Kokonaislukukapasiteetti. Max-Flow Min-Cut

Koko: px
Aloita esitys sivulta:

Download "Kokonaislukukapasiteetti. Max-Flow Min-Cut"

Transkriptio

1 Kokonaislukukapasiteetti Seuraus JosN on siirtoverkko, jonka kapasiteettifunktion α arvot ovat kokonaislukuja, niin silloinn:llä on olemassa sellainen maksimivirtausf, ettäf(e) on kokonaisluku aina kune E N. Todistus... 1 / 30 Max-Flow Min-Cut Lauseen todistuksen perusteella: Lause (Max-Flow Min-Cut) Maksimivirtauksenf nettovirtaus = Minimi-irrotuksen[S] kapasiteetti. Eli val(f) = α[s]. 2 / 30 1

2 Maksimivirtausalgoritmi 3 / 30 Algoritmi maksimivirtaukselle Lause (Ford Fulkerson 1955) Virtaus f on siirtoverkon N = (D, s, r, α) maksimivirtaus N ei sisällä virtauksenf lisäyspolkuja. Yo. tulos antaa algoritmin maksimivirtauksen löytämiseen: Etsimällä virtauksenf-lisäyspolkuja ja muokkaamalla virtausta näillä poluilla pystytään maksimivirtaus löytämään äärellisessä määrässä askelia. Edellyksenä on, että kaikki kapasiteetit olivat rationaalisia. Jos kapasiteeteissa esiintyi irrationaalisia lukuja alkuperäinen algoritmi voi tarvita äärettömän määrän askelia. Edmonds ja Karp paransivat algoritmia niin, että askelia tarvitaan äärellinen määrä ja askelien lukumäärä oli lineaarinen funktio lausekkeesta V N 2 E N. 4 / 30 Algoritmin kuvaus Pisteen tarkastaminen (scan): Kaikkien pisteen naapureiden tutkiminen. N = (D,s,r,α) siirtoverkko Maksimivirtausalgoritmi 1. Merkitään lähdes :llä 2. Olkoonf(e) = 0 kaikillae E N. 3. Etsitään merkitty, mutta tarkastamaton pisteu(alussau = s). a) Aina kunuv E N jav on merkitsemätön, jaf(uv) < α(uv) (eliuv ei ole kyllästetty) merkitään pistev merkinnälläu + (pisteestäupäästään pisteeseenve N :n viivalla). b) Aina kunwu E N jaw on merkitsemätön jaf(wu) > 0, merkitäänwmerkinnälläu (u:sta mennään pisteeseenw joukone N viivan käänteisviivalla) 5 / 30 2

3 Algoritmin kuvaus jatkoa 4. Jos nielur on merkitty, lopetetaan merkintä. Silloin on löytynytf-lisäyspolku. Siirrytään merkintöjen avulla takaisin nielustarlähteeseens. Käytetty suuntaamaton polkup : s r on f-lisäyspolku. Lasketaanǫ(P) polulle ja muutetaan virtausta seuraavasti: Aina kun viiva e etenevä P :ssä muutetaan f(e) f(e) + ǫ(p):ksi. Aina kun viiva e on perääntyvä P :ssä muutetaan f(e) f(e) ǫ(p):ksi. Kun kaikkip :n viivat on käyty läpi, poistetaan kaikki muut lisätyistä pisteiden merkinnöistä paitsi lähteen merkintä. Palataan kohtaan3. 5. Jos nieluar ei ole merkitty ja a) kaikki merkityt pisteet on tarkastettu, niin maksimivirtaus on löytynyt b) jos kaikkia merkittyjä pisteitä ei ole tarkastettu niin palataan kohtaan 3. 6 / 30 Esimerkki Esimerkki Etsitään allaolevan siirtoverkon maksimivirtaus. 7 / 30 3

4 Ratkaisu Ratk. Merkitäänssymbolilla ja merkitään virtaukset0:ksi. Tarkastetaans: Merkitään pisteeta,b,cs + :lla Tarkastetaana: Merkitäända + :lla (e ei saa merkintääa, koska viivassaea ei ole virtausta.) Tarkastetaanb: Merkitääneb + :lla Tarkastetaanc: Kaikki naapurit jo merkitty. Tarkastetaand: merkitään nielurd + :lla. 8 / 30 Ratkaisu jatkoa Nielu on saavutettu, siirrytään merkintöjen avulla nielusta lähteeseen. Löytyy polkup 1 : (sa)(ad)(dr) 9 / 30 4

5 Ratkaisu jatkoa 2 ǫ(p 1 ) = min{6 0,4 0,15 0} = 4 Muutetaan virtausta seuraavasti: f(sa) = f(ad) = f(dr) = 4, muut arvot pysyvät samoina. Poistetaan muut merkinnät paitsi ja etsitään uusi lisäyspolku: 10 / 30 Ratkaisu jatkoa 3 Tarkastetaans: Merkitään pisteeta,b,cs + :lla Tarkastetaana:ad on kyllästetty, joten sitä ei merkitäa + :lla Tarkastetaanb: Merkitäänd,eb + :lla Tarkastetaanc: Kaikki naapurit jo merkitty. Tarkastetaand: merkitään nielurd + :lla. 11 / 30 5

6 Ratkaisu 4 Löytyy polkup 2 : (sb)(bd)(dr) ǫ(p 2 ) = 5 Muutetaan virtausta seuraavasti: f(sb) = f(bd) = 5,f(dr) = 4+5 = 9, muut arvot pysyvät samoina. Poistetaan muut merkinnät paitsi ja etsitään uusi lisäyspolku: 12 / 30 Ratkaisu 5 Tarkastetaans: Merkitään pisteeta,b,cs + :lla Tarkastetaana: Tarkastetaanb: Merkitääneb + :lla Tarkastetaanc: Kaikki naapurit jo merkitty. Tarkastetaane: merkitään nielure + :lla. 13 / 30 6

7 Ratkaisu 6 Löytyy lisäyspolkup 3 : (sb)(be)(er) ǫ(p 3 ) = 4 Muutetaan virtausta seuraavasti: Lisätään viivojensb,be jaer virtausta4:llä yksiköllä ja pidetään muut arvot samoina. Poistetaan muut merkinnät paitsi ja etsitään uusi lisäyspolku: 14 / 30 Ratkaisu 7 Tarkastetaans: Merkitään pisteeta,c symbolillas +. Tarkastetaana: Tarkastetaanc: Merkitäänec + :lla Tarkastetaane: Merkitään nielure + :lla. 15 / 30 7

8 Ratkaisu 8 Löytyy lisäyspolkup 4 : (sc)(ce)(er) ǫ(p 3 ) = 2 Muutetaan virtausta seuraavasti: Lisätään viivojensc,ce jaer virtausta2:llä yksiköllä ja pidetään muut arvot samoina. Poistetaan muut merkinnät paitsi ja etsitään uusi lisäyspolku: 16 / 30 Ratkaisu 9 Tarkastetaans: Merkitään pisteeta,cs + :lla Tarkastetaana: Tarkastetaanb: Tarkastetaanc: Merkitäänec + :lla Tarkastetaane: Ei merkintöjä. Merkintöjä ei voida tehdä enempää. kaikki pisteet on skannattu. Maksimivirtaus on löytynyt. 17 / 30 8

9 Nettovirtaus Maksimivirtauksen nettovirtausval(f) = f(s) = = / 30 Maksimivirtauksen tarkistus Max-Flow Min-cut maksimivirtauksellef on löydettävä minimi-irrotuss, jolleα[s] = val(f) = 15. Lause irrotuksen viivat ovat kyllästettyjä. Minimi-irrotus on myös minimaalinen irrotus. 19 / 30 9

10 Tarkistus jatkoa Kyllästetyt viivat: sb, be,bd,ad, er 20 / 30 Tarkistus jatkoa 2 Minimi-irrotus: ad,bd,er 21 / 30 10

11 Tarkistus jatkoa 3 SilloinS = {s,b,a,e,c} jaα[s] = α(ad)+α(bd)+α(ed) = = / 30 Hall ja Max-flow Min-cut 23 / 30 Max-Flow Min-Cut Lause (Max-Flow Min-Cut) Maksimivirtauksenf nettovirtaus = Minimi-irrotuksen[S] kapasiteetti. Max-flow, Min-cut on voimakas tulos. Sen avulla voidaan mm. osoittaa Hall s Matching Theorem. (X, Y) kaksijakoinen graafi G toteuttaa naapuruusehdon (Hall s condition), jos N G (S) S aina kuns X. 24 / 30 11

12 Naapuruusehto ja M-sovitus Lause (Hall s Matching Theorem) OlkoonG(X,Y)-kaksijakoinen graafi. GraafillaGon joukonx sovittava sovitusm G toteuttaa naapuruusehdon. Todistus. OlkoonG = (V G,E G )(X,Y)-kaksijakoinen graafi X = k jax = {x 1,x 2...x k }. OlkoonN = (D,s,r,α) siirtoverkko, missäs,r / V G D = (V G {s,r},e D ), missä E D = {sx x X} {yr y Y} {xy x X,y Y,xy E G }. Olkoon lisäksiα(sx) = 1,α(yr) = 1 jaα(xy) = X +1aina kunx X jay Y. 25 / 30 Todistus jatkoa G.ssä on joukonx sovittava sovitusm. D sisältää suunnatut poluts x i y i r, missäx i y i M aina kuni = 1,2,...k. Sovituksen määritelmän perusteellay i y j, kuni j. Siirtoverkon maksimivirtauksen nettovirtaus onk. 26 / 30 12

13 Todistus jatkoa 2 Toisaalta: N:n maksimivirtauksenf nettovirtaus onk Jokaista pistettä x i vastaa pistey i Y, jollex i y i E G jay i y j, kuni j. M = {x i y i i = 1,2,...,k} on pistejoukonx sovittava sovitus. 27 / 30 Todistus jatkoa 3 On saatu G:ssä on joukonx sovittava sovitusm N:n maksimivirtauksenf nettovirtaus onk. Lause : N:n maksimivirtauksenf nettovirtaus onk. SiirtoverkonN minimi-irrotuksen kapasiteettiα[s] = k. Lauseen todistamiseksi riittää osoittaa: SiirtoverkonN minimi-irrotuksen kapasiteettiα[s] = k. N G (X ) X aina kun pistejoukkox X. 28 / 30 13

14 Todistus jatkoa 4 Oletus: SiirtoverkonN minimi-irrotuksen kapasiteettiα[s] = k. Väite: N G (X ) X aina kun pistejoukkox X Vastaoletus: N G (X ) < X / 30 Todistus jatkoa 5 Oletus: N G (X ) X aina kun pistejoukkox X Väite:Siirtoverkon N minimi-irrotuksen kapasiteetti α[s] = k. Koska niin α[s] k. α([{s}]) = e=sx,x X α(e) = X = k, Vastaoletus:α[S] < k jollakin irrotuksella[s] / 30 14

Graafin virittävä puu 1 / 20

Graafin virittävä puu 1 / 20 Graafin virittävä puu 1 / 20 Graafin virittävä puu PuuT on graafingvirittävä puu (spanning tree), jos se sisältää kaikkig:n pisteet. Virittäviä puita: 2 / 20 Yhdistämisongelma Yhdistämisongelma:(Connector

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

8.5. Järjestyssuhteet 1 / 19

8.5. Järjestyssuhteet 1 / 19 8.5. Järjestyssuhteet 1 / 19 Määritelmä Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä).

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

Todistus (2.2) Todistus (2.2) jatkoa. (2.2): Oletetaan, että0 n 1,1 n 1 / P i (F) aina kuni = 1,2,...,n. Olkoonf F painoltaan pienin joukonf alkio.

Todistus (2.2) Todistus (2.2) jatkoa. (2.2): Oletetaan, että0 n 1,1 n 1 / P i (F) aina kuni = 1,2,...,n. Olkoonf F painoltaan pienin joukonf alkio. Todistus (2.2) (2.2): Oletetaan, että0 n 1,1 n 1 / P i (F) aina kuni = 1,2,...,n. Olkoonf F painoltaan pienin joukonf alkio. Selvästi bittijono f sisältää ainakin yhden1:sen. Voidaan olettaa, että f 1

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta

Lisätiedot

Graateorian maksimivirtausalgoritmi

Graateorian maksimivirtausalgoritmi Graateorian maksimivirtausalgoritmi LuK-tutkielma Visa Vallivaara 800283 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 203 Sisältö Johdanto 2 Peruskäsitteitä 3 2 Graateoriaa 6 2. Suunnattu graa.........................

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

7.4. Eulerin graafit 1 / 22

7.4. Eulerin graafit 1 / 22 7.4. Eulerin graafit 1 / 22 Viivojen läpikäynti Graafin pisteiden/viivojen läpikäyminen esiintyy usein sovelluksissa: Etsintäalgoritmit, reititykset Läpikäyminen tehdään nopeimmin, kun yhtäkään viivaa/pistettä

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. 5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

GRAAFITEORIA. Keijo Ruohonen

GRAAFITEORIA. Keijo Ruohonen GRAAFITEORIA Keijo Ruohonen 2013 Sisältö 1 I MÄÄRITELMIÄ JA PERUSTULOKSIA 1 1.1 Määritelmiä 5 1.2 Kulku. Reitti. Polku. Piiri. Yhtenäisyys. Komponentti 10 1.3 Graafien operaatioita 14 1.4 Irrotus 17 1.5

Lisätiedot

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4 BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

TIETOTEKNIIKAN MATEMATIIKKA

TIETOTEKNIIKAN MATEMATIIKKA TIETOTEKNIIKAN MATEMATIIKKA Harjoitus 4 syksy 2016 Ratkaisut 1. Mitä ehtoja joukkojen M ja N tulee täyttää (kussakin kohdassa erikseen), jotta seuraavat väittämät olisivat tosia a) M = b) N \ M = c) M

Lisätiedot

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla?

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla? 7.7. Tasograafit Graafi voidaan piirtää mielivaltaisen monella tavalla. Graafin ominaisuudet voivat näkyä selkeästi jossain piirtämistavoissa, mutta ei toisessa. Eräs tärkeä graafiryhmä, pintagraafit,

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Samuuden todistaminen usein onnistuu ihan laskemalla

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

5.2 Eulerin kehät ja -polut

5.2 Eulerin kehät ja -polut 5.2 Eulerin kehät ja -polut Königsbergin sillat: onko mahdollista tehdä (kuivin jaloin) kävelyretki siten, että jokainen silta kuljetaan tasan kerran Eulerin polku on verkon polku, joka kulkee jokaisen

Lisätiedot

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!)

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!) Yhdistetty unktio TRIGONOMETRISET FUNKTIOT, MAA7 Määritelmä, yhdistetty unktio: Funktioiden ja g yhdistetty unktio g (luetaan g pallo ) määritellään yhtälöllä g g. Funktio g on ns. ulkounktio ja sisäunktio.

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA11 Koe.4.014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä. Tehtävä 6 : 1 Oletetaan ensin joukon X olevan sisältymisen suhteen minimaalinen solmut a ja b toisistaan erotteleva joukon V(G)\{a, b} osajoukko. Olkoon x joukon X alkio. Oletuksen nojalla joukko X\{x}

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Tehtävä 10 : 1. Tehtävä 10 : 2

Tehtävä 10 : 1. Tehtävä 10 : 2 Tehtävä 0 : Kuvassa Etelä-Amerikan valtioita vastaavat solmut on sijoitettu toisiinsa nähden niiden pääkaupunkien keskinäistä sijaintia vastaavalla tavalla. Kuvioon on joukon {0,, 2, 3 alkioilla merkitty

Lisätiedot

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Analyysi I (sivuaineopiskelijoille)

Analyysi I (sivuaineopiskelijoille) Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Funktioista. Esimerkki 1

Funktioista. Esimerkki 1 Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10 Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.40 Lineaarinen ohjelmointi 5..007 Luento 9 Verkkotehtävän erikoistapauksia (kirja 7., 7.5, 7.9, 7.0) Lineaarinen ohjelmointi - Syksy 007 / Luentorunko (/) Verkkotehtävän ominaisuuksia Kuljetustehtävä

Lisätiedot

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1.

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1. Harjoitus 1, 11.9.2015 1. Näytä, että joukossax on äärettömän monta alkiota jos ja vain jos on joukko X, 6= X, jokaonyhtämahtavakuinx. 2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Johdatus matemaattiseen päättelyyn (5 op)

Johdatus matemaattiseen päättelyyn (5 op) Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta: MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

3 Derivoituvan funktion ominaisuuksia

3 Derivoituvan funktion ominaisuuksia ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Primitiiviset juuret: teoriaa ja sovelluksia

Primitiiviset juuret: teoriaa ja sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,

Lisätiedot

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan

Lisätiedot

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot