Tasapainotilassa sinkin kemiallisen potentiaalin on oltava sama systeemin molemmissa faaseissa (terässula ja kaasu):

Koko: px
Aloita esitys sivulta:

Download "Tasapainotilassa sinkin kemiallisen potentiaalin on oltava sama systeemin molemmissa faaseissa (terässula ja kaasu):"

Transkriptio

1 777S / Korkeaämötakema Luenneen aneen standardt Seosaasen tarkasteussa on oeesta mustaa, että uenneden aneden aktvsuudet (ja aktvsuuskertomet) evät oe ykssettesä, vaan ne ov ana sdottuja tettyyn standardtaan, jonka suhteen ne on määrtetty. ämän vuoks aktvsuuksa ja aktvsuuskertoma estettäessä tuskn ana mottaa myös käytetty standardta. Aktvsuuden ja standardtan väsen ruvuuden havannostamseks vataan tarkasteun kohteeks esmerkk, jossa terässuaan uennut snkk on tasaanossa terästä ymärövän mosäärn snkkosaaneen kanssa. asaanoa vodaan kuva yhtäön () mukasea reaktoa: Zng Zn Fe () asaanotassa snkn kemasen otentaa on otava sama systeemn moemmssa aasessa (terässua ja kaasu): (2) Zn Fe Zn g erässuaan uenneen snkn kemasen otentaa auseke vodaan hajottaa muotoon: Zn Zn Zn Fe Zn x a Fe Zn Fe Zn Fe (3) Jos nyt oetetaan, että muodostunutta tasaanotannetta e rkota (e oosuhteta e muuteta), nn täön kaasussa oevan höyrystyneen snkn sekä metasuaan uenneen snkn kemasten otentaaen on ysyttävä yhtä suurna ja muuttumtomna. arkastetaessa terässuaan uennutta snkkä askennasest, vodaan kutenkn tehdä erasa standardtavoja snkn suhteen. Luonnosn va enee uhtaan, stabemmassa oomuodossa esntyvän snkn vatsemnen standardtaks, mutta tämä e kutenkaan oe anoa mahdoen va. kä standardtaa muutetaan, muuttuu uonnosest myös kemasen otentaa standardarvo ( Zn). Koska yhtäön (3) vasemman uoen on kutenkn tasaanon säymsen vuoks ysyttävä vakona, on Zn:n säks myös jonkn muun yhtäön okeaa uoea oevan muuttujan arvon muututtava, jotta yhtäön (3) osottama yhtäsuuruus säys. Koska oosuhteden (ämöta ja tosuus x [Zn]Fe ) oetettn ysyvän muuttumtomna, on anoa soveas muuttuja snkn aktvsuuskerron ( [Zn]Fe ). osn sanoen snkn aktvsuuskertomen saama arvo ruu stä, mten snkn standardta on vattu. Yhtäöstä (3) havaan myös, että teräkseen uenneen snkn kemaen otentaa saavuttaa standardarvonsa ( Zn), kun snkn aktvsuus (a [Zn]Fe ) saa arvon yks. kä standardtaks on vattu uhdas ane, tämä tarkottaa stä, että uhtaan snkn aktvsuus on yks. On kutenkn syytä huoma, että aktvsuus saa uhtaa anea arvon yks van kun standardtana on uhdas ane. ua standardtavanoa uhtaan aneen aktvsuus okkeaa ykkösestä ja vastaavast aktvsuus saavuttaa arvon joan muua koostumuksea. ks standardtoja stten käytetään, kun nden huomonnsta kotuu monsettesyyttä ja ymäärästä tekemstä? Yks syy on mttausteknnen: uenneden aneden aktvsuuksa mtaan mm. ns. gavaansa kennoja käyttäen, jossa mttaus erustuu jänntteeseen, joka syntyy mttavan uoksen ja jonkn Pyrometaurgsten uosten komonentten aktvsuuksen mttauksessa käytetyt gavaanset kennot ov tomntaerateetaan verrannosa vesuosten :n määrtyksessä käytettävn konsentraokennohn; moemmssa mtaan mttavan uoksen ja reerenssmeraa väe syntyvää sähkömotorsta vomaa, jonka ohjata hauttu suure vodaan askennasest määrttää. Veden :ta mttaessa kennon osen vä e tarvta erstä eektroyyttuosta, koska ves tsessään on uhdas onsest johtava väane. -mttauksessa mttavan + -onaktvsuuden (a +(I)) ja mttavan jänntteen (E) väe vodaan krjottaa yhtäö, jonka ohjata vodaan määrttää, kun reerenssmeraa + -onaktvsuus (a +(II)) tunnetaan:

2 777S / Korkeaämötakema tunnetun reerenssmeraa väe. äön tuoksena e saada absouuttsa arvoja, vaan on vattava jokn noaotentaa, johon syntyvää jänntettä verraan. Vertaukohdaks vodaan ottaa esmerkks uhdas ane, joon se tom ko. tarkasteun standardtana. onen syy ttyy uoestaan käytännön askentaan; jossan taauksssa tarkastetava systeem on seanen, että vatsemaa standardtaks jokn muu kun uhdas ane saadaan rkastavasta ongemasta mematsest yksnkertasem. Standardtaa vahdettaessa vodaan muuttaa joko koostumusta/oosuhteta, jossa aktvsuus saavuttaa arvon yks ja kemaen otentaa vastaavast standardarvonsa ( = ) ta stä, mten aktvsuus ähestyy arvoa yks (ja kemaen otentaa standardarvoaan), kun koostumusta muutetaan. Ensn manttu tarkottaa ss esmerkks uhtaan aneen ta tetyn koostumuksen omaavan seoksen vatsemsta a E F a ( II) ( I ) Korkeammssa ämötossa tehtävssä mttauksssa meraaea on myös eektronsta sähkönjohtavuutta onsen säks. äön tarvtaan onjohtava eektroyytt kennon er osen väe: A(I) A A(II). Käytettävä eektroyytt vo oa joko sua ta knteä, kunhan se johtaa sähköä van onen vätykseä. Pyrometaurgsssa mttauksssa käytettävä eektroyyttejä ov esmerkks CaO:a, go:a ta Y 2O 3:a stabotu ZrO 2, -A 2O 3, CaF 2 ja stabotu ho 2. Yks gavaansten kennojen yesmmstä soveukssta yrometaurgassa on meta uenneen haen aktvsuuden mttaukseen käytetty haaktvsuuskenno, jonka rakenne on estetty kuvassa. aaktvsuuskennojen käyttöaue on yeensä non 7-7 C. ätä korkeammssa ämötossa vrhettä aheuttava eektronjohtavuus kasvaa kaa samaa kun meraaen kestävyys korkessa ämötossa hekkenee. Lan massa ämötossa on ongemana duuson hdastumnen. Em. eektroyytestä CaO-stabodua ZrO 2:a äästään hyvn tuoksn ana m:n hosuuksn saakka, mutta stä enemmä haen aktvsuuksa on yeensä käytettävä muta (=kama) meraaeja rttävän tarkkojen tuosten saamseks. aaktvsuuskennon mttauksa härtsevät vrheähteet yeensä korostuv korkessa ämötossa sekä maa haen aktvsuuksa. Vrhettä aheuttav mm. ha-onen kukeutumnen eektroyytn ä johtuen osttasesta eektronsesta johtavuudesta, aktvsuuden askennassa käytetty eätarkka termodynaamnen da, kemaset reaktokerrokset eektroyytn nnaa, kennon keraamsten osen ukenemnen metasuaan, johdnmeraaen väe syntyvä termosähkönen jännte sekä ämötanmttauksen eätarkkuudet. ttavan jänntteen (E) ja määrtettävän haen aktvsuuden (a [O]) vää on vomassa: a O e GL e' O2( re ) e EF e' 2 jossa G L on Gbbsn energan muutos haen ukenemsee metasuaan, on yenen kaasuvako, on ämöta, F on Faradayn vako ja e on eektronjohtavuuden aheuttamaa vrhettä korjaava tekjä. EF etasua e - A(x) A n A(re) - e Johtmet otentaaeron mttaamseks 2 Keraamnen suojautk (esm. A 2O 3) 3 Erstysmassaus eerenssmeraa (esm. Cr-Cr 2O 3) 5 Knteä eektroyytt (esm. ZrO 2 (+go)) Kuva. aaktvsuuskenno.

3 777S / Korkeaämötakema standardtaks ta standardtasen aneen oomuodon knnttämstä. Yeensä oomuodoks vataan joko tarkastetavan uhtaan aneen ta uoksen staben oomuoto tarkastetavssa oosuhtessa. Jäkmmäseä uoestaan tarkotetaan käytetyn tosuuskoordnaston vaa. Yesmmn käytettyjä tosuuskoordnastoja ov joko mooosuus ta anorosenttosuus. Yeensä tosuuskoordnasto kanntaa vata käytännön kannata sovmmaks. Kun uenneden aneden standardtaks vataan uhta aneet uoksen oomuodossa, saadaan akaan tanne, jossa aktvsuus ähestyy asymtoottsest deaataausta, kun tosuus ähestyy ykköstä. Louta aktvsuus saavuttaa arvon yks uhtaassa aneessa. Nän e kutenkaan taahdu, mkä standardtaks vataan uhtaan komonentn staben oomuoto, joka tarkasteuoosuhtessa okkeaa uoksen oomuodosta. Perateessa standardt vodaan vata äärettömän ukusa er tavoa, mutta käytännössä ne kutenkn rajottuv muutamaan yesmmn käytössä oevaan taaukseen. Pyrometaurgsten tarkasteujen kannata keskesmä standardtoja ov aoutn ja enryn aktvsuudet. aoutn aktvsuudea tarkotetaan uhtaan osasajn suhteen määrtettyä aktvsuutta ja aoutn standard-taa vastaavast uhtaan osasajn suhteen määrtettyä standardtaa. äön osasajn aktvsuus saavuttaa arvon yks, kun sen koostumus on yks (e uhtaae aneee). aoutn aktvsuuksen ja aktvsuus-kertomen tunnuksena käytetään yeensä soa -krjanta: a x () Yhtäössä () vttaa uhtaan osasajn kemaseen otentaa. aoutn aktvsuuksen yhteydessä uhutaan usen myös aoutn asta, jonka mukaan aoutn standardtan mukanen aktvsuuskerron ähestyy arvoa yks kun tosuus ähestyy ykköstä: m x (5) kä mooosuuden sjasta hautaan käyttää jotan muuta tosuusmuuttujaa, on standardtaan täön tehtävä asanmukanen muutos. Yhtäössä (6) ja (7) on estetty, mten standardtan muutos huomodaan kemasen otentaa standardarvossa, kun srrytään mooosuukssta omrosenttosuuksn (yhtäö (6)) ja anorosenttosuuksn (yhtäö (7)) 2 :, a x (6) 2 Yhtäössä (7) on tarkastetavan aneen moomassa ja on seoksen uottmen moomassa.

4 777S / Korkeaämötakema x a, (7) Yhtäötä (), (6) ja (7) vertaemaa havaan, että ne ov samanasa ukuunottamta käytettyä tosuusmuuttujaa ja standardtaa. osn sanoen kemasen otentaa auseke on standardtavanasta rumta samaa muotoa, mutta yhtäössä esntyvät muuttuj saav er taauksssa er arvoja. Atomrosenttosuuksn ja anorosenttosuuksn ttyvät standardtan arvot (, ja, ) saadaan askettua aoutn standardtan ( ) ohjata käyttäen yhtäötä (8) ja (9)., (8), (9) uomonarvosta on, että srryttäessä mooosuukssta om- ta anorosenttastekoe (. tosuusastekkoa muutettaessa) e aktvsuuskertomen arvossa taahdu muutosta. Nän e kutenkaan oe, mkä tosuusastekon sjasta muutetaan oosuhteta/tosuutta, jossa standardta saavutetaan. aoutn aktvsuuden ohea käytetymä on äärettömän amean uoksen suhteen määrtetty aktvsuus e enryn aktvsuus, jota vastaava äärettömän amean uoksen suhteen määrtetty standardta on enryn standard-ta. enryn aktvsuuksa käytettäessä uhtaden aneden aktvsuudet okkeav ykkösestä erkostaauksa ukuunottamta 3. enryn aktvsuuksn ttyvän enryn an mukaan aktvsuuskerron ähestyy ykköstä, kun tosuus ähestyy noaa: m x () enryn aktvsuuksen yhteydessä käytetään usen mooosuuksen sjasta anorosenttosuuksa, joon enryn ak saa muodon: m () On kutenkn syytä huoma, ette enryn ak snäään oe sdottu mhnkään tettyyn tosuusmuuttujaan, vaan stä vodaan käyttää nn mooosuuksa kun om- ta anorosenttosuuksakn käytettäessä. Yhtäössä (2) ja (3) on estetty aoutn mukasten om- ja anorosenttaktvsuuksen muuttamnen vastaavks enryn aktvsuuksks : 3 Ideaauosten enryn aktvsuus saavuttaa arvon yks uhtaa anea., on aoutn mukanen aktvsuuskerron äärettömässä amennuksessa; ts. se arvo, jota aoutn aktvsuuskerron ähenee, kun tosuus ähenee noaa.

5 777S / Korkeaämötakema,,,,,,,,, (2) x,,,,,,, (3) jossa ko. standardtavohn ttyvät standardt ja aktvsuuskertomet ov:,,,, (),, (5), (6) auukossa on estetty kaavoja standardtojen muuttamseks toskseen. auukko. Standardtojen muuttamnen toskseen uutos G ooosuus, uhdas ane ooosuus, ääretön amennus (, ) ooosuus, uhdas ane -, ääretön amennus [(, )/] ooosuus, uhdas ane -, ääretön amennus [(, )/( )] ooosuus, ääretön amennus -, ääretön amennus [( )/( )] -, ääretön amennus -, ääretön amennus ( / ) Kuvan 2 avua yrtään seventämään aoutn ja enryn mukasten aktvsuuksen ja aktvsuuskertomen kästtetä. Kuvassa on estetty hyoteettsen bnäärsysteemn tosen komonentn aktvsuus mooosuuden unktona. Vataan tarkasteukohteeks koostumus, jossa aneen mooosuus on,7. Kuvasta 2 nähdään, että tää koostumuksea aneen (aoutn mukanen) aktvsuus on,35. aoutn mukanen aktvsuuskerron saadaan jakamaa todeen aktvsuus mooosuudea, joon aoutn aktvsuuskertomen arvoks saadaan,35 /,7 =,5. enryn mukasen aktvsuuskertomen

6 777S / Korkeaämötakema määrttämseks kuvaan 2 on rretty enryn an mukanen suora, joka ss yhtyy todeseen aktvsuuteen äärettömässä amennuksessa. enryn mukanen aktvsuuskerron saadaan jakamaa aoutn mukanen aktvsuuskerron (tässä taauksessa,5) aoutn aktvsuuskertomea äärettömässä amennuksessa (tässä taauksessa,25) yhtäön (6) mukasest. osn sanoen enryn mukaseks aktvsuuskertomeks saadaan,5 /,25 = 2. äärtettyjen aktvsuus-kertomen ohjata vodaan ääteä kuvasta 2:kn nähtävä sekka, että aneen todeen aktvsuus okkeaa aoutn an mukasesta suorasta negvsest, mutta enryn an mukasesta suorasta ostvsest. Louks vodaan veä määrttää enryn aktvsuus, joka saadaan mooosuuden ja enryn aktvsuus-kertomen tuona:,7 2 =,. Kuvassa 2 on aoutn mukaset aktvsuudet merktty kuvan vasemaan ja enryn mukaset aktvsuudet kuvan okeaan aan. uomaa, ette enryn mukanen aktvsuus saa arvoa yks uhtaassa aneessa. Kuva 2. yoteettsen bnäärsysteemn komonentn aktvsuus moomäärän unktona.

Tasapainotilassa sinkin kemiallisen potentiaalin on oltava sama systeemin molemmissa faaseissa (terässula ja kaasu):

Tasapainotilassa sinkin kemiallisen potentiaalin on oltava sama systeemin molemmissa faaseissa (terässula ja kaasu): 4774S / Imömanus rosessmetaurgassa Luenneen aneen standardt Seosaasen tarkasteussa on oeesta mustaa, että uenneden aneden aktvsuudet (ja aktvsuuskertomet) evät oe ykssettesä, vaan ne ov ana sdottuja tettyyn

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkeaäpötakea etaurgset uosat: etasuat a 7.11.017 ko 10-1 SÄ114 Tavote Tutustua pyroetaurgsten reaauosten annukseen - etasuat ertysest terässuat Tutustua eserkknä tarken WLEforasn Oppa tunteaan terässuen

Lisätiedot

Metallurgiset liuosmallit: WLE-formalismi

Metallurgiset liuosmallit: WLE-formalismi etaurgset uosat: WLE-foras Iöannus prosessetaurgassa Syksy 016 Teea - Luento 4 Prosessetaurgan tutkusryhä Eetu-Pekka Hekknen, 016 Tavote Jatkaa reaauosten kästteeseen tutustusta Tutustua eserkknä yhteen

Lisätiedot

Metallurgiset liuosmallit: Yleistä

Metallurgiset liuosmallit: Yleistä Metallurgset luosmallt: Ylestä Ilmömallnnus rosessmetallurgassa Syksy 2016 Teema 2 - Luento 3 Tavote Tutustua deaal- ja reaalluosten kästtesn Tutustua luosmallehn ylesellä tasolla Luosmallen jaottelu Hyvän

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Gibbsin vapaaenergia aineelle i voidaan esittää summana

Gibbsin vapaaenergia aineelle i voidaan esittää summana Lueto 8: Epädeaalsuus ja aktvsuuskerro Torsta 1.11. klo 14-16 477401A - Terodyaaset tasapaot (Syksy 2012) http://www.oulu.f/pyoet/477401a/ eetu.hekke@oulu.f Kertausta: Gbbs eerga ja tasapaovako Gbbs vapaaeerga

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

CHEM-A2100. Oppimistavoite. Absorptio. Tislaus, haihdutus, flash. Faasitasapainot

CHEM-A2100. Oppimistavoite. Absorptio. Tislaus, haihdutus, flash. Faasitasapainot Omstavote CHEM-A21 Faastasaanot 1 Ymmärtää mhn faastasaanoa tarvtaan Ymmärtää faastasaanoen matemaattsen kuvauksen alkeet (höyry-neste & neste-neste; deaal & aktvsuuskerron) Ymmärtää kvaltatvsest erlasa

Lisätiedot

477412S / Ilmiömallinnus prosessimetallurgiassa. Tasapainon käsite ja tasapainon määrittäminen

477412S / Ilmiömallinnus prosessimetallurgiassa. Tasapainon käsite ja tasapainon määrittäminen 4774S / Ilmömallnnus rosessmetallurgassa asaanon käste ja tasaanon määrttämnen asaanotlalla tarkotetaan erstetyn systeemn tlaa, jonka mtattavssa suuressa e taahdu muutoksa ajan funktona. Lsäks tasaanotlassa

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET N:o 979 3731 te 2 AINEIDEN OMINAISUUKSIIN ERUSTUVA SEOSTEN UOKITUS JA VAARAA OSOITTAVAT AUSEKKEET JOHDANTO Vaarallsa aneta ssältävä seoksa luokteltaessa ja merkntöjä valttaessa aneden ptosuuksen perusteella

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

Tasapainojen määritys ja siihen liittyvää peruskäsitteistöä

Tasapainojen määritys ja siihen liittyvää peruskäsitteistöä Tasapanojen määrtys ja shen lttyvää peruskästtestöä Ilmömallnnus prosessmetallurgassa Syksy 2016 Teema 2 - Luento 1 Tavote Kerrata, mten termodynaamsa tasapanoja vodaan laskennallsest määrttää Mustuttaa

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen Smpex-menetemän menetemän askennaset teknkat 8. ento: Prmaa-smpex S ysteemanayysn Laboratoro Teknnen korkeako Matemaattsten agortmen ohemont Kevät 8 / Epäkäyvän kantaratkasn parantamnen. vaheen yenen smpex-menetemä

Lisätiedot

Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto

Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötlakema Teema 2 Luento 1 Tasapanojen määrtys ja shen lttyvää peruskästtestöä Ma 30.10.2017 klo 11-12 SÄ114 Oulun ylopsto Tavote Kerrata, mten termodynaamsa tasapanoja vodaan laskennallsest määrttää

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia 1.11.217 Korkealämpötilakemia Standarditilat Ti 1.11.217 klo 8-1 SÄ11 Tavoite Tutustua standarditiloihin liuosten termodynaamisessa mallinnuksessa Miksi? Millaisia? Miten huomioidaan tasapainotarkasteluissa?

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

Epätäydelliset sopimukset

Epätäydelliset sopimukset Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén

Lisätiedot

Harjoitukset (KOMPRIMOINTI)

Harjoitukset (KOMPRIMOINTI) Kmrmntharjtuksa (7) Harjtukset (KOMPRIMOINI) Kmressreja käytetään esmerkks seuraavssa svelluksssa: kaasujen srt, neumaattnen kuljetus anelmahult rsesstellsuudessa kaasureaktden, kaasujen nesteyttämsen

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

MO-teoria ja symmetria

MO-teoria ja symmetria MO-teora ja symmetra () Kaks atomorbtaaa vovat muodostaa kaks moekyyorbtaaa - Stova orbtaa - ajottava orbtaa () Atomorbtaaen energoden otava keskenään samansuurusa () Atomorbtaaen symmetravaatmukset LCAO

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Tasapainojen määrittäminen tasapainovakiomenetelmällä

Tasapainojen määrittäminen tasapainovakiomenetelmällä Luento 6: sutspnot eskvkko 3.1. klo 8-1 771 - Termodynmset tspnot (Syksy 18) http://www.oulu.f/pyomet/771/ Tspnojen määrttämnen tspnovkomenetelmällä Trkstel homogeenst ksufsrektot. Esm.: (g) + (g) = (g)

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

LIITE 2. KÄSITELUETTELO

LIITE 2. KÄSITELUETTELO 222 LIITE 2. KÄSITELUETTELO Absoluttnen energa-astekko Adabaattnen palamslämpötla Adabaattnen prosess Aktvsuus Aktvsuuskerron Aktvaatoenerga Eksotermnen reakto Elektrod Elektrolyys Endotermnen reakto Entalpa

Lisätiedot

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 )

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 ) 58 Yhtälön (0.4.) mukaan peräkkästen hejastuneen säteen optnen matkaero on D= n tcosqt ja vahe-eroks tulee (kun r = 0) p = kd= D. (.3.) l ässä on huomattava, että hejastuksssa tapahtuvat mahollset p :

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

DEE Polttokennot ja vetyteknologia

DEE Polttokennot ja vetyteknologia DEE-54020 Polttokennot ja vetyteknologa Polttokennon hävöt 1 Polttokennot ja vetyteknologa Rsto Mkkonen Polttokennon tyhjäkäyntjännte Teoreettnen tyhjäkäyntjännte E z g F Todellnen kennojännte rppuu er

Lisätiedot

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta.

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta. D-000 Pranalyys Harjotus 3 / vkko 5 4.4 Laske kuvan vrta käyttäen energalähteden muunnoksa. Tarkotuksena on saada energalähteden muutokslla ja yhdstämsllä akaan yksnkertanen pr, josta vo Ohmn lan avulla

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötlakema Johdanto reaktoknetkkaan Ma 6.11.2017 klo 10-12 SÄ114 Oulun ylopsto Tavote Oppa reaktoknetkan laskennallsta mallnnusta Tutustua pyrometallurgsssa ja mussa korkealämpötlaprosessessa esntyven

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

OPASTESUUNNITELMA. Euroopan unioni Euroopan aluekehitysrahasto maaseuturahasto

OPASTESUUNNITELMA. Euroopan unioni Euroopan aluekehitysrahasto maaseuturahasto OPASTESUUNNITELMA Euroopan unon Euroopan aluekehtysrahasto maaseuturahasto opasteohjesto Pääopasteet Tenvarsopasteen mall Yleset peraatteet Opasteden värenä käytetään mahdollsuuksen mukaan graafsen ohjeston

Lisätiedot

ESITYSLISTA 25/2002 vp PERUSTUSLAKIVALIOKUNTA

ESITYSLISTA 25/2002 vp PERUSTUSLAKIVALIOKUNTA ESITYSLISTA 25/2002 vp PERUSTUSLAKIVALIOKUNTA Tsta 19.3.2002 kello 10.00 1. Nmenhuuto 2. Päätösvaltasuus 3. U 6/2002 vp ehdotuksesta neuvoston säädöksen antamseks Euroopan polsvraston perustamsesta tehdyn

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde SYMBOLILUETTELO a [/s ] ihisen käveystä aiheutuva askettu kiihtyvyys x [] huoneen suurin eveys- tai pituus [] attian eveys eff [] attian värähteevän osan tehoinen eveys e=,78 [-] Neperin uku s [] attiapakkien

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

"h 'ffi: ,t^-? ùf 'J. x*r:l-1. ri ri L2-14. a)5-x:8-7x b) 3(2x+ l) :6x+ 1 c) +* +5 * I : 0. Talousmatematiikan perusteet, onus to o.

h 'ffi: ,t^-? ùf 'J. x*r:l-1. ri ri L2-14. a)5-x:8-7x b) 3(2x+ l) :6x+ 1 c) +* +5 * I : 0. Talousmatematiikan perusteet, onus to o. 1 Vaasan yopso, kev a 0 7 Taousmaemakan perusee, onus o o R1 R R3 R ma 1-1 ma 1-1 r 08-10 r -1 vkko 3 F9 F53 F5 F53 1.-0..01 R5 R o R7 pe R8 pe - r-1 08-10 10-1 F53 F10 F5 F9 1. Sevennä seuraava ausekkee.

Lisätiedot

Usean muuttujan funktioiden integraalilaskentaa

Usean muuttujan funktioiden integraalilaskentaa Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal

Lisätiedot

AINEENSIIRTO-OPPI. Ari Seppälä ja Markku J. Lampinen

AINEENSIIRTO-OPPI. Ari Seppälä ja Markku J. Lampinen INEENSIIRTO-OPPI r Seälä ja Markku J. Lamnen Korjattu anos Ylostokustannuksen (004) julkasemasta alkueräsestä saman nmsestä teoksesta (Otateto 604). Coyrght 07 Krjottajat 4 SISÄLLYSLUETTELO Symbolluettelo

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 1 761121P

FYSIIKAN LABORATORIOTYÖT 1 761121P FYSIIKAN LABORATORIOTYÖT 76P Espuhe Fyskassa pyrtään löytämään luonnosta lanalasuuksa, jota vodaan mtata kokeellsest ja kuvata matemaattsest. Tässä kurssssa tutustutaan yksnkertasten mttausvälneden käyttöön

Lisätiedot

Mittaustulosten käsittely

Mittaustulosten käsittely Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman

Lisätiedot

Venymälle isotermisessä tilanmuutoksessa saadaan dl = α LdT + df = df AE AE Ulkoisen voiman tekemä työ saadaan integroimalla δ W = FdL :

Venymälle isotermisessä tilanmuutoksessa saadaan dl = α LdT + df = df AE AE Ulkoisen voiman tekemä työ saadaan integroimalla δ W = FdL : S-11435, Fyskka III (ES) Tentt 194 1 Setsemän tunnstettavssa olevaa hukkasta on jakautunut kahdelle energatasolle Ylem taso on degenerotumaton ja sen energa on 1, mev korkeam kun alemman tason, joka uolestaan

Lisätiedot

ÖSA 670 -KAATO-KASAUSKONE

ÖSA 670 -KAATO-KASAUSKONE /97 ÖSA 7 KAATOKASAUSKONE Esko Mkkonen ) jsa 7 on Lähnnä päätehakkuta varten rakennettu kaatokasauskone Konetta käytetään prosessorkorjuuketjussa prosessora edeävänä koneena Koneen tuotos on 7 m käyttssa

Lisätiedot

1. Kaikki kaatuu, sortuu August Forsman (Koskimies)

1. Kaikki kaatuu, sortuu August Forsman (Koskimies) olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti

Lisätiedot

38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN

38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN TURUN AMMATTIKORKEAKOULU TYÖOHJE (7) FYSIIKAN LABORATORIO V 2..2 38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN. Työn tavote 2. Teoraa Työssä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

FDS-OHJELMAN UUSIA OMINAISUUKSIA

FDS-OHJELMAN UUSIA OMINAISUUKSIA FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.

Lisätiedot

- lzcht Frwaria ;:h'5ensuuntaisprc j sktioita

- lzcht Frwaria ;:h'5ensuuntaisprc j sktioita Krjallsuuden kdytto kelletty.,p,,':. Kun prustuksessa on estetty osen muodot ja asennust..,;,!:/ j Zrj estys, on sllon.kyseessd..' + '. cb. ksyttdohj eprustus. : *'. patenttprustus'. tydprustus :. : G

Lisätiedot

Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa

Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa Y m ä r s t ö m n s t e r ö n m o n s t e 122 Ilmanvahdon lämmöntalteenotto lämöhävöden tasauslaskennassa HELINKI 2003 Ymärstömnsterön monste 122 Ymärstömnsterö Asunto- ja rakennusosasto Tatto: Lela Haavasoja

Lisätiedot

Helka-neiti kylvyssä

Helka-neiti kylvyssä Helkanet kylvyssä Frtz Grunbaum suom. M. A. ummnen Solo Tenor???? m Fred Raymond sov. G. Ventur 2001 Tä män täs tä p Bass Uu m g Wow uu uu uu uu uu uu uu, uu p wow wow wow wow wow wow wow, wow uu wow Mart

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

HAVERIN JÄTE: RAEKOKOJAKAUfvIA JA SEULAFRAKTIOIDEN KEMIALLI NEN KOOSTUMUS

HAVERIN JÄTE: RAEKOKOJAKAUfvIA JA SEULAFRAKTIOIDEN KEMIALLI NEN KOOSTUMUS Oy HAVERN JÄTE: RAEKOKOJAKAUfvA JA SEULAFRAKTODEN KEMALL NEN KOOSTUMUS Tässä tutkmuksessa selvtetään Hav e~ n jätt een rae kok oj aka~maa ja metallen ~ s ntymst ä er seulaluoksra. Tutkmuksen tlaaja: Tutkmuksen

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15 A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60

Lisätiedot

15.8.2005 KUORMITUSKÄYRÄSTÖT... 16 5. VALMISTUS JA LAADUNVALVONTA... 17

15.8.2005 KUORMITUSKÄYRÄSTÖT... 16 5. VALMISTUS JA LAADUNVALVONTA... 17 SUUNNITTELUOHJE 1 () SISÄLLYS 1. YLEISTÄ... 1.1 ESIJÄNNITETTY TERÄSBETONI-YHDISTELMÄRAKENNE... 1.1.1 LBL-pa... 1.1. LB-pa... 1. KÄYTTÖKOHTEET... 1. REUNA- JA KESKIPALKKITYYPIT.... LIITOSTAVAT... 7.1 LIITOS

Lisätiedot

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet Vestntäjärjestelmät PRS-xPxxx- ja -tehovahvstmet PRS-xPxxx- ja - tehovahvstmet www.boschsecrty.f 1, 2, 4, ta 8 äänlähtöä (valnta 100 / 70 / 50 V:n lähdöstä) Äänenkästtely ja jokasen vahvstnkanavan vve

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

KOKONAISRATKAISUT YHDESTÄ PAIKASTA

KOKONAISRATKAISUT YHDESTÄ PAIKASTA KOKONAISRATKAISUT YHDESTÄ PAIKASTA Monpuolset järjestelmät varastontn ja tuotantoon TUOTELUETTELO 2009 Kappale D Varasto- ja hyllystövältasot vältasot optmaalsta tlankäyttöä varten SSI SCHÄFER: n varasto-

Lisätiedot

Lukuteorian kertausta ja syvennystä

Lukuteorian kertausta ja syvennystä Lukuteorian kertausta ja syvennystä Tehtäviä jaoisuudesta 1. Okoot a, b, c ja d kokonaisukuja, joie a c ja (a c) (ab + cd). Osoita, että (a c) (ad + bc).. Okoon n pariton positiivinen kokonaisuku. Osoita,

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötlakema Johdanto reaktoknetkkaan Ma 5.11.2018 klo 10-12 PR126A Tavote Oppa reaktoknetkan laskennallsta mallnnusta Tutustua pyrometallurgsssa ja mussa korkealämpötlaprosessessa esntyven lmöden

Lisätiedot

1. välikoe

1. välikoe Jan Loto TA7 Ekonometan johdantok Nm: Opkeljanmeo: välkoe 77 Vataa alla olevn kyymykn ympäömällä okea vahtoehto Kakn tehtävää on neljä vahtoehtoa, jota yk on oken Okeata vataketa aa pteen ja vääätä vataketa

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta SUOMEN SÄÄDÖSKOKOELMA 2000 ulkastu Helsngssä 22 päänä joulukuuta 2000 N:o 1138 1143 SISÄLLYS N:o Su 1138 altoneuoston asetus teeydenhuollon okeustuakeskuksesta annetun asetuksen eäden säännösten kumoamsesta...

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA A KTONKKA. välkoe 9.3.2007. Saat vatata van neljään tehtävään!. ake pteden A ja B välnen potentaalero el jännte AB. =4Ω, 2 =2Ω, =0 V, 2 =4V, =2A, =3A A + 2 2 B + 2. Kytkn ljetaan hetkellä.

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot