TIEA341 Funktio-ohjelmointi 1, kevät 2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "TIEA341 Funktio-ohjelmointi 1, kevät 2008"

Transkriptio

1 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008

2 Samuuden todistaminen usein onnistuu ihan laskemalla (kuten kurssin alussa tehtiin) ei kuitenkaan aina esim. miten todistaa, että kaikille äärellisille listoille xs pätee foldr (:) [] xs = xs?

3 Rakenneinduktio listojen tapauksessa Tarkasteltavana väite P, joka on parametrisoitu listan suhteen: 1. Jos P([]) on tosi, ja jos P(x : xs) on tosi kaikilla x aina kun P(xs) on tosi, niin P(xs) on tosi kaikilla äärellisillä listoilla xs. Todistus tällä tekniikalla on todistus listan xs rakenteen suhteen. Askel 1 on perustapaus. Askel 2 on induktioaskel, ja siinä P(xs) on induktio-oletus.

4 Väite: foldr (:) [] xs = xs kaikilla äärellisillä xs Muista: f o l d r f z [ ] = z (D1) f o l d r f z ( x : x s ) = f x ( f o l d r f z x s ) (D2) Todistus induktiolla xs:n rakenteen suhteen: Perustapaus Induktiotapaus foldr (:) [] [] = [] (D1) foldr (:) [] (x : xs) = (:) x (foldr (:) [] xs) (D2) = (:) x xs induktio-oletus = x : xs syntaksi

5 Väite: length (xs ++ ys) = length xs + length ys kaikilla äärellisillä xs ja ys l e n g t h [ ] = 0 ( L1 ) l e n g t h (_: l ) = 1 + l e n g t h l ( L2 ) [ ] ++ y s = y s ( C1 ) ( x : x s ) ++ y s = x : ( x s ++ y s ) ( C2 ) Todistus induktiolla xs:n rakenteen suhteen, kun ys on mielivaltainen äärellinen lista: Perustapaus Induktioaskel... length ([] ++ ys) = length ys (C1) = 0 + length ys aritm. = length [] + length ys (L1)

6 Väite: length (xs ++ ys) = length xs + length ys kaikilla äärellisillä xs ja ys l e n g t h [ ] = 0 ( L1 ) l e n g t h (_: l ) = 1 + l e n g t h l ( L2 ) [ ] ++ y s = y s ( C1 ) ( x : x s ) ++ y s = x : ( x s ++ y s ) ( C2 ) Todistus induktiolla xs:n rakenteen suhteen, kun ys on mielivaltainen äärellinen lista: Perustapaus... Induktioaskel length ((x : xs) ++ ys) = length (x : (xs ++ ys)) (C2) = 1 + length (xs ++ ys) (L2) = 1 + (length xs + length ys) induktio-oletus = (1 + length xs) + length ys aritm. = length (x : xs) + length ys (L2)

7 Väite: reverse xs = foldl (flip (:)) [] xs kaikilla äärellisillä listoilla xs r e v e r s e [ ] = [ ] ( R1 ) r e v e r s e ( x : x s ) = r e v e r s e x s ++ [ x ] ( R2 ) f o l d l f z [ ] = z ( F1 ) f o l d l f z ( x : x s ) = f o l d l f ( f z x ) x s ( F2 ) f l i p f x y = f y x ( FL ) [ ] ++ y s = y s ( C1 ) ( x : x s ) ++ y s = x : ( x s ++ y s ) ( C2 ) Todistus induktiolla xs:n rakenteen suhteen: Perustapaus: Induktioaskel:... reverse [] = [] (R1) = foldl (flip (:)) [] [] (F 1)

8 Väite: reverse xs = foldl (flip (:)) [] xs kaikilla äärellisillä listoilla xs r e v e r s e [ ] = [ ] ( R1 ) r e v e r s e ( x : x s ) = r e v e r s e x s ++ [ x ] ( R2 ) f o l d l f z [ ] = z ( F1 ) f o l d l f z ( x : x s ) = f o l d l f ( f z x ) x s ( F2 ) f l i p f x y = f y x ( FL ) [ ] ++ y s = y s ( C1 ) ( x : x s ) ++ y s = x : ( x s ++ y s ) ( C2 ) Todistus induktiolla xs:n rakenteen suhteen: Perustapaus:... Induktioaskel:... tarvitaan lemma reverse (x : xs) = reversexs ++[x] (R2) = foldl (flip (:)) [] xs ++[x] induktio-oletus = foldl (flip (:)) [] (x : xs)??? foldl (flip (:)) [] xs ++[x] = foldl (flip (:)) [] (x : xs)

9 Lemma: foldl (flip (:)) [] xs ++[x] = foldl (flip (:)) [] (x : xs) f o l d l f z [ ] = z ( F1 ) f o l d l f z ( x : x s ) = f o l d l f ( f z x ) x s ( F2 ) f l i p f x y = f y x ( FL ) [ ] ++ y s = y s ( C1 ) ( x : x s ) ++ y s = x : ( x s ++ y s ) ( C2 ) Todistus laskemalla: foldl (flip (:)) [] xs ++[x] = foldl (flip (:)) ([] ++[x]) xs??? = foldl (flip (:)) [x] xs (C1) = foldl (flip (:)) (flip (:) [] x) xs (FL) = foldl (flip (:)) [] (x : xs) (F 2) Ensimmäisessä askeleessa tarvitaan uutta lemmaa: foldl (flip (:)) ys xs ++[y] = foldl (flip (:)) (ys ++[y]) xs kaikilla äärellisillä listoilla xs ja ys sekä kaikilla y.

10 Lemma: foldl (flip (:)) ys xs ++[y] = foldl (flip (:)) (ys ++[y]) xs f o l d l f z [ ] = z ( F1 ) f o l d l f z ( x : x s ) = f o l d l f ( f z x ) x s ( F2 ) f l i p f x y = f y x ( FL ) [ ] ++ y s = y s ( C1 ) ( x : x s ) ++ y s = x : ( x s ++ y s ) ( C2 ) Induktio xs:n rakenteen suhteen: Perustapaus: Induktioaskel:... foldl (flip (:)) ys [] ++[y] = ys ++[y] (F 1) = foldl (flip (:) (ys ++[y]) [] (F 1)

11 Lemma: foldl (flip (:)) ys xs ++[y] = foldl (flip (:)) (ys ++[y]) xs f o l d l f z [ ] = z ( F1 ) f o l d l f z ( x : x s ) = f o l d l f ( f z x ) x s ( F2 ) f l i p f x y = f y x ( FL ) [ ] ++ y s = y s ( C1 ) ( x : x s ) ++ y s = x : ( x s ++ y s ) ( C2 ) Induktio xs:n rakenteen suhteen: Perustapaus:... Induktioaskel: foldl (flip (:)) ys (x : xs) ++[y] = foldl (flip (:)) (flip (:) ys x) xs ++[y] (F 2) = foldl (flip (:)) (x : ys) xs ++[y] (FL) = foldl (flip (:)) ((x : ys) ++[y]) xs induktio-oletus = foldl (flip (:)) (x : (ys ++[y])) xs (C2) = foldl (flip (:)) (flip (:) (ys ++[y]) x) xs (FL) = foldl (flip (:)) (ys ++[y]) (x : xs) (F 2)

12 map n ominaisuuksia Seuraavat pätevät kaikilla funktioilla f ja g sekä kaikilla äärellisillä listoilla xs ja ys, kunhan tyypit menevät oikein: map (\x x) = \x x map (f. g) = map f. map g map f. tail = tail. map f map f. reverse = reverse. map f map f. concat = concat. map f map f (xs ++ ys) = map f xs ++ map f ys f. head = head. map f jos f on strikti 1 1 Määritellään myöhemmin.

13 foldien ominaisuuksia Seuraavat pätevät kaikilla operaattoreilla ja ja kaikilla e, kunhan tyypit menevät oikein: 1. Jos (x y) z = x (y z) ja e x = x ja x e = x pätevät kaikilla x, y ja z, niin kaikilla äärellisillä listoilla xs pätee foldr ( ) e xs = foldl ( ) e xs 2. Jos (x y) z = x (y z) ja x e = e x pätevät kaikilla x, y ja z, niin kaikilla äärellisillä listoilla xs pätee foldr ( ) e xs = foldl ( ) e xs 3. Kaikilla äärellisillä listoilla xs pätee foldr ( ) e xs = foldl (flip ( )) e (reverse xs)

14 Muita ominaisuuksia Kaikilla äärellisillä xs ja ys sekä kaikilla ei-negatiivisilla n ja m pätee: (xs ++ ys) ++ zs = xs ++(ys ++ zs) xs ++[] = [] take n xs ++ drop n xs = xs take m. take n = take (min m n) drop m. drop n = drop (m + n) take m. drop n = drop n. take (m + n) drop m. take n = take (n m). drop m reverse (reverse xs) = xs head (reverse xs) = last xs last (reverse xs) = head xs jos n m

15 Striktiys Otetaan käyttöön merkintätapa: jos lausekken laskenta ei koskaan pääty tai se päättyy virheeseen, lausekkeen arvoksi merkitään (pohja). Vastaavasti :ia voidaan käyttää merkitsemään lauseketta, jonka laskenta ei pääty tai jonka laskenta päättyy virheeseen. Määritellään, että funktio f on strikti, jos f = pätee ja nonstrikti, jos f pätee.

16 Esimerkkejä (+1) on strikti funktio. (+) on strikti funktio molempien parametriensa suhteen. id on nonstrikti funktio.

17 Striktiys Haskellissa Haskell-funktiot ovat aina lähtökohtaisesti nonstriktejä. Haskell-funktio on strikti jonkin parametrinsa suhteen, jos: 1. kyseistä parametria sovitetaan koettelevaan (engl. refutable) hahmoon, tai 2. kyseinen parametri annetaan jollekin striktille funktiolle argumenttina. Kaikki muut hahmot ovat koettelevia paitsi muuttujat, jokerit (_) ja ~-hahmot.

18 Esimerkki True && x = x False && _ = False (&&) on ensimmäisen parametrinsa suhteen strikti, koska ko. parametria sovitetaan koettelevaan hahmoon True. (&&) on toisen parametrinsa suhteen nonstrikti, koska sitä ei soviteta koettelevaan hahmoon eikä sitä myöskään anneta millekään striktille funktiolle argumentiksi.

19 Ekstensioperiaate Kaksi funktiota f ja g ovat samat, jos f x = g x pätee kaikilla x.

20 Väite: f. head = head. map f jos f on strikti head ( x :_) = x (HE) f. g = \ x > f ( g x ) (CO) map f [ ] = [ ] (M1) map f ( x : x s ) = f x : map f x s (M2) Ekstensioperiaatteen perusteella induktio parametrilistan rakenteen suhteen: Perustapaus: (f. head) [] Induktioaskel:... = (\x f (head x)) [] (CO) = f (head []) funktion soveltaminen = f (HE) ja epäonninen sovitus = oletus: f on strikti = head [] (HE) ja epäonninen sovitus = head (map f []) (M1) = (\x head (map f x)) [] funktion abstrahoiminen = (head. map f ) [] (CO)

21 Väite: f. head = head. map f jos f on strikti head ( x :_) = x (HE) f. g = \ x > f ( g x ) (CO) map f [ ] = [ ] (M1) map f ( x : x s ) = f x : map f x s (M2) Ekstensioperiaatteen perusteella induktio parametrilistan rakenteen suhteen: Perustapaus:... Induktioaskel: (f. head) (x : xs) = (\y f (head y)) (x : xs) (CO) = f (head (x : xs)) funktion soveltaminen = f x (HE) = head (f x : map f xs) (HE) = head (map f (x : xs)) (M2) = (\y head (map f y)) (x : xs) funktion abstrahoiminen = (head. map f ) (x : xs) (CO) Entä äärettömät parametrilistat?

22 Rakenneinduktio äärettömillä listoilla Tarkasteltavana yhtälö E 1 (xs) = E 2 (xs), joka on parametrisoitu listan xs suhteen: 1. Jos E 1 ( ) = E 2 ( ) on tosi, ja jos E 1 (x : xs) = E 2 (x : xs) on tosi kaikilla x aina kun E 1 (xs) = E 2 (xs) on tosi, niin E 1 (xs) = E 2 (xs) on tosi kaikilla äärettömillä listoilla xs. Todistus tällä tekniikalla on todistus äärettömän listan xs rakenteen suhteen. Askel 1 on pohjatapaus. Askel 2 on induktioaskel, ja siinä E 1 (xs) = E 2 on induktio-oletus. Jos lisäksi todistetaan perustapaus E 1 ([]) = E 2 ([]), niin yhtälö on tosi kaikilla listoilla (niin äärellisillä kuin äärettömillä).

23 Väite: f. head = head. map f jos f on strikti head ( x :_) = x (HE) f. g = \ x > f ( g x ) (CO) map f [ ] = [ ] (M1) map f ( x : x s ) = f x : map f x s (M2) Ekstensioperiaatteen perusteella induktio parametrilistan rakenteen suhteen: Pohjatapaus: (f. head) = (\x f (head x)) (CO) = f (head ) funktion soveltaminen = f (HE), koetteleva hahmonsovitus = Oletus: f on strikti = head (HE), koetteleva hahmonsovitus = head (map f ) (M1), koetteleva hahmonsovitus = (\x head (map f x)) funktion abstrahoiminen = (head. map f ) (CO) Perustapaus:... Induktioaskel:...

24 Rakenneinduktio muilla Haskellin rekursiivisilla tyypeillä käydään läpi kaikki tyypin koostimet yksi kerrallaan rekursiivisten koostimien kohdalla saadaan käyttää induktio-oletusta jos halutaan, voidaan käydä läpi pohjatapauskin, jolloin todistus toimii äärettömilläkin

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan.

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan. 3.1. LISTAT 35 destaan pisteittäisesti: init :: [α] [α] init (x : []) = [] init (x : xs) = x : init xs Varuskirjastoon kuuluu myös funktiot take ja drop, jotka ottavat tai tiputtavat pois, funktiosta riippuen,

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 4 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 17. tammikuuta 2008 Modulin viimeistelyä module Shape ( Shape ( Rectangle, E l l i p

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 5 Ympärysmitta. Puut. Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 CASE: YMPÄRYSMITTA Lasketaan kuvioiden ympärysmittoja

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA34 Funktio-ohjelmointi, kevät 2008 Luento 3 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 2. tammikuuta 2008 Ydin-Haskell: Syntaksi Lausekkeita (e) ovat: nimettömät funktiot: \x

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 14: Monadit Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Tyyppien tyypit eli luonteet engl. kind tyyppinimet, kuten

Lisätiedot

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos Geneeriset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 6. maaliskuuta 2007 Kysymys Mitä yhteistä on seuraavilla funktioilla?

Lisätiedot

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 9 Kombinaattoreista Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Currying Haskell-funktio ottaa aina vain yhden

Lisätiedot

DFA:n käyttäytyminen ja säännölliset kielet

DFA:n käyttäytyminen ja säännölliset kielet säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen

Lisätiedot

Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005

Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005 Laiska laskenta, korekursio ja äärettömyys TIEA341 Funktio ohjelmointi Syksy 2005 Muistatko graafinsievennyksen? DAG esitys ja graafinsievennys DAG esitys Lausekkeen rakennepuu, jossa yhteiset alilausekkeet

Lisätiedot

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset 815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

Rekursiiviset tyypit

Rekursiiviset tyypit Rekursiiviset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 20. helmikuuta 2007 Hiloista Kiintopisteet (Ko)rekursio Rekursiiviset

Lisätiedot

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tyyppejä ja vähän muutakin TIEA341 Funktio ohjelmointi 1 Syksy 2005 Viime luennolla... Haskellin alkeita pääasiassa Hello World!... ja muita tutunoloisia ohjelmia Haskellilla Haskellin voima on kuitenkin

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 11 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Listakomprehensio Uusi tapa luoda (ja muokata) listoja: [ lauseke

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Lisää laskentoa. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Lisää laskentoa. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Lisää laskentoa TIEA341 Funktio ohjelmointi 1 Syksy 2005 Kertausta: Laajennettu aritmetiikka Lasketaan rationaaliluvuilla vakiot yhteen, vähennys, kerto ja jakolasku Laajennetaan sitä määrittelyillä: vakio

Lisätiedot

Yksinkertaiset tyypit

Yksinkertaiset tyypit Yksinkertaiset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 13. helmikuuta 2007 Tyypitön puhdas λ-laskento E ::= I E 1 E 2

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

Ydin-Haskell Tiivismoniste

Ydin-Haskell Tiivismoniste Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 2: SICP kohdat 22.2.3 Riku Saikkonen 2. 11. 2010 Sisältö 1 Linkitetyt listat 2 Listaoperaatioita 3 Listarakenteet 4 Gambit-C:n Scheme-debuggeri Linkitetyt

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Abstraktit tietotyypit TIEA341 Funktio ohjelmointi 1 Syksy 2005 Data abstraktio Abstraktio on ohjelmoinnin tärkein väline Data abstraktio abstrahoi dataa Abstrakti tietotyyppi Koostuu kolmesta asiasta:

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 6: Funktionaalista ohjelmointia: todistamisesta, virrat ja I/O, hahmonsovitus (mm. SICP 3.5) Riku Saikkonen 8. 11. 2011 Sisältö 1 Vähän funktionaalisten

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013 TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen

Lisätiedot

Matemaattisten työvälineiden täydentäviä muistiinpanoja

Matemaattisten työvälineiden täydentäviä muistiinpanoja Matemaattisten työvälineiden täydentäviä muistiinpanoja Antti-Juhani Kaijanaho 7 maaliskuuta 0 Deduktiivinen ja induktiivinen päättely Deduktiivisessa päättelyssä johtopäätös seuraa aukottomasti premisseistä

Lisätiedot

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla 2.5. YDIN-HASKELL 19 tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla kirjaimilla. Jos Γ ja ovat tyyppilausekkeita, niin Γ on tyyppilauseke. Nuoli kirjoitetaan koneella

Lisätiedot

Taas laskin. TIES341 Funktio ohjelmointi 2 Kevät 2006

Taas laskin. TIES341 Funktio ohjelmointi 2 Kevät 2006 Taas laskin TIES341 Funktio ohjelmointi 2 Kevät 2006 Rakennepuutyyppi data Term = C Rational T F V String Term :+: Term Term : : Term Term :*: Term Term :/: Term Term :==: Term Term :/=: Term Term :

Lisätiedot

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005 Demo 7 (14.12.2005) Antti-Juhani Kaijanaho 9. joulukuuta 2005 Liitteenä muutama esimerkki Ydin-Haskell-laskuista. Seuraavassa on enemmän kuin 12 nimellistä tehtävää; ylimääräiset ovat bonustehtäviä, joilla

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012 TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1 Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015 TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys Harjoitustehtävät loppukurssilla luentojen 14 18 harjoitustehtävistä on tehtävä yksi

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 4: SICP kohta 3.3.5 ja funktionaalista ohjelmointia Riku Saikkonen 15. 11. 2010 Sisältö 1 Ensimmäisen kierroksen tehtävistä 2 SICP 3.3.5: rajoitteiden

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 6: Rajoite-esimerkki, funktionaalista ohjelmointia (mm. SICP 3.3.5, 3.5) Riku Saikkonen 8. 11. 2012 Sisältö 1 SICP 3.3.5 esimerkki: rajoitteiden vyörytysjärjestelmä

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

14.1 Rekursio tyypitetyssä lambda-kielessä

14.1 Rekursio tyypitetyssä lambda-kielessä Luku 14 Rekursiiviset tyypit Edellisessä luvussa esitetyt tietue- ja varianttityypit eivät yksinään riitä kovin mielenkiintoisten tietorakenteiden toteuttamiseen. Useimmissa ohjelmissa tarvitaan erilaisia

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 7: Funktionaalista ohjelmointia (mm. SICP 3.5) Riku Saikkonen 13. 11. 2012 Sisältö 1 Laiskaa laskentaa: delay ja force 2 Funktionaalinen I/O 3 Funktionaalista

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

SAT-ongelman rajoitetut muodot

SAT-ongelman rajoitetut muodot SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä

Lisätiedot

Jatkeet. TIES341 Funktio ohjelmointi 2 Kevät 2006

Jatkeet. TIES341 Funktio ohjelmointi 2 Kevät 2006 Jatkeet TIES341 Funktio ohjelmointi 2 Kevät 2006 Havainto: häntäkutsu (1) Funktiokutsun yleinen toimintaperiaate: (koskee vain täysiä kutsuja, ts. jotka eivät palauta funktiota) kutsuja kirjaa pinoon paluuosoitteen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset Luku 4 Tietorakenteet funktio-ohjelmoinnissa Koska funktio-ohjelmoinnissa ei käytetä tuhoavaa päivitystä (sijoituslausetta ja sen johdannaisia), eivät läheskään kaikki valtavirtaohjelmoinnista tutut tietorakenteet

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 10. tammikuuta 2008 Arvot... ovat laskutoimituksen lopputuloksia... ovat lausekkeita, joihin

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Alityypitys. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos

Alityypitys. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos Alityypitys TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 5. maaliskuuta 2007 Muistatko tietueet? {I 1 = E 1,..., I n = E n } : {I

Lisätiedot

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa 2.6. TIETOKONE LASKIMENA 23 Edellä esitetty Ydin-Haskell on hyvin lähellä sitä kieltä, jota GHCi (Glasgow Haskell Compiler, Interactive) sekä muut Haskell-järjestelmät suostuvat ymmärtämään. Esimerkiksi:

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

TIES542 kevät 2009 Rekursiiviset tyypit

TIES542 kevät 2009 Rekursiiviset tyypit TIES542 kevät 2009 Rekursiiviset tyypit Antti-Juhani Kaijanaho 17. helmikuuta 2009 Edellisessä monisteessa esitetyt tietue- ja varianttityypit eivät yksinään riitä kovin mielenkiintoisten tietorakenteiden

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016 ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

Tämä tarina on Fibonaccin lukujen ongelman alkuperäinen muotoilu.

Tämä tarina on Fibonaccin lukujen ongelman alkuperäinen muotoilu. Rekursiosta ja iteraatiosta Oletetaan että meillä on aluksi yksi vastasyntynyt kanipari, joista toinen on uros ja toinen naaras. Kanit saavuttavat sukukypsyyden yhden kuukauden ikäisinä. Kaninaaraan raskaus

Lisätiedot

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen

Lisätiedot

jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien

jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 29.9.2016 klo 8:41 (lähes kaikki kommentoitu) passed

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto Tehtävä 3 : 1 Olkoon G mielivaltainen epätyhjä verkko. Erityisesti siltä ei vaadita äärellisyyttä. Polut ovat verkon G koosta riippumatta määritelmän mukaan aina äärellisiä, joten kahden solmun välisen

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 3: Funktionaalinen listankäsittely ja listankäsittelyoperaatiot (mm. SICP 22.2.3) Riku Saikkonen 31. 10. 2011 Sisältö 1 Linkitetyt listat 2 Listarakenteet

Lisätiedot

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 Toisinaan voi olla syytä kirjoittaa α- tai β-kirjain yhtäsuuruusmerkin yläpuolelle kertomaan, mitä muunnosta käytetään. Esimerkki 4 1. (λx.x)y β = y 2.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Neljännen viikon luennot Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuun 2.1. Esko Turunen esko.turunen@tut.fi Funktion y = f (x) on intuitiivisesti

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Bootstrap / HTDP2 / Realm of Racket. Vertailu

Bootstrap / HTDP2 / Realm of Racket. Vertailu Bootstrap / HTDP2 / Realm of Racket Vertailu Bootstrap http://www.bootstrapworld.org/ Tarkoitettu yläkoululaisille (12-15v) Ohjelmointi on integroitu matematiikan opetukseen Materiaalina tuntisuunnitelmat

Lisätiedot

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. 3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Johdatus yliopistomatematiikkaan. JYM, Syksy /197 Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot