(2n 1) = n 2
|
|
- Paavo Mikkonen
- 1 vuotta sitten
- Katselukertoja:
Transkriptio
1 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa on kaksi vaihetta: (i) Osoitetaan, että väite on totta, kun n =0. (ii) Oletetaan, että väite on totta, kun n = k (tätä kutsutaan induktio-oletukseksi), ja osoitetaan, että se on totta, kun n = k +1 (tätä kutsutaan induktioväitteeksi). Kohdista (i) ja (ii) seuraa, että väite on totta kaikilla n =0, 1, 2,...,silläkohdan (i) perusteella väite on totta, kun n =0,jotenkohdan(ii)perusteellaväiteon totta, kun n =1. Edelleen kohdan (ii) perusteella väite totta, kun n =2jne. Induktion ei tarvitse välttämättä alkaa luvusta n =0:induktionavullavoidaan todistaa myös muotoa oleva väite, kun n 0 2 N. väite P (n) on totta kaikille n = n 0,n 0 +1,n 0 +2,... Esimerkki Osoita, että kaikilla n =1, 2, (2n 1) = n 2 Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Tarkistetaan, että yhtäsuuruuus on voimassa, kun n =1: Vasen puoli: 1 Oikea puoli: 1 2 =1. Siis väite pätee kun n =1. 17
2 (ii) Oletetaan, että väite pätee, kun n = k, jaosoitetaan,ettäväitepätee,kun n = k +1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k +1) 1) = (k +1) 2. Induktioväitteen todistus. Lähdetäänliikkeelleinduktioväitteenvasemmaltapuolelta. Induktio-oletusta käyttäen saadaan =k 2 (induktio-oletus) z } { (2k 1) +(2(k +1) 1) = k 2 +2(k +1) 1=k 2 +2k +2 1=k 2 +2k +1 =(k +1) 2. Näin päädyttiin induktioväitteen oikealle puolelle. Siis induktioväite on tosi. Induktioperiaatteen perusteella väite on tosi kaikille n =1, 2,... Esimerkki Osoitetaan, että kaikilla ihmisillä on samanväriset silmät (luennolla). Tämä on esimerkkinä miksi kaikki induktioperiaatteen askeleet on syytä tarkastella erityisen tarkasti. 3.6 Summamerkintä Olkoot a 1, a 2,..., a n 2 R. Merkitään nx a j = a 1 + a a n. Esimerkki j=1 (1) 3X 2 i = i=1 (2) lx a k = a+a a l j=1 18
3 (3) mx mx a2 k = a 2 k = a( m ) Huomaa, että a ei riipu summausindeksistä k, jotensensaaviedä P -merkin eteen. (4) px px ( x j + jy j+1 )= x j + j=1 j=1 px jy j+1 = (x+x x p )+ (y 2 +2y py p+1 ). j=1 (5) nx (2j 1) = (2n 1) j=1 (6) Tarkastellaan geometrisen sarjan osasummia: Olkoon b sellainen reaaliluku, että b 6= 0ja b 6= 1. Merkitään S n = nx b j. j=0 Osoita, että kaikilla n =0, 1, 2,... S n = bn+1 1 b 1 Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Osoitetaan, että väite pätee kun n =0: Vasen puoli: S 0 = P 0 j=0 bj =1 Oikea puoli: b1 1 b 1 = b 1 b 1 =1 Siis väite on tosi kun n =0. 19
4 (ii) Induktio-oletus: Väite on tosi kun n = k, ts. S k = bk+1 1 b 1. Induktioväite: Väite on tosi, kun n = k +1,ts. S k+1 = bk+2 1 b 1. Induktioväitteen todistus. Induktio-oletuksenperusteella Xk+1 S k+1 = b j = j=0 kx b j + b k+1 j=0 induktio-oletus b k+1 1 = + b k+1 b 1 = bk+1 1 (b 1)bk+1 + b 1 b 1 = bk+1 1+b k+2 b k+1 = bk+2 1 b 1 b 1. Siis induktioväite on tosi. Induktioperiaatteen nojalla väite on tosi kaikilla n = 0, 1, 2,... (7) Osoita, että kaikilla n =1, 2,... 3 n > 2n Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Osoitetaan, että väite on totta, kun n =1: Vasen puoli: 3 1 =3 Oikea puoli: 2 1=2 Koska 3 > 2, niinväiteontotta,kunn =1. 20
5 (ii) Induktio-oletus: 3 k > 2k Induktioväite: 3 k+1 > 2(k +1) Induktioväitteen todistus. Induktio-oletustakäyttäensaadaan 3 k+1 =3 k 3 induktio-oletus > 2k 3=2k +4k k 1 2k +4> 2k +2=2(k +1). Näin ollen induktioväite on totta, ja induktioperiaatteen nojalla väite pätee kaikilla n =1, 2,... (8) Osoita, että äärellisen monen rationaaliluvun q 1,q 2,...,q n summa q 1 + q q n on rationaaliluku. Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Osoitetaan, että väite on totta, kun n =2,ts.kahdenrationaaliluvunq 1 ja q 2 summa q 1 + q 2 on rationaaliluku. Olkoot q 1 = m 1 n 1 ja q 2 = m 2 n 2,missäm 1,m 2,n 1,n 2 2 Z ja n 1 6=0sekä n 2 6=0. Tällöin q 1 + q 2 = m 1 + m 2 = m 1n 2 + m 2 n 1 n 1 n 2 n 1 n 2 on rationaaliluku, sillä m 1 n 2 + m 2 n 1 2 Z, n 1 n 2 2 Z ja n 1 n 2 6=0. (ii) Induktio-oletus: Kun k kappaletta rationaalilukuja lasketaan yhteen, saadaan rationaaliluku. Induktioväite: Kun k +1kappaletta rationaalilukuja lasketaan yhteen, saadaan rationaaliluku. Ts. jos q 1, q 2,..., q k+1 2 Q, niinq q k+1 2 Q. Induktioväitteen todistus. Olkootq 1, q 2,..., q k+1 2 Q. Koska q q k + q k+1 =(q q k )+q k+1, missä q q k 2 Q induktio-oletuksen nojalla ja q k+1 2 Q, niinkohdan(ii) perusteella näiden kahden rationaaliluvun summa on rationaaliluku. Siis induktioväite on totta. Induktioperiaatteen nojalla äärellisen monen rationaaliluvun summa on rationaaliluku. 21
6 4 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin keskeisimpiä käsitteitä ja harjoitellaan matemaattista päättelyä niitä käyttäen. Joukko koostuu alkioista ja jokaisesta alkiosta on pystyttävä sanomaan, kuuluuko se tiettyyn joukkoon. Merkintä Mitä tarkoittaa? x 2 A x on joukon A alkio, ts. x kuuluu joukkoon A y/2 A y ei ole joukon A alkio, ts. y ei kuulu joukkoon A {x P (x)} niiden alkioiden joukko, joilla on ominaisuus P (x) ; tyhjä joukko eli joukko, joka ei sisällä yhtään alkiota Esimerkki 4.1. (1) 1 2{1, 2}, 2 2{1, 2}, 0 /2 {1, 2} (2) {n 2 N 0 <n<5} = {1, 2, 3, 4} (3) {0, 1} = {0, 0, 1} = {1, 0} (4) {1} 6= ;, sillä1 2{1}. (5) {;} 6= ;, sillä; on joukon {;} alkio. 4.1 Perusmääritelmiä Määritelmä 4.2. Joukko A on joukon B osajoukko, josjokainenjoukona alkio on myös joukon B alkio, ts. jos x 2 A, niinx 2 B. Tällöin merkitään A B. Joukot A ja B ovat samat, josa B ja B A. Tällöin merkitään A = B. Joukko A ei ole joukon B osajoukko, jos joukossa A on sellainen alkio, joka ei kuulu joukkoon B, ts. jos on olemassa sellainen a 2 A, että a /2 B. Tällöin merkitään A 6 B. Esimerkki 4.3. (1) ; {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} (2) {3, 7, 11, 15} {n 2 N n pariton} N 22
7 (3) {2, 3, 4} 6 {2, 4, 6}, sillä3 2{2, 3, 4}, mutta3 /2 {2, 4, 6}. (4) {n 2 N p n<3} = {0, 1, 2, 3, 4, 5, 6, 7, 8} (5) Parittomien luonnollisten lukujen määritelmän perusteella {n 2 N n on pariton} = {2k +1 k 2 N}, ja huomautuksen 3.7(3) perusteella {n 2 N n on pariton} = {n 2 N n 2 pariton}. (6) N Z Q R (7) Koska N 6= Z (esimerkiksi 1 2 Z, mutta 1 /2 N), niin N on joukon Z aito osajoukko. VastaavastiZ on joukon Q aito osajoukko ( 1 2 Q, mutta 1 /2 Z) jaq 2 2 on joukon R aito osajoukko ( p 2 2 R, mutta p 2 /2 Q). (8) Osoita, että {0, 1} = {x 2 R x 2 = x}. Todistus.Onosoitettavakaksiseikkaa: {0, 1} {x 2 R x 2 = x} ja {x 2 R x 2 = x} {0, 1}. Perustellaan 1. väite: koska 0 2 =2ja 1 2 =1,niin{0, 1} {x 2 R x 2 = x}, joten 1. väite on totta. Perustellaan vielä 2. väite: Jos x 2 R on sellainen, että x 2 = x, niin 0=x 2 x = x(x 1), mistä nähdään, että x =0tai x =1.Siis2.väitepätee. (9) Onko väite tosi? jos a 2 A ja A 6 B, niin a/2 B 23
8 Ratkaisu. Väite ei ole totta, mikä nähdään, kun valitaan A = {0, 1}, B = {1, 2} ja a =1. Tällöin a 2 A ja A 6 B, sillä0 2 A, mutta0 /2 B. Lisäksia 2 B. Määritelmä 4.4. Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) Määritellään joukkojen A ja B yhdiste leikkaus erotus ja komplementti A [ B = {x 2 X x 2 A tai x 2 B}, A \ B = {x 2 X x 2 A ja x 2 B}, A\B = {x 2 X x 2 A ja x/2 B} A C = {x 2 X x/2 A}. Esimerkki 4.5. (1) Olkoot A = {0, 2, 4, 6} ja B = {0, 1, 2, 3}. Tällöin A [ B = {0, 1, 2, 3, 4, 6}, A \ B = {0, 2}, A \ B = {4, 6} ja (A \ B) [ (A \ B) ={0, 2}[{4, 6} = {0, 2, 4, 6} = A. (2) Olkoot A = {0, 1, a, b}, B = {1, 2,a} ja C = {2, 3,c}. Tällöin A [ B = {0, 1, 2, a, b}, A \ B = {1,a}, A\B = {0,b}, B\A = {2}, A \ C = ;, B \ C = {2} A \ (B \ C) =A \{2} = ; ja (A [ B) \ (A [ C) ={0, 1, 2, a, b}\{0, 1, 2, 3, a, b, c} = {0, 1, 2, a, b}. 24
9 (3) Olkoot A = {n 2 N n on jaollinen 6:lla}, B = {n 2 N n on jaollinen 3:lla} ja C = {n 2 N n on jaollinen 2:lla}. Tällöin ja esimerkin 3.9 (2) perusteella B [ C = {n 2 N n on jaollinen 2:lla tai 3:lla} B \ C = {n 2 N n on jaollinen 2:lla ja 3:lla} = A. Määritellään seuraavaksi joukon R avoimet, suljetut ja puoliavoimet välit. Määritelmä 4.6. Olkoot a, b 2 R sellaisia, että a<b. Määritellään ]a, b[ ={x 2 R a<x<b} [a, b] ={x 2 R a apple x apple b} ]a, b] ={x 2 R a<xapple b} [a, b[ ={x 2 R a apple x<b} (avoin väli) (suljettu väli) (puoliavoin väli) (puoliavoin väli). Lisäksi ]a, 1[ ={x 2 R x>a} [a, 1[ ={x 2 R x a} ] 1,a[={x 2 R x<a} ] 1,a]={x 2 R x apple a}. Huomautus 4.7. Tässä 1 on äärettömän symboli. Esimerkki 4.8. (1) Olkoot A =[0, 1], B =[1, 2] ja C = 1 2, 3 2.Nyt A [ B = {x 2 R 0 apple x apple 1 tai 1 apple x apple 2} =[0, 2], A \ B = {x 2 R 0 apple x apple 1 ja 1 apple x apple 2} = {1}, A [ C = {x 2 R 0 apple x apple 1 tai 1 2 <x< 3 2 } = 0, 3 2, A \ C = {x 2 R 0 apple x apple 1 ja 1 2 <x< 3 2 } = 1 2, 1, B [ C = {x 2 R 1 apple x apple 2 tai 1 2 <x< 3 2 } = 1 2, 2 B \ C = {x 2 R 1 apple x apple 2 ja 1 2 <x< 3 2 } = 1, 3 2, A\B = {x 2 R 0 apple x apple 1 ja (x <1 tai x>2)} =[0, 1[, A\C = {x 2 R 0 apple x apple 1 ja (x apple 1 2 tai x 3 2 )} = 0, 1 2 ja B\C = {x 2 R 1 apple x apple 2 ja (x apple 1 2 tai x 3 2 )} =[3 3, 2]. 25
10 (1) Olkoot A =[ 2, 2[ ja B =[1, 1[. Tällöin A [ B = {x 2 R 2 apple x apple 2 tai x 1} =[ 2, 1[ A \ B = {x 2 R 2 apple x apple 2 ja x 1} =[1, 2[, R \ A = {x 2 R x< 2 tai x 2} =] 1, 2[[[2, 1[, R \ B = {x 2 R x<1} =] 1, 1[, A \ B = { 2 apple x<2 x<1} =[ 2, 1[ ja B \ A = {x 1 x< 2 tai x 2} =[2, 1[. Määritellään seuraavaksi joukkojen äärelliset ja numeroituvat yhdisteet ja leikkaukset. Määritelmä 4.9. Joukkojen A 1,A 2,...,A k äärellinen yhdiste on k[ A i = A 1 [ A 2 [...[ A k = {x x 2 A 1 tai x 2 A 2 tai... tai x 2 A k } i=1 = {x x 2 A i jollakin i =1,...,k} ja äärellinen leikkaus on k\ A i = A 1 \ A 2 \...\ A k = {x x 2 A 1 ja x 2 A 2 ja... ja x 2 A k } i=1 = {x x 2 A i kaikilla i =1,...,k}. Määritelmä Joukkojen A 1,A 2,... numeroituva yhdiste on 1[ A i = {x x 2 A i jollakin i =1, 2,...} i=1 ja numeroituva leikkaus on 1\ A i = {x x 2 A i kaikilla i =1, 2,...}. i=1 Esimerkki (1) Tarkastellaan joukkoja A =] 1, 0[,B=]0, 1],C= 1 2, 2 ja D = {0, 3}. Mitä ovat A [ B, A [ B [ D, B [ C [ D, A \ B \ C \ D ja B \ C \ D? 26
11 Ratkaisu: Määritelmien perusteella saadaan A [ B = {x 2 R 1 <x<0 tai 0 <xapple 1} =] 1, 1] \{0}, A [ B [ D = {x 2 R 1 <x<0 tai 0 <xapple1 tai x =0tai x =3} =] 1, 1] [{3}, B [ C [ D = {x 2 R 0 <xapple 1 tai 1 apple x apple 2 tai x =0tai x =3} =[0, 2] [{3}, 2 A \ B \ C \ D = ; ja B \ C \ D = ;. (2) Kaikilla k 2 N määritellään A k =[k, k +1[. Mitä ovat 5[ A k, [ 10 A k, [ 10 A k ja 1[ A k? k=5 Ratkaisu: Määritelmien perusteella 5[ A k = A 1 [ A 2 [ A 3 [ A 4 [ A 5 =[1, 2[[[2, 3[[[3, 4[[[4, 5[[[5, 6[= [1, 6[, 10 [ A k = A 1 [ A 2 [...[ A 10 =[1, 2[[[2, 3[[...[ [10, 11[= [1, 11[, 10 [ A k = A 5 [ A 6 [...[ A 10 =[5, 6[[[6, 7[[...[ [10, 11[= [5, 11[ k=5 1[ A k = {x 2 R x 2 A k jollakin k =1, 2,...} =[1, 1[. ja (3) Kaikilla k =1, 2,... määritellään A k =[0, 1 [. Mitä ovat k 5\ A k, \ 10 A k, \ 10 A k ja 1\ A k? k=5 27
12 Ratkaisu: Määritelmien perusteella 5\ A k = A 1 \ A 2 \ A 3 \ A 4 \ A 5 =[0, 1[\[0, 1[\[0, 1[\[0, 1[\[0, 1[= [0, 1[, \ 10 \ k=5 A k = A 1 \ A 2 \...\ A 10 =[0, 1[\[0, [\...\ [0, [= [0, [, A k = A 5 \ A 6 \...\ A 10 =[0, 1[[[0, [\...\ [0, [= [0, [ ja \ A k = {x 2 R x 2 A k kaikilla k =1, 2,...} = {0}. Perustellaan viimeinen yhtäsuuruus, ts. todistetaan, että 1\ A k = {0} (ks. 2.12). On siis osoitettava, että 1\ {0} A k ja 1\ A k {0}. Koska 0 2 [0, 1 k [ kaikilla k =1, 2,...,niin{0} T 1 A k. Osoitetaan vielä, että T 1 A k {0}. Oletus: x 2 T 1 A k,ts.x 2 A k kaikilla k =1, 2,... Väite: x =0. Antiteesi: x 6= 0. Koska x 2 A 1 ja x 6= 0,niin0 <x<1. Valitaanniinsuurii =1, 2,...,että i> 1 x. Tällöin 1 i <x,jotenx /2 A i. Tämä on ristiriita, sillä oletuksen mukaan x 2 A i.näinollenantiteesieioletosi,jasitenväitepätee. 28
13 4.2 Karteesinen tulo Määritelmä Joukkojen A ja B tulojoukko eli karteesinen tulo on A B = {(a, b) a 2 A, b 2 B}. Karteesisen tulon alkioita (a, b) sanotaan järjestetyiksi pareiksi. Järjestettyjen parien olennainen ominaisuus on seuraava: jos (x, y) ja (a, b) ovat järjestettyjä pareja, niin (x, y) =(a, b) jos ja vain jos x = a ja y = b. Esimerkki (1) Jos A = {a, b, c} ja B = {0,a}, niin A B = {(a, 0), (a, a), (b, 0), (b, a), (c, 0), (c, a)}. (2) Olkoot A = {1}, B = {2, 3}, C = {1, 2} ja D = {3}. Mitä ovat A (B [ C), (A B) [ (A C), A (B \ C), (A B) \ (A C), (A B) [ (C D) ja (A [ C) (B [ D)? Ratkaisu. Määritelmistä saadaan A (B [ C) ={1} {1, 2, 3} = {(1, 1), (1, 2), (1, 3)} (A B) [ (A C) ={(1, 2), (1, 3)}[{(1, 1), (1, 2)} = {(1, 1), (1, 2), (1, 3)} A (B \ C) ={1} {3} = {(1, 3)} (A B) \ (A C) ={(1, 2), (1, 3)}\{(1, 1), (1, 2)} = {(1, 3)} (A B) [ (C D) ={(1, 2), (1, 3)}[{(1, 3), (2, 3)} = {(1, 2), (1, 3), (2, 3)} (A [ C) (B [ D) ={1, 2} {2, 3} = {(1, 2), (1, 3), (2, 2), (2, 3)}. (3) Euklidinen avaruus R n : R 2 = R R = {(x, y) x 2 R ja y 2 R} (xy-taso) R 3 = R R R = {(x, y, z) x 2 R, y2 R ja z 2 R} R n = R R... R {z } n-kpl (n-ulotteinen euklidinen avaruus). (xyz-avaruus) (4) Jos A =[ 1, 1[, B =]0, 1[ ja C =[1, 1[, niin A B =[ 1, 1[ ]0, 1[ = {(x, y) 2 R 2 1 apple x<1 ja 0 <y<1} A C =[ 1, 1[ [1, 1[ ={(x, y) 2 R 2 1 apple x<1 ja y 1} C A =[1, 1[ [ 1, 1[ = {(x, y) 2 R 2 x 1 ja 1 apple y<1}. 29
14 4.3 Miten joukot osoitetaan samoiksi? Kun todistetaan, että A = B, onpäättelyssäkaksivaihetta: (i) osoitetaan, että A B, ts.josx 2 A, niinx 2 B, (ii) osoitetaan, että B A, ts.josx 2 B, niinx 2 A. Esimerkki (1) Olkoot A = {x 2 R x 2 5x +6=0} ja B = {n 2 N 3 < n 2 < 10}. Osoita,ettäA = B. Todistus.Onosoitettava,ettäA B ja B A. (i) Väite 1: A B, ts.josx 2 A, niinx 2 B. Todistus.Olkoonx 2 A. Tällöin x 2 R ja x 2 5x +6=0.Ratkaistaantoisen asteen yhtälö jakamalla polynomi x 2 5x +6tekijöihin: 0=x 2 5x +6=(x 2)(x 3). Tästä nähdään, että x =2tai x =3.Koska2 2 N ja 3 < 2 2 < 10, niin2 2 B. Koska 3 2 N ja 3 < 3 2 < 10, niin3 2 B. SiisA B. (ii) Väite 2: B A, ts.josx 2 B, niinx 2 A. Todistus.Olkoonn 2 B, ts.n 2 N ja 3 <n 2 < 10. Tällöin n =2tai n =3. Sijoittamalla 2 x:n paikalle lausekkeeseen x 2 5x +6saadaan = = 0. Siis 2 2 A. Sijoittamalla3 muuttujan x paikalle lausekkeeseen x 2 5x+6 saadaan = = 0. Siis 3 2 A. NäinollenB A. Kohdista (i) ja (ii) seuraa, että A = B. (2) Osoita, että A [ (B \ C) =(A [ B) \ (A [ C). Todistus. 30
15 (i) Väite 1: A [ (B \ C) (A [ B) \ (A [ C), ts.josx 2 A [ (B \ C), niin x 2 (A [ B) \ (A [ C). Todistus.Oletetaan,ettäx 2 A[(B\C). Tällöin x 2 A tai x 2 B\C. Käsitellään nämä tapaukset erikseen. Jos x 2 A, niinx 2 A [ B ja x 2 A [ C yhdisteen määritelmän nojalla. Siis x 2 (A [ B) \ (A [ C). Jos x 2 B\C, niin x 2 B ja x 2 C leikkauksen määritelmän perusteella. Edelleen yhdisteen määritelmän nojalla x 2 A[B ja x 2 A[C. Siisx 2 (A[B)\(A[C). Koska molemmissa tapauksissa x 2 (A [ B) \ (A [ C), niinväite1ontotta. (ii) Väite 2: (A [ B) \ (A [ C) A [ (B \ C), ts.josx 2 (A [ B) \ (A [ C), niin x 2 A [ (B \ C). Todistus.Oletetaan,ettäx 2 (A [ B) \ (A [ C). Tällöin x 2 A [ B ja x 2 A [ C. Jos x 2 A, niinyhdisteenmääritelmännojallax 2 A [ (B \ C). Jostaasx/2 A, niin koska x 2 A [ B ja x 2 A [ C, onx molempien joukkojen B ja C alkio. Näin ollen x 2 B \ C, mistäseuraa,ettäx 2 A [ (B \ C). Siisväite2ontotta. Kohdista (i) ja (ii) seuraa, että A [ (B \ C) =(A [ B) \ (A [ C). (3) Osoita, että (A [ B) C = A C \ B C. Todistus. (i) Väite 1: (A [ B) C A C \ B C,ts.josx 2 (A [ B) C,niinx 2 A C \ B C. Todistus.Oletetaan,ettäx 2 (A [ B) C,ts.x/2 A [ B. Perustellaan,ettätästä seuraa, että x/2 A ja x/2 B. Antiteesi: x 2 A tai x 2 B. Tällöin x 2 A [ B, mikäonristiriita,silläoletuksen perusteella x/2 A [ B. Siis antiteesi on väärä. Näin ollen x/2 A ja x/2 B, ts.x 2 A C ja x 2 B C.Siis x 2 A C \ B C.Väite1onsiistotta. 31
16 (ii) Väite 2: A C \ B C (A [ B) C,ts.josx 2 A C \ B C,niinx 2 (A [ B) C. Todistus.Oletetaan,ettäx 2 A C \ B C,ts.x/2 A ja x/2 B. Perustellaan,että tästä seuraa, että x/2 A [ B. Antiteesi: x 2 A [ B. Tällöin x 2 A tai x 2 B, mikäonristiriita,silläoletuksen mukaan x/2 A ja x/2 B. Siis antiteesi on väärä. Näin ollen x /2 A [ B, ts.x 2 (A [ B) C,javäite2on osoitettu todeksi. Kohdista (i) ja (ii) seuraa, että (A [ B) C = A C \ B C. (3) Osoita, että A (B [ C) =(A B) [ (A C). Todistus. (i) Väite 1: A (B [ C) (A B) [ (A C), ts.jos(x, y) 2 A (B [ C), niin (x, y) 2 (A B) [ (A C). Todistus.Oletetaan,että(x, y) 2 A (B [ C), ts.x 2 A ja y 2 B [ C. Jos y 2 B, niin(x, y) 2 A B. Jostaasy 2 C, niin(x, y) 2 A C. Näinollen (x, y) 2 (A B) [ (A C), jotenväite1ontotta. Väite 2: (A B) [ (A C) A (B [ C), ts.jos(x, y) 2 (A B) [ (A C), niin (x, y) 2 A (B [ C). Todistus. Oletetaan,että(x, y) 2 (A B) [ (A C), ts.(x, y) 2 A B tai (x, y) 2 A C. Jos (x, y) 2 A B, niinx 2 A ja y 2 B, joten(x, y) 2 A (B [ C). Jostaas (x, y) 2 A C, niinx 2 A ja y 2 C, joten(x, y) 2 A (B [ C). Näin ollen väite 2 on totta. Kohdista (i) ja (ii) seuraa, että A (B [ C) =(A B) [ (A C).. 32
17 Harjoitellaan vielä todistamista joukko-opin käsitteitä käyttäen. Esimerkki Osoita, että A [ B A, josjavainjosb A. Todistus.Väitekoostuukahdestaväitelauseesta.Todistetaanneerikseen. ) Oletus 1: A [ B A. Väite 1: B A, ts.josx 2 B, niinx 2 A. Todistus. Olkoon x 2 B. Tällöin x 2 A [ B, jotenoletuksen1perusteellax 2 A. Siis väite 1 on totta. ( Oletus 2: B A. Väite 2: A [ B A, ts.josx 2 A [ B, niinx 2 A. Todistus.Olkoonx 2 A [ B, ts.x 2 A tai x 2 B. Josx 2 A, niinväite2on totta. Jos taas x 2 B, niinoletuksen2perusteellax 2 A. Siisväite2ontotta. Kohdista ( ja ) seuraa, että A [ B A, josjavainjosb A. 33
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
Johdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2014 Tero Vedenjuoksu Sisältö 1 Johdanto 3 2 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
1 Perusasioita joukoista
1 Perusasioita joukoista 1.1 Merkintöjä Joukko voidaan määritellä luettelemalla siihen kuuluvat alkiot. Esimerkiksi voidaan merkitä = { 2, 1, 0, 1, 2}. Tästä merkinnästä nähdään, mitkä luvut ovat joukon
Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.
Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z
4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
Johdatus yliopistomatematiikkaan. JYM, Syksy /197
Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava
Ensimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Ensimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195
Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
Matematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,
-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi
-Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei
3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
JOHDATUS MATEMATIIKKAAN. Petri Juutinen
JOHDATUS MATEMATIIKKAAN Petri Juutinen 15. syyskuuta 2015 Alkulause Much more important than specific mathematical results are the habits of mind used by the people who create those results. Cuoco, Goldenberg
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
Matematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
Luonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
Matematiikan mestariluokka, syksy 2009 7
Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty
Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista
Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )
1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.
Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele
4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
Joukot metrisissä avaruuksissa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,
Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot
JOHDATUS MATEMATIIKKAAN. Petri Juutinen
JOHDATUS MATEMATIIKKAAN Petri Juutinen 14.8.2003 Sisältö 1 Todistamisen ja matemaattisen päättelyn alkeita 3 1.1 Maalaisjärjellä päätteleminen.................. 3 1.2 Todistamisen alkeita.......................
1. Logiikan ja joukko-opin alkeet
1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista
Topologia Syksy 2010 Harjoitus 9
Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,
Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.
ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
Tenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.
ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).
X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun
Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat
jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).
Predikaattilogiikan malli-teoreettinen semantiikka
Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia
Matemaattisten työvälineiden täydentäviä muistiinpanoja
Matemaattisten työvälineiden täydentäviä muistiinpanoja Antti-Juhani Kaijanaho 7 maaliskuuta 0 Deduktiivinen ja induktiivinen päättely Deduktiivisessa päättelyssä johtopäätös seuraa aukottomasti premisseistä
Ominaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista
Matematiikan johdantokurssi, syksy 0 Harjoitus, ratkaisuista. Esitä seuraavat joukot luettelemalla niiden alkiot: a) := { y y = ( ) n n+ n+, n N } b) := { n Z n = k, k Z } c) := { sin( nπ ) n N } Ratkaisut.
Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN
Calculus Lukion 6 MAA11 Lukuteoria ja logiikka Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Lukuteoria ja logiikka (MAA11) Pikatesti ja kertauskokeet