysiikan laitos, Ilmakehätieteien osasto Tuulen nopeuen ja suunnan mittaaminen Tuuli on vektorisuure, jolla on siis nopeus ja suunta Yleensä tuulella tarkoitetaan

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:

Lisätiedot

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine Termiikin ennustaminen radioluotauksista Heikki Pohjola ja Kristian Roine Maanpintahavainnot havaintokojusta: lämpötila, kostea lämpötila (kosteus), vrk minimi ja maksimi. Lisäksi tuulen nopeus ja suunta,

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat 1 LIITE 5 KANSALLINEN LIITE STANDARDIIN SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat Esipuhe Tätä kansallista liitettä käytetään yhdessä standardin SFS-EN 1991-1-4

Lisätiedot

Kojemeteorologia (53695) Laskuharjoitus 1

Kojemeteorologia (53695) Laskuharjoitus 1 Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Betonimatematiikkaa

Betonimatematiikkaa Betonimatematiikkaa.11.017 Kiviaineksen seulontatulokset ja läpäisyarvo Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo g % % Pohja 60 9,0-0,15

Lisätiedot

Betonimatematiikkaa

Betonimatematiikkaa Betonimatematiikkaa.11.017 Kiviaineksen rakeisuusesimerkki Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo % g % Pohja 60 9,0-0,15 30 4,5

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

, voidaan myös käyttää likimäärälauseketta

, voidaan myös käyttää likimäärälauseketta ILMAN KOSTEUS Ilma sisältää aina jonkin verran vesihöyryä. Ilman vesihöyrypitoisuudella eli kosteudella on huomattava merkitys ihmisten viihtyvyydelle ja terveydelle, erilaisten materiaalien ja esineiden

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Elastisuus: Siirtymä

Elastisuus: Siirtymä Elastisuus: Siirtymä x Elastisuus: Siirtymä ja jännitys x σ(x) σ(x) u(x) ℓ0 u(x) x ℓ0 x Elastisuus: Lämpövenymä ja -jännitys Jos päät kiinnitetty eli ε = 0 Jos pää vapaa eli σ = 0 Elastisuus: Venymätyypit

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Data-assimilaation menetelmät

Data-assimilaation menetelmät Data-assimilaation menetelmät Reima Eresmaa Ilmatieteen laitos HydMet: Sään ennustaminen * * 1 Sisältö Johdanto data-assimilaation maailmaan Numeerinen säänennustusmalli: peruskäsitteitä Säähavainnot Mitä

Lisätiedot

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS AVOIME SARJA VASTAUKSET JA PISTEITYS 1. Käytössäsi on viivoitin, 10 g:n punnus, 2 :n kolikko sekä pyöreä kynä. Määritä kolikon ja viivoittimen massa. Selosta vastauksessa käyttämäsi menetelmät sekä esitä

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

DirAir Oy:n tuloilmaikkunaventtiilien mittaukset 30.11.2012

DirAir Oy:n tuloilmaikkunaventtiilien mittaukset 30.11.2012 Tampereen teknillinen yliopisto Teknisen suunnittelun laitos Pentti Saarenrinne Tilaaja: DirAir Oy Kuoppakatu 4 1171 Riihimäki Mittausraportti: DirAir Oy:n tuloilmaikkunaventtiilien mittaukset 3.11.212

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen

Lisätiedot

Demo 5, maanantaina 5.10.2009 RATKAISUT

Demo 5, maanantaina 5.10.2009 RATKAISUT Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

SwemaAir 5 Käyttöohje

SwemaAir 5 Käyttöohje SwemaAir 5 Käyttöohje 1. Esittely SwemaAir 5 on kuumalanka-anemometri lämpötilan, ilmanvirtauksen sekä -nopeuden mittaukseen. Lämpötila voidaan esittää joko C, tai F, ilmannopeus m/s tai fpm ja ilman virtaus

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

Hydrologia. Pohjaveden esiintyminen ja käyttö

Hydrologia. Pohjaveden esiintyminen ja käyttö Hydrologia Timo Huttula L8 Pohjavedet Pohjaveden esiintyminen ja käyttö Pohjavettä n. 60 % mannerten vesistä. 50% matalaa (syvyys < 800 m) ja loput yli 800 m syvyydessä Suomessa pohjavesivarat noin 50

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

TUNTEMATON KAASU. TARINA 1 Lue etukäteen argonin käyttötarkoituksista Jenni Västinsalon kandidaattitutkielmasta sivut 12-15. Saa lukea myös kokonaan!

TUNTEMATON KAASU. TARINA 1 Lue etukäteen argonin käyttötarkoituksista Jenni Västinsalon kandidaattitutkielmasta sivut 12-15. Saa lukea myös kokonaan! TUNTEMATON KAASU KOHDERYHMÄ: Työ soveltuu lukiolaisille, erityisesti kurssille KE3 ja FY2. KESTO: Noin 60 min. MOTIVAATIO: Oppilaat saavat itse suunnitella koejärjestelyn. TAVOITE: Työn tavoitteena on

Lisätiedot

Ilmanvirtauksen mittarit

Ilmanvirtauksen mittarit Swema 3000 yleismittari/monitoimimittari sisäilmastomittauksiin Ilmastoinnin yleismittari, Vahva metallirunkoinen Swema 3000 on suunniteltu ilmastoinnin, sisäilmaston ja olosuhdemittausten tarpeisiin erityisesti

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma

KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Työ 3: Veden höyrystymislämmön määritys

Työ 3: Veden höyrystymislämmön määritys Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

DEE-54030 Kryogeniikka

DEE-54030 Kryogeniikka DEE-54030 Kryogeniikka Kryogeeninen eristys Mitä lämmönsiirto on? Lämmönsiirto on lämpöenergian välittymistä lämpötilaeron vaikutuksesta. Lämmönsiirron mekanismit Johtuminen Konvektio Säteily Lämmönsiirron

Lisätiedot

Myös hiekan sideaine vaikuttaa sullonnan määrään. Hartsisideainehiekkojen sullontatarve on huomattavasti vähäisempi kuin bentoniittihiekkojen.

Myös hiekan sideaine vaikuttaa sullonnan määrään. Hartsisideainehiekkojen sullontatarve on huomattavasti vähäisempi kuin bentoniittihiekkojen. 12. Muotin lujuus Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Muotti joutuu usein alttiiksi suurille mekaanisille rasituksille sulan metallin aiheuttaman paineen ja painovoiman vaikutuksesta. Jotta

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Mitä on huomioitava kaasupäästöjen virtausmittauksissa

Mitä on huomioitava kaasupäästöjen virtausmittauksissa Mitä on huomioitava kaasupäästöjen virtausmittauksissa Luotettavuutta päästökauppaan liittyviin mittauksiin 21.8.2006 Paula Juuti 2 Kaupattavien päästöjen määrittäminen Toistaiseksi CO2-päästömäärät perustuvat

Lisätiedot

SINI- JA KOSINILAUSE. Laskentamenetelmät Geodeettinen laskenta - 1-1988-1999 M-Mies Oy

SINI- JA KOSINILAUSE. Laskentamenetelmät Geodeettinen laskenta - 1-1988-1999 M-Mies Oy SINI- JA KOSINILAUSE SINILAUSE: Kolmiossa kulman sinien suhde on sama kuin kulman vastaisten sivujen suhde. Toisin sanoen samassa kolmiossa SIN Kulma / Sivu = Vakio (Jos > 100 gon: Kulma = 200 kulma).

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

MATEK822 Pro Gradu seminaari Johannes Tiusanen 12.11.2002

MATEK822 Pro Gradu seminaari Johannes Tiusanen 12.11.2002 MATEK / MAATALOUSTEKNOLOGIA SEMINAARIMONISTE MATEK822 Pro Gradu seminaari Johannes Tiusanen 12.11.2002 $,,4,,890 : 9:: ;4 2,, Helsingin yliopisto Maa- ja kotitalousteknologian laitos Tuulen teho ja tuulisuus

Lisätiedot

SwemaMan 7 Käyttöohje

SwemaMan 7 Käyttöohje SwemaMan 7 Käyttöohje HUOM! Ennen mittausten aloittamista, lue kohta 6. Asetukset (SET). Vakiona k2-kompensointi on päällä. 1. Esittely SwemaMan 7 on mikro manometri paine-eron, ilmanvirtauksen sekä -nopeuden

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta

Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta Annettu Helsingissä 5 päivänä marraskuuta 2010 Ympäristöministeriön päätöksen mukaisesti

Lisätiedot

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet 197 Lausu logaritmeja käyttämättä jaksollisen desimaaliluvun (kymmenysluvun) 0,578703703 kuutiojuuri jaksollisena desimaalilukuna. [S3, pitempi kurssi] Ratkaisut 1917 197 1917 Tarkastelemme kolmiota ABC,

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Jupiter-järjestelmä ja Galileo-luotain II

Jupiter-järjestelmä ja Galileo-luotain II Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.

Lisätiedot

13. Sulan metallin nostovoima

13. Sulan metallin nostovoima 13. Sulan metallin nostovoima Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Jos putkessa, jonka poikkipinta-ala on A, painetaan männällä nestepinnat eri korkeuksille, syrjäytetään nestettä tilavuuden

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Ilman lämpötilan mittaaminen Ilman lämpötila on ehkä yleisin mitattava meteorologinen suure Vaikuttaa merkittävästi

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

BMEP004 / Lapputyö 1. Nousukorkeuden määrittäminen eri hyppytekniikoille ja kahta eri menetelmää käyttäen

BMEP004 / Lapputyö 1. Nousukorkeuden määrittäminen eri hyppytekniikoille ja kahta eri menetelmää käyttäen BMEP004 / Lapputyö 1. Nousukorkeuden määrittäminen eri hyppytekniikoille ja kahta eri menetelmää käyttäen Biomekaniikan tutkimusmenetelmien perusteet Liikuntabiologian laitos Jyväskylän yliopisto 1 JOHDANTO

Lisätiedot

TESTAUSSELOSTE Nro. RTE590/05 14.2.2005. Sadeveden erotusasteen määrittäminen. KOMPASS-500-KS. VTT RAKENNUS- JA YHDYSKUNTATEKNIIKKA

TESTAUSSELOSTE Nro. RTE590/05 14.2.2005. Sadeveden erotusasteen määrittäminen. KOMPASS-500-KS. VTT RAKENNUS- JA YHDYSKUNTATEKNIIKKA TESTAUSSELOSTE Nro. RTE590/05 14.2.2005 Sadeveden erotusasteen määrittäminen. KOMPASS-500-KS. Tilaaja: Jeven Oy VTT RAKENNUS- JA YHDYSKUNTATEKNIIKKA TESTAUSSELOSTE NRO RTE590/05 1(2) Tilaaja Tilaus Jeven

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2)

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2) SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat 1 ILMANPAINE (1/2) Ilma kohdistaa voiman kaikkiin kappaleisiin, joiden kanssa

Lisätiedot

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ 56 VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ Hyvällä havaitsijalla keskimääräinen virhe tähdenlennon kirkkauden arvioimisessa on noin 0.4 magnitudia silloin, kun meteori näkyy havaitsijan näkökentän keskellä.

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

VAISALAN STATOSKOOPPIEN KÄYTTÖÖN PERUSTUVASTA KORKEUDEN-

VAISALAN STATOSKOOPPIEN KÄYTTÖÖN PERUSTUVASTA KORKEUDEN- Q 16.1/21/73/1 Seppo Elo 1973-11-16 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto Painovoimapisteiden korkeuden mittauksesta statoskoopeilla VAISALAN STATOSKOOPPIEN KÄYTTÖÖN PERUSTUVASTA KORKEUDEN- MÄARITYKSESTA

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot