Johdatus matemaattiseen päättelyyn

Koko: px
Aloita esitys sivulta:

Download "Johdatus matemaattiseen päättelyyn"

Transkriptio

1 Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015

2 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen joukko on joukko Z = {..., 3, 2, 1, 0, 1, 2, 3,...}. Merkitään lisäksi N = {0, 1, 2, 3,...}. Merkintä n N tarkoittaa, että n kuuluu joukkoon N, ts. n on joukon N alkio eli n on luonnollinen luku. Joukon Z alkioita kutsutaan kokonaisluvuiksi. Rationaalilukujen joukkoa merkitään symbolilla Q ja reaalilukujen joukkoa symbolilla R. Reaaliluku x on rationaaliluku, jos on olemassa sellaiset m Z ja n N, että x = m n. Irrationaaliluku on sellainen reaaliluku, joka ei ole rationaaliluku. Luonnollisten lukujen sekä kokonais-, rationaali- ja reaalilukujen laskutoimitukset oletetaan tunnetuiksi. 2 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P :tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yo. väitelause on totta, sanotaan, että P :stä seuraa Q tai että P on riittävä ehto Q:lle, ja merkitään P Q. Nuolta kutsutaan impikaationuoleksi. Merkintä P Q luetaan joko P :stä seuraa Q tai P implikoi Q:n. 2.1 Esimerkkejä (1) Jos ei sada (oletus), kävelen yliopistolle (väite). (1) Jos x 0 (oletus), niin x 0 (väite). (2) Jos n on parillinen luonnollinen luku (oletus), niin n 2 on parillinen luonnollinen luku (väite). (3) Olkoot n ja m parittomia luonnollisia lukuja (oletus). Tällöin mn on pariton luonnollinen luku (väite). (4) Kahden parillisen luonnollisen luvun tulo on parillinen. 2

3 Oletus: n ja m ovat parillisia luonnollisia lukuja. Väite: nm on parillinen. Väitelauseen todistus kertoo, miksi ja miten väite seuraa oletuksista. Tarkastellaan seuraavaksi, miten väitelauseita todistetaan. 2.2 Suora todistus Suorassa todistuksessa lähdetään liikkeelle oletuksesta ja edetään vaiheittain väitteeseen. Päättelyn jokainen välivaihe on pystyttävä perustelemaan ja käytettävät käsitteet on määriteltävä tarkasti. Perusteluissa käytetään oletusta, aiemmin todistettuja lauseita tai muita tunnettuja tosiasioita. Harjoitellaan aluksi todistamista parittomia ja parillisia luonnollisia lukuja käyttäen. 2.3 Määritelmä Luonnollinen luku n on parillinen, jos on olemassa sellainen k N, että n = 2k, ja pariton, jos on olemassa sellainen l N, että n = 2l Huomautus Jokainen luonnollinen luku on joko parillinen tai pariton, ts. ei ole olemassa luonnollista lukua, joka on parillinen ja pariton. 2.5 Esimerkkejä (1) Todista väite: jos n ja k ovat parittomia luonnollisia lukuja, niin n + k on parillinen. Oletus: n ja k ovat parittomia luonnollisia lukuja, ts. on olemassa sellaiset m N ja l N, että n = 2m + 1 ja k = 2l + 1. Väite: n + k on parillinen, ts. on olemassa sellainen p N, että n + k = 2p. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen p N, että n+k = 2p. Oletuksen perusteella n + k = (2m + 1) + (2l + 1) = 2(m + l + 1), joten n + k = 2p, kun valitaan p = m + l + 1 N. Siis n + k on parillinen. 3

4 (2) Todista väite: parillisen luonnollisen luvun n neliö n 2 on parillinen. Oletus: n on parillinen, ts. on olemassa sellainen k N, että n = 2k. Väite: n 2 on parillinen, ts. on olemassa sellainen l N, että n 2 = 2l. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen l N, että n 2 = 2l. Oletuksesta saadaan n 2 = (2k) 2 = 4k 2 = 2(2k 2 ), joten valitsemalla l = 2k 2 = (2k)k N nähdään, että n 2 on parillinen. Seuraava taulukko ei kelpaa todistukseksi, sillä kaikkia parillisia lukuja ja niiden neliöitä ei ole mahdollista taulukoida: n n Huomautus Suorassa todistuksessa lähdetään liikkeelle oletuksesta ja päädytään väitteeseen. Päättelyssä voidaan käyttää oletusta ja tunnettuja tuloksia. väitettä ei saa käyttää. 2.7 Epäsuora todistus Epäsuorassa todistuksessa muodostetaan aluksi antiteesi, ts. oletetaan, että väite ei pidä paikkaansa, ja päädytään ristiriitaan joko oletusten tai tunnettujen tosiasioiden kanssa. Ristiriidasta seuraa, että antiteesi ei ole totta. Näin ollen väitteen on oltava totta. 2.8 Esimerkkejä (1) Todista väite: jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. Antiteesi: n ei ole parillinen, ts. n on pariton. 4

5 Antiteesin perusteella löydetään sellainen k N, että n = 2k + 1. Nyt n 2 = (2k + 1) 2 = 4k 2 + 4k + 1 = 2(2k 2 + 2k) + 1, missä 2k 2 +2k N. Siis n 2 on pariton. Tämä on ristiriita, sillä oletuksen mukaan n 2 on parillinen. Näin ollen antiteesi on epätosi ja väite on totta. (2) Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. Väite: sekä n että m ovat parittomia. Todistus. Antiteesi: toinen luvuista on parillinen. Olkoon tämä parillinen luku n, ts. n = 2k jollakin k N. Nyt nm = 2km on parillinen, mikä on ristiriita, sillä oletuksen perusteella nm on pariton. Siis antiteesi on epätosi ja väite on totta. 2.9 Huomautuksia (1) Epäsuorassa päättelyssä antiteesin muodostaminen on tärkeää. Antiteesiä muodostettaessa on mietittävä huolellisesti, mitä tarkoittaa se, että väite ei ole totta. Antiteesin muodostamiseen palataan myöhemmin luvussa (2) Epäsuorassa todistuksessa ei ole selvää, mistä ja miten ristiriita löydetään. (3) Esimerkissä 2.5 (2) osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta esimerkissä 2.8 (1) osoitettiin, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta voidaan yhdistää ja kirjoittaa muodossa n on parillinen n 2 on parillinen. Nuolta kutsutaan ekvivalenssinuoleksi, ja merkintä luetaan joko n on parillinen, jos ja vain jos n 2 on parillinen tai n on parillinen, täsmälleen silloin, kun n 2 on parillinen. Merkintä P Q tarkoittaa siis (P Q) ja (Q P ). 5

6 2.10 Esimerkki Osoita, että luonnollinen luku n on parillinen, jos ja vain jos luonnollinen luku n + 1 on pariton. Todistus. Väite koostuu kahdesta väitelauseesta: n on parillinen (oletus) = n + 1 on pariton (väite) ja n + 1 on pariton (oletus) = n on parillinen (väite). Todistetaan nämä erikseen. Oletus: luku n on parillinen. Väite: luku n + 1 on pariton. Todistus. Koska oletuksen perusteella n on parillinen, niin n = 2k jollakin k N. Nyt n + 1 = 2k + 1, joten n + 1 on pariton. Siis väite on totta. Oletus: luku n + 1 on pariton. Väite: luku n on parillinen. Todistus. Oletuksen nojalla n + 1 = 2l + 1 jollakin l N, joten n = (n + 1) 1 = (2l + 1) 1 = 2l. Näin ollen n on parillinen eli väite on totta. Koska molemmat väitteet ja ovat tosia, on alkuperäinen väite totta Määritelmä Olkoot n, m N. Luku m on jaollinen luvulla n, jos on olemassa sellainen k N, että m = kn. Lukuja k ja n kutsutaan luvun m tekijöiksi. Luonnollinen luku m on alkuluku, jos m 2 ja jos m on jaollinen ainoastaan luvuilla 1 ja m Määritelmä Kokonaisluku n on parillinen, jos on olemassa sellainen k Z, että n = 2k, ja pariton, jos on olemassa sellainen l Z, että n = 2l +1. (Vertaa määritelmä 2.3.) 2.13 Huomautus Jokainen kokonaisluku on joko parillinen tai pariton, ts. ei ole olemassa kokonaislukua, joka on parillinen ja pariton. 6

7 2.14 Esimerkkejä (1) Luku 12 on jaollinen luvuilla 1, 2, 3, 4, 6 ja 12, sillä 12 = 1 12 = 2 6 = 3 4. Luvulla 5 ei ole muita tekijöitä kuin 1 ja 5, joten se on alkuluku. (2) Todista väite: luonnollinen luku n on jaollinen luvulla 6, jos ja vain jos se on jaollinen sekä luvuilla 2 että 3. Todistus. Väite koostuu kahdesta väitelauseesta. Todistetaan ne erikseen. Oletus: luku n on jaollinen luvulla 6. Väite: luku n on jaollinen luvuilla 2 ja 3. Todistus. Käytetään oletusta ja jaollisuuden määritelmää 2.11: Koska n = 6k jollakin k N, niin n = 2 (3k) = 2l, missä l = 3k N. Siis n on jaollinen 2:lla. Lisäksi n = 3 (2k) = 3m, missä m = 2k. Näin n on jaollinen 3:lla. Väite on siis totta. Oletus: luku n on jaollinen luvuilla 2 ja 3. Väite: luku n on jaollinen luvulla 6. Todistus. Oletuksen ja jaollisuuden määritelmän 2.11 perusteella n = 2l jollakin l N ja n = 3m jollakin m N. Osoitetaan aluksi, että m on parillinen. Käytetään epäsuoraa päättelyä. Antiteesi: m on pariton. Tällöin m = 2p + 1 jollakin p N, joten n = 3m = 3(2p + 1) = 2(3p + 1) + 1. Siis n on pariton. Tämä on ristiriita, sillä n = 2l eli n on parillinen. Koska päädyttiin ristiriitaan, on antiteesi väärä. Luvun m on siis oltava parillinen eli m = 2k jollakin k N. Tästä saadaan n = 3m = 3 (2k) = 6k, joten n on jaollinen 6:lla eli väite on totta. Koska sekä väite että väite ovat tosia, on alkuperäinen väite totta. (2) Osoita, että 2 on irrationaaliluku. (Pythagoras n. 550 eaa.) Todistus. Antiteesi: 2 ei ole irrationaaliluku, ts. 2 on rationaaliluku. Rationaalilukujen määritelmän 2.12 perusteella löydetään sellaiset m Z ja n N, että 2 = m n. 7

8 Voidaan olettaa, että osamäärää m ei voida supistaa. (Jos supistaminen on mahdollista, supistetaan niin monta kertaa kuin voidaan, ja valitaan saadut luvut n m:ksi ja n:ksi.) Nyt 2 = ( ( m ) 2 2) 2 m 2 = = n n, 2 joten m 2 = 2n 2. Näin ollen m 2 on parillinen ja esimerkin 2.8 (1) perusteella myös m on parillinen, ts. m = 2k jollakin k N. Koska 2n 2 = m 2 = (2k) 2 = 4k 2, niin n 2 = 2k 2. Siten n 2 on parillinen ja esimerkin 2.8 (1) nojalla myös n on parillinen, ts. n = 2l jollakin l N. Nyt saadaan m n = 2k 2l, joten osamäärässä m voidaan supistaa luvulla 2. Tämä on ristiriita, sillä aiemmin n todettiin, että tätä osamäärää ei voida supistaa. Siis antiteesi on väärä. Näin ollen 2 on irrationaaliluku. (3) Olkoon n Z pariton. Osoita sekä suoraa että epäsuoraa todistusta käyttäen, että 5n 3 on parillinen kokonaisluku. Oletus: n Z on pariton. Väite: 5n 3 Z on parillinen. Suora todistus. Koska n on pariton, löydetään sellainen k Z, että n = 2k + 1. Näin ollen 5n 3 = 5(2k + 1) 3 = 10k + 2 = 2(5k + 1), joten 5n 3 on parillinen. Siis väite on totta. Epäsuora todistus. Antiteesi: 5n 3 ei ole parillinen, ts. 5n 3 on pariton. Antiteesin perusteella 5n 3 = 2k + 1 jollakin k Z. Nyt n = 5n 4n = (5n 3) 4n + 3 = 2k + 1 4n + 3 = 2k 4n + 4 = 2(k 2n + 2). Näin ollen n on parillinen kokonaisluku. Tämä on ristiriita, koska oletuksen mukaan n on pariton. Väite on siis totta Antiteesin muodostaminen Antiteesi eli vastaväite on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. 8

9 Väite ja antiteesi yhdessä sisältävät kaikki mahdolliset tilanteet. Epäsuorassa todistuksessa antiteesi on lisäoletus, jota hyödynnetään ristiriitaan pyrittäessä. Väite on totta täsmälleen silloin, kun antiteesi ei ole totta, ts. väite on tosi antiteesi on epätosi Esimerkkejä Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. (3) Väite: sataa tai tuulee. Antiteesi: ei sada ja ei tuule. (4) Väite: kaikki syyspäivät ovat aurinkoisia ja tuulisia. Antiteesi: on olemassa syyspäivä, joka ei ole aurinkoinen tai ei ole tuulinen. (5) Väite: on olemassa syyspäivä, jolloin tuulee tai sataa. Antiteesi: kaikki syyspäivät ovat tuulettomia ja sateettomia Esimerkkejä Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > 1. (3) Väite: on olemassa sellainen k N, että x = 2k + 1. Antiteesi: ei ole olemassa sellaista lukua k N, että x = 2k +1, ts. kaikille luvuille k N pätee x 2k

10 (4) Väite: kaikille n N on olemassa sellainen m N, että nm + 1 N. Antiteesi: on olemassa sellainen n N, että kaikille m N pätee nm + 1 / N. (5) Väite: on olemassa sellainen n N, että kaikille m N pätee m n ja mn N. Antiteesi: kaikilla n N on olemassa sellainen m N, että n = m tai nm / N Esimerkki Todista suoraa ja epäsuoraa päättelyä käyttäen väitelause: jos x R ja x 2 3x + 2 < 0, niin x > 0. Oletus: x R ja x 2 3x + 2 < 0. Väite: x > 0. Suora todistus: Koska x 2 3x + 2 < 0, niin 3x > x Näin ollen Siis x > 0. x = 1 3 (3x) > 1 3 (x2 + 2) 1 3 (0 + 2) = 2 3 > 0. Epäsuora todistus: Antiteesi: x 0. Tällöin 3x 0, joten x 2 3x = 2 > 0. Tämä on ristiriita, sillä oletuksen mukaan x 2 3x + 2 < 0. Siis antiteesi ei ole totta, joten väite on totta Huomautuksia (1) Matematiikassa tai ei ole joko tai. Väite P on tosi tai Q on tosi voi tarkoittaa (i) P on totta, Q ei ole totta, (ii) P ei ole totta, Q on totta (iii) P on totta, Q on totta. tai (2) Matemaattista tekstiä voidaan tiivistää nk. kvanttoreiden avulla: kaikki (All) on olemassa (Exist). 10

11 Esimerkiksi: Väite on olemassa sellainen x R, että x 2 = 2 voidaan esittää muodossa x R : x 2 = 2, ja väite kaikille luonnollisille luvuille m ja n pätee, että m + n N voidaan esittää muodossa n, m N pätee: m + n N. (3) Antiteesiä muodostettaessa sanat ja, tai sekä kvanttorit ja käyttäytyvät näin: väite ja tai antiteesi tai ja 2.20 Kuinka osoitetaan, että väite ei ole totta? Väitelause P Q osoitetaan vääräksi keksimällä esimerkki, jossa oletus P pätee, mutta väite Q ei. Väitteen voi todistaa vääräksi keksimällä yhden esimerkin siitä, että väite ei ole totta. Sen sijaan yksi esimerkki ei riitä osoittamaan, että väite on totta Esimerkkejä Osoita, että seuraavat väitelauseet eivät ole tosia. (1) Jos m ja n ovat negatiivisia kokonaislukuja, niin m n on negatiivinen kokonaisluku. Ratkaisu. Väite ei ole totta, sillä 1 ja 2 ovat negatiivisia kokonaislukuja, mutta 1 ( 2) = 1 on positiivinen kokonaisluku. (2) Jos x on irrationaaliluku, niin x x on irrationaaliluku. Ratkaisu. Väite ei ole totta, sillä 2 on irrationaaliluku, mutta x x = 2 2 = 2 ei ole irrationaaliluku. Jatketaan todistamisen harjoittelemista Esimerkkejä (1) Olkoot n, m N. Oletetaan, että n + m on parillinen. Osoita, että n ja m ovat molemmat parillisia tai n ja m ovat molemmat parittomia. 11

12 Oletus: n, m N ja n + m on parillinen. Väite: n ja m ovat parillisia tai n ja m ovat parittomia. Todistus. Antiteesi: Toinen luvuista on parillinen ja toinen pariton. Oletetaan, että n on parillinen ja m on pariton. Tällöin löydetään sellaiset k N ja l N, että n = 2l ja m = 2k + 1. Näin ollen n + m = 2l + 2k + 1 = 2(l + k) + 1, joten n + m on pariton. Tämä on ristiriita, sillä oletuksen mukaan n + m on parillinen. Antiteesi ei siis ole totta, ja näin ollen väite on totta. (2) Osoita, että lukua 512 ei voida esittää yhden parittoman ja kahden parillisen luonnollisen luvun summana. Todistus. Antiteesi: Luku 512 voidaan esittää muodossa 512 = k + l + m, missä k N on pariton ja l, m N ovat parillisia. Koska k = 2n + 1 jollakin n N, l = 2p jollakin p N ja m = 2s jollakin s N, saadaan 512 = k + l + m = 2n p + 2s = 2(n + p + s) + 1, joten 512 on pariton. Tämä on ristiriita, sillä 512 = on parillinen. Antiteesi ei siis ole totta, joten väite on totta. (3) Olkoot n, m ja k luonnollisia lukuja. Onko väite jos m + k on jaollinen n:llä, niin m on jaollinen n:llä tai k on jaollinen n:llä totta? Ratkaisu. Väite ei ole totta, mikä nähdään valitsemalla m = 3, k = 5 ja n = 2. Luku m + k = = 8 on jaollinen 2:lla, sillä 8 = 4 2, mutta luvut 3 ja 5 eivät ole jaollisia 2:lla. (4) Olkoot n, m ja k luonnollisia lukuja. Onko väite jos m on jaollinen n:llä ja k on jaollinen n:llä, niin m + k on jaollinen n:llä totta? 12

13 Ratkaisu. Väite on totta. Perustellaan se: Koska m ja k ovat jaollisia n:llä, niin m = ln ja k = pn joillakin l, p N. Nyt m + k = ln + pn = (l + p)n, joten m + k on jaollinen n:llä. Siis väite on totta. (5) Osoita, että on olemassa sellaiset irrationaaliluvut x ja y, että x y on rationaaliluku. Todistus. Reaaliluku 2 2 on joko rationaaliluku tai irrationaaliluku. Jos 2 2 on rationaaliluku, niin väite on totta, sillä voidaan valita x = y = 2. Jos 2 2 on irrationaaliluku, niin luku ( 2 2 ) 2 = 2 2 = 2 on rationaaliluku. Tässä tapauksessa voidaan valita x = 2 2 ja y = 2. (6) Osoita, että on olemassa sellainen yksikäsitteinen reaaliluku x, että kaikilla reaaliluvuilla y. xy + x 4 = 4y Todistus. Todistetaan ensin, että reaaliluvun x olemassaolo, ja sen jälkeen sen yksikäsitteisyys. Valitaan x = 4. Tällöin olipa y mikä tahansa reaaliluku. xy + x 4 = 4y = 4y Todistetaan vielä yksikäsitteisyys. Antiteesi: oletetaan, että on olemassa sellainen reaaliluku x 4, että xy + x 4 = 4y kaikilla reaaliluvuilla y. Erityisesti, kun y = 0, saadaan x 4 = 0, joten x = 4, mikä on ristiriita. Näin ollen antiteesi ei ole totta, ja väite on todistettu. 13

14 2.23 Induktiotodistus Induktiota käyttäen voidaan perustella väitteitä, jotka ovat muotoa Tässä väite P (n) riippuu n:n arvosta. Todistuksessa on kaksi vaihetta: väite P (n) on totta kaikille n = 0, 1, 2,.... (i) Osoitetaan, että väite on totta, kun n = 0. (ii) Oletetaan, että väite on totta, kun n = k (tätä kutsutaan induktio-oletukseksi), ja osoitetaan, että se on totta, kun n = k + 1 (tätä kutsutaan induktioväitteeksi). Kohdista (i) ja (ii) seuraa, että väite on totta kaikilla n = 0, 1, 2,..., sillä kohdan (i) perusteella väite on totta, kun n = 0, joten kohdan (ii) perusteella väite on totta, kun n = 1. Edelleen kohdan (ii) perusteella väite totta, kun n = 2 jne. Induktion ei tarvitse välttämättä alkaa luvusta n = 0: induktion avulla voidaan todistaa myös muotoa oleva väite, kun n 0 N. väite P (n) on totta kaikille n = n 0, n 0 + 1, n 0 + 2, Esimerkki Osoita, että (2n 1) = n 2 kaikilla n = 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. (i) Tarkistetaan, että yhtäsuuruuus on voimassa, kun n = 1: Vasen puoli: 1 Oikea puoli: 1 2 = 1. Siis väite pätee kun n = 1. (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k + 1) 1) = (k + 1) 2. 14

15 Induktioväitteen todistus. Lähdetään liikkeelle induktioväitteen vasemmalta puolelta. Induktio-oletusta käyttäen saadaan =k 2 (induktio-oletus) {}}{ (2k 1) +(2(k + 1) 1) = k 2 + 2(k + 1) 1 = k 2 + 2k = k 2 + 2k + 1 = (k + 1) 2. Näin päädyttiin induktioväitteen oikealle puolelle. Siis induktioväite on tosi. Induktioperiaatteen perusteella väite on tosi kaikille n = 1, 2, Summamerkintä Olkoot a 1, a 2,..., a n R. Merkitään n a j = a 1 + a a n. j= Esimerkkejä (1) 3 2 i = i=1 (2) l a k = a+a a l k=1 (3) m m a2 k = a 2 k = a( m ) k=1 k=1 Huomaa, että a ei riipu summausindeksistä k, joten sen saa viedä -merkin eteen. (4) p p p (αx j +βjy j+1 ) = α x j +β jy j+1 = α(x+x x p )+β(y 2 +2y py p+1 ). j=1 j=1 j=1 15

16 (5) n (2j 1) = (2n 1) j=1 (6) Tarkastellaan geometrisen sarjan osasummia: Olkoon b sellainen reaaliluku, että b 0 ja b 1. Merkitään n S n = b j. j=0 Osoita, että S n = bn+1 1 b 1 kaikilla n = 0, 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. (i) Osoitetaan, että väite pätee kun n = 0: Vasen puoli: S 0 = 0 j=0 bj = 1 Oikea puoli: b1 1 b 1 = b 1 b 1 = 1 Siis väite on tosi kun n = 0. (ii) Induktio-oletus: Väite on tosi kun n = k, ts. S k = bk+1 1 b 1. Induktioväite: Väite on tosi, kun n = k + 1, ts. S k+1 = bk+2 1 b 1. Induktioväitteen todistus. Induktio-oletuksen perusteella k+1 S k+1 = b j = j=0 k b j + b k+1 j=0 induktio-oletus b k+1 1 = + b k+1 b 1 = bk+1 1 (b 1)bk+1 + b 1 b 1 = bk b k+2 b k+1 = bk+2 1 b 1 b 1. 16

17 Siis induktioväite on tosi. Induktioperiaatteen nojalla väite on tosi kaikilla n = 0, 1, 2,.... (7) Osoita, että 3 n > 2n kaikilla n = 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. (i) Osoitetaan, että väite on totta, kun n = 1: Vasen puoli: 3 1 = 3 Oikea puoli: 2 1 = 2 Koska 3 > 2, niin väite on totta, kun n = 1. (ii) Induktio-oletus: 3 k > 2k Induktioväite: 3 k+1 > 2(k + 1) Induktioväitteen todistus. Induktio-oletusta käyttäen saadaan 3 k+1 = 3 k 3 induktio-oletus > 2k 3 = 2k + 4k k 1 2k + 4 > 2k + 2 = 2(k + 1). Näin ollen induktioväite on totta, ja induktioperiaatteen nojalla väite pätee kaikilla n = 1, 2,.... (8) Osoita, että äärellisen monen rationaaliluvun q 1, q 2,..., q n summa q 1 + q q n on rationaaliluku. Todistus. Todistetaan väite induktiota käyttäen. (i) Osoitetaan, että väite on totta, kun n = 2, ts. kahden rationaaliluvun q 1 ja q 2 summa q 1 + q 2 on rationaaliluku. Olkoot q 1 = m 1 n 1 ja q 2 = m 2 n 2, missä m 1, m 2 Z ja n 1, n 2 N. Tällöin q 1 + q 2 = m 1 n 1 + m 2 n 2 = m 1n 2 + m 2 n 1 n 1 n 2 on rationaaliluku, sillä m 1 n 2 + m 2 n 1 Z ja n 1 n 2 N. (ii) Induktio-oletus: Kun k kappaletta rationaalilukuja lasketaan yhteen, saadaan rationaaliluku. Induktioväite: Kun k + 1 kappaletta rationaalilukuja lasketaan yhteen, saadaan rationaaliluku. Ts. jos q 1, q 2,..., q k+1 Q, niin q q k+1 Q. Induktioväitteen todistus. Olkoot q 1, q 2,..., q k+1 Q. Koska q q k + q k+1 = (q q k ) + q k+1, 17

18 missä q q k Q induktio-oletuksen nojalla ja q k+1 Q, niin kohdan (i) perusteella näiden kahden rationaaliluvun summa on rationaaliluku. Siis induktioväite on totta. Induktioperiaatteen nojalla äärellisen monen rationaaliluvun summa on rationaaliluku. 18

19 Lähteet Juutinen, Petri: Johdatus matematiikkaan ( peanju/) Roberts, Charles E.: Introduction to mathematical proofs: a transition, CRC Press, Kiitokset Kiitokset Tuula Ripatille luentomuistiinpanojeni puhtaaksi kirjoittamisesta. 19

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Vastaoletuksen muodostaminen

Vastaoletuksen muodostaminen Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset

Lisätiedot

Johdatus matemaattiseen päättelyyn (5 op)

Johdatus matemaattiseen päättelyyn (5 op) Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi

Lisätiedot

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,... Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2014 Tero Vedenjuoksu Sisältö 1 Johdanto 3 2 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Marko Leinonen Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2018 1 Merkintöjä ja määritelmiä Luonnollisten lukujen joukko N on joukko ja kokonaislukujen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille

Lisätiedot

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta: MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. 3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1 Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 14.8.2003 Sisältö 1 Todistamisen ja matemaattisen päättelyn alkeita 3 1.1 Maalaisjärjellä päätteleminen.................. 3 1.2 Todistamisen alkeita.......................

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA11 Koe.4.014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Johdatus yliopistomatematiikkaan. JYM, Syksy /197 Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 7. toukokuuta 04 Sisältö Joukko-oppia 4. Joukko-opin peruskäsitteitä ja merkintöjä........... 4 Todistamisen ja matemaattisen päättelyn alkeita 3. Alkupala..............................

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 15. syyskuuta 2015 Alkulause Much more important than specific mathematical results are the habits of mind used by the people who create those results. Cuoco, Goldenberg

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2 Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R): Diskreetti matematiikka, sks 2010 Harjoitus 2, ratkaisuista 1. Seuraavassa on kuvattu kolme virtapiiriä, joissa on paristo, sopiva lamppu L ja katkaisimia P, Q, R, joiden läpi virta kulkee (1) tai ei kulje

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)

Lisätiedot

Alkulukujen harmoninen sarja

Alkulukujen harmoninen sarja Alkulukujen harmoninen sarja LuK-tutkielma Markus Horneman Oiskelijanumero:2434548 Matemaattisten tieteiden laitos Oulun ylioisto Syksy 207 Sisältö Johdanto 2 Hyödyllisiä tuloksia ja määritelmiä 3. Alkuluvuista............................

Lisätiedot

JOHDATUS MATEMATIIKKAAN

JOHDATUS MATEMATIIKKAAN JOHDATUS MATEMATIIKKAAN Toitteko minulle ihmisen, joka ei osaa laskea sormiaan? Kuolleiden kirja JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Alkusanat Tämä tiivistelmä on allekirjoittaneen

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Matemaattisten työvälineiden täydentäviä muistiinpanoja

Matemaattisten työvälineiden täydentäviä muistiinpanoja Matemaattisten työvälineiden täydentäviä muistiinpanoja Antti-Juhani Kaijanaho 7 maaliskuuta 0 Deduktiivinen ja induktiivinen päättely Deduktiivisessa päättelyssä johtopäätös seuraa aukottomasti premisseistä

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

Johdatus yliopistomatematiikkaan, 1. viikko (2 op)

Johdatus yliopistomatematiikkaan, 1. viikko (2 op) Johdatus yliopistomatematiikkaan, 1. viikko (2 op) Jukka Kemppainen Mathematics Division Mitä matematiikka on? Karkeasti ottaen voidaan sanoa, että matematiikka on tietyistä peruskäsitteistä ja perustotuuksista

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

LOGIIKKA johdantoa

LOGIIKKA johdantoa LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi LUKUTEORIA JA TODISTAMINEN, MAA11 Esimerkki a) Lauseen Kaikki johtajat ovat miehiä negaatio ei

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Ohjaus 1 / Ratkaisuehdotuksia (AK) alkavalle viikolle

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Ohjaus 1 / Ratkaisuehdotuksia (AK) alkavalle viikolle MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Ohjaus 1 / Ratkaisuehdotuksia (AK) 14.9.009 alkavalle viikolle Näissä ohjauksissa opetellaan laskusääntöjen ja epäyhtälöiden huolellista käyttöä. Ratkaisuissa

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot