(2n 1) = n 2

Koko: px
Aloita esitys sivulta:

Download "(2n 1) = n 2"

Transkriptio

1 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa on kaksi vaihetta: (i) Osoitetaan, että väite on totta, kun n =0. (ii) Oletetaan, että väite on totta, kun n = k (tätä kutsutaan induktio-oletukseksi), ja osoitetaan, että se on totta, kun n = k +1 (tätä kutsutaan induktioväitteeksi). Kohdista (i) ja (ii) seuraa, että väite on totta kaikilla n =0, 1, 2,...,silläkohdan (i) perusteella väite on totta, kun n =0,jotenkohdan(ii)perusteellaväiteon totta, kun n =1. Edelleen kohdan (ii) perusteella väite totta, kun n =2jne. Induktion ei tarvitse välttämättä alkaa luvusta n =0:induktionavullavoidaan todistaa myös muotoa oleva väite, kun n 0 2 N. väite P (n) on totta kaikille n = n 0,n 0 +1,n 0 +2,... Esimerkki Osoita, että kaikilla n =1, 2, (2n 1) = n 2 Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Tarkistetaan, että yhtäsuuruuus on voimassa, kun n =1: Vasen puoli: 1 Oikea puoli: 1 2 =1. Siis väite pätee kun n =1. 17

2 (ii) Oletetaan, että väite pätee, kun n = k, jaosoitetaan,ettäväitepätee,kun n = k +1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k +1) 1) = (k +1) 2. Induktioväitteen todistus. Lähdetäänliikkeelleinduktioväitteenvasemmaltapuolelta. Induktio-oletusta käyttäen saadaan =k 2 (induktio-oletus) z } { (2k 1) +(2(k +1) 1) = k 2 +2(k +1) 1=k 2 +2k +2 1=k 2 +2k +1 =(k +1) 2. Näin päädyttiin induktioväitteen oikealle puolelle. Siis induktioväite on tosi. Induktioperiaatteen perusteella väite on tosi kaikille n =1, 2,... Esimerkki Osoitetaan, että kaikilla ihmisillä on samanväriset silmät (luennolla). Tämä on esimerkkinä miksi kaikki induktioperiaatteen askeleet on syytä tarkastella erityisen tarkasti. 3.6 Summamerkintä Olkoot a 1, a 2,..., a n 2 R. Merkitään nx a j = a 1 + a a n. Esimerkki j=1 (1) 3X 2 i = i=1 (2) lx a k = a+a a l j=1 18

3 (3) mx mx a2 k = a 2 k = a( m ) Huomaa, että a ei riipu summausindeksistä k, jotensensaaviedä P -merkin eteen. (4) px px ( x j + jy j+1 )= x j + j=1 j=1 px jy j+1 = (x+x x p )+ (y 2 +2y py p+1 ). j=1 (5) nx (2j 1) = (2n 1) j=1 (6) Tarkastellaan geometrisen sarjan osasummia: Olkoon b sellainen reaaliluku, että b 6= 0ja b 6= 1. Merkitään S n = nx b j. j=0 Osoita, että kaikilla n =0, 1, 2,... S n = bn+1 1 b 1 Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Osoitetaan, että väite pätee kun n =0: Vasen puoli: S 0 = P 0 j=0 bj =1 Oikea puoli: b1 1 b 1 = b 1 b 1 =1 Siis väite on tosi kun n =0. 19

4 (ii) Induktio-oletus: Väite on tosi kun n = k, ts. S k = bk+1 1 b 1. Induktioväite: Väite on tosi, kun n = k +1,ts. S k+1 = bk+2 1 b 1. Induktioväitteen todistus. Induktio-oletuksenperusteella Xk+1 S k+1 = b j = j=0 kx b j + b k+1 j=0 induktio-oletus b k+1 1 = + b k+1 b 1 = bk+1 1 (b 1)bk+1 + b 1 b 1 = bk+1 1+b k+2 b k+1 = bk+2 1 b 1 b 1. Siis induktioväite on tosi. Induktioperiaatteen nojalla väite on tosi kaikilla n = 0, 1, 2,... (7) Osoita, että kaikilla n =1, 2,... 3 n > 2n Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Osoitetaan, että väite on totta, kun n =1: Vasen puoli: 3 1 =3 Oikea puoli: 2 1=2 Koska 3 > 2, niinväiteontotta,kunn =1. 20

5 (ii) Induktio-oletus: 3 k > 2k Induktioväite: 3 k+1 > 2(k +1) Induktioväitteen todistus. Induktio-oletustakäyttäensaadaan 3 k+1 =3 k 3 induktio-oletus > 2k 3=2k +4k k 1 2k +4> 2k +2=2(k +1). Näin ollen induktioväite on totta, ja induktioperiaatteen nojalla väite pätee kaikilla n =1, 2,... (8) Osoita, että äärellisen monen rationaaliluvun q 1,q 2,...,q n summa q 1 + q q n on rationaaliluku. Todistus.Todistetaanväiteinduktiotakäyttäen. (i) Osoitetaan, että väite on totta, kun n =2,ts.kahdenrationaaliluvunq 1 ja q 2 summa q 1 + q 2 on rationaaliluku. Olkoot q 1 = m 1 n 1 ja q 2 = m 2 n 2,missäm 1,m 2,n 1,n 2 2 Z ja n 1 6=0sekä n 2 6=0. Tällöin q 1 + q 2 = m 1 + m 2 = m 1n 2 + m 2 n 1 n 1 n 2 n 1 n 2 on rationaaliluku, sillä m 1 n 2 + m 2 n 1 2 Z, n 1 n 2 2 Z ja n 1 n 2 6=0. (ii) Induktio-oletus: Kun k kappaletta rationaalilukuja lasketaan yhteen, saadaan rationaaliluku. Induktioväite: Kun k +1kappaletta rationaalilukuja lasketaan yhteen, saadaan rationaaliluku. Ts. jos q 1, q 2,..., q k+1 2 Q, niinq q k+1 2 Q. Induktioväitteen todistus. Olkootq 1, q 2,..., q k+1 2 Q. Koska q q k + q k+1 =(q q k )+q k+1, missä q q k 2 Q induktio-oletuksen nojalla ja q k+1 2 Q, niinkohdan(ii) perusteella näiden kahden rationaaliluvun summa on rationaaliluku. Siis induktioväite on totta. Induktioperiaatteen nojalla äärellisen monen rationaaliluvun summa on rationaaliluku. 21

6 4 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin keskeisimpiä käsitteitä ja harjoitellaan matemaattista päättelyä niitä käyttäen. Joukko koostuu alkioista ja jokaisesta alkiosta on pystyttävä sanomaan, kuuluuko se tiettyyn joukkoon. Merkintä Mitä tarkoittaa? x 2 A x on joukon A alkio, ts. x kuuluu joukkoon A y/2 A y ei ole joukon A alkio, ts. y ei kuulu joukkoon A {x P (x)} niiden alkioiden joukko, joilla on ominaisuus P (x) ; tyhjä joukko eli joukko, joka ei sisällä yhtään alkiota Esimerkki 4.1. (1) 1 2{1, 2}, 2 2{1, 2}, 0 /2 {1, 2} (2) {n 2 N 0 <n<5} = {1, 2, 3, 4} (3) {0, 1} = {0, 0, 1} = {1, 0} (4) {1} 6= ;, sillä1 2{1}. (5) {;} 6= ;, sillä; on joukon {;} alkio. 4.1 Perusmääritelmiä Määritelmä 4.2. Joukko A on joukon B osajoukko, josjokainenjoukona alkio on myös joukon B alkio, ts. jos x 2 A, niinx 2 B. Tällöin merkitään A B. Joukot A ja B ovat samat, josa B ja B A. Tällöin merkitään A = B. Joukko A ei ole joukon B osajoukko, jos joukossa A on sellainen alkio, joka ei kuulu joukkoon B, ts. jos on olemassa sellainen a 2 A, että a /2 B. Tällöin merkitään A 6 B. Esimerkki 4.3. (1) ; {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} (2) {3, 7, 11, 15} {n 2 N n pariton} N 22

7 (3) {2, 3, 4} 6 {2, 4, 6}, sillä3 2{2, 3, 4}, mutta3 /2 {2, 4, 6}. (4) {n 2 N p n<3} = {0, 1, 2, 3, 4, 5, 6, 7, 8} (5) Parittomien luonnollisten lukujen määritelmän perusteella {n 2 N n on pariton} = {2k +1 k 2 N}, ja huomautuksen 3.7(3) perusteella {n 2 N n on pariton} = {n 2 N n 2 pariton}. (6) N Z Q R (7) Koska N 6= Z (esimerkiksi 1 2 Z, mutta 1 /2 N), niin N on joukon Z aito osajoukko. VastaavastiZ on joukon Q aito osajoukko ( 1 2 Q, mutta 1 /2 Z) jaq 2 2 on joukon R aito osajoukko ( p 2 2 R, mutta p 2 /2 Q). (8) Osoita, että {0, 1} = {x 2 R x 2 = x}. Todistus.Onosoitettavakaksiseikkaa: {0, 1} {x 2 R x 2 = x} ja {x 2 R x 2 = x} {0, 1}. Perustellaan 1. väite: koska 0 2 =2ja 1 2 =1,niin{0, 1} {x 2 R x 2 = x}, joten 1. väite on totta. Perustellaan vielä 2. väite: Jos x 2 R on sellainen, että x 2 = x, niin 0=x 2 x = x(x 1), mistä nähdään, että x =0tai x =1.Siis2.väitepätee. (9) Onko väite tosi? jos a 2 A ja A 6 B, niin a/2 B 23

8 Ratkaisu. Väite ei ole totta, mikä nähdään, kun valitaan A = {0, 1}, B = {1, 2} ja a =1. Tällöin a 2 A ja A 6 B, sillä0 2 A, mutta0 /2 B. Lisäksia 2 B. Määritelmä 4.4. Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) Määritellään joukkojen A ja B yhdiste leikkaus erotus ja komplementti A [ B = {x 2 X x 2 A tai x 2 B}, A \ B = {x 2 X x 2 A ja x 2 B}, A\B = {x 2 X x 2 A ja x/2 B} A C = {x 2 X x/2 A}. Esimerkki 4.5. (1) Olkoot A = {0, 2, 4, 6} ja B = {0, 1, 2, 3}. Tällöin A [ B = {0, 1, 2, 3, 4, 6}, A \ B = {0, 2}, A \ B = {4, 6} ja (A \ B) [ (A \ B) ={0, 2}[{4, 6} = {0, 2, 4, 6} = A. (2) Olkoot A = {0, 1, a, b}, B = {1, 2,a} ja C = {2, 3,c}. Tällöin A [ B = {0, 1, 2, a, b}, A \ B = {1,a}, A\B = {0,b}, B\A = {2}, A \ C = ;, B \ C = {2} A \ (B \ C) =A \{2} = ; ja (A [ B) \ (A [ C) ={0, 1, 2, a, b}\{0, 1, 2, 3, a, b, c} = {0, 1, 2, a, b}. 24

9 (3) Olkoot A = {n 2 N n on jaollinen 6:lla}, B = {n 2 N n on jaollinen 3:lla} ja C = {n 2 N n on jaollinen 2:lla}. Tällöin ja esimerkin 3.9 (2) perusteella B [ C = {n 2 N n on jaollinen 2:lla tai 3:lla} B \ C = {n 2 N n on jaollinen 2:lla ja 3:lla} = A. Määritellään seuraavaksi joukon R avoimet, suljetut ja puoliavoimet välit. Määritelmä 4.6. Olkoot a, b 2 R sellaisia, että a<b. Määritellään ]a, b[ ={x 2 R a<x<b} [a, b] ={x 2 R a apple x apple b} ]a, b] ={x 2 R a<xapple b} [a, b[ ={x 2 R a apple x<b} (avoin väli) (suljettu väli) (puoliavoin väli) (puoliavoin väli). Lisäksi ]a, 1[ ={x 2 R x>a} [a, 1[ ={x 2 R x a} ] 1,a[={x 2 R x<a} ] 1,a]={x 2 R x apple a}. Huomautus 4.7. Tässä 1 on äärettömän symboli. Esimerkki 4.8. (1) Olkoot A =[0, 1], B =[1, 2] ja C = 1 2, 3 2.Nyt A [ B = {x 2 R 0 apple x apple 1 tai 1 apple x apple 2} =[0, 2], A \ B = {x 2 R 0 apple x apple 1 ja 1 apple x apple 2} = {1}, A [ C = {x 2 R 0 apple x apple 1 tai 1 2 <x< 3 2 } = 0, 3 2, A \ C = {x 2 R 0 apple x apple 1 ja 1 2 <x< 3 2 } = 1 2, 1, B [ C = {x 2 R 1 apple x apple 2 tai 1 2 <x< 3 2 } = 1 2, 2 B \ C = {x 2 R 1 apple x apple 2 ja 1 2 <x< 3 2 } = 1, 3 2, A\B = {x 2 R 0 apple x apple 1 ja (x <1 tai x>2)} =[0, 1[, A\C = {x 2 R 0 apple x apple 1 ja (x apple 1 2 tai x 3 2 )} = 0, 1 2 ja B\C = {x 2 R 1 apple x apple 2 ja (x apple 1 2 tai x 3 2 )} =[3 3, 2]. 25

10 (1) Olkoot A =[ 2, 2[ ja B =[1, 1[. Tällöin A [ B = {x 2 R 2 apple x apple 2 tai x 1} =[ 2, 1[ A \ B = {x 2 R 2 apple x apple 2 ja x 1} =[1, 2[, R \ A = {x 2 R x< 2 tai x 2} =] 1, 2[[[2, 1[, R \ B = {x 2 R x<1} =] 1, 1[, A \ B = { 2 apple x<2 x<1} =[ 2, 1[ ja B \ A = {x 1 x< 2 tai x 2} =[2, 1[. Määritellään seuraavaksi joukkojen äärelliset ja numeroituvat yhdisteet ja leikkaukset. Määritelmä 4.9. Joukkojen A 1,A 2,...,A k äärellinen yhdiste on k[ A i = A 1 [ A 2 [...[ A k = {x x 2 A 1 tai x 2 A 2 tai... tai x 2 A k } i=1 = {x x 2 A i jollakin i =1,...,k} ja äärellinen leikkaus on k\ A i = A 1 \ A 2 \...\ A k = {x x 2 A 1 ja x 2 A 2 ja... ja x 2 A k } i=1 = {x x 2 A i kaikilla i =1,...,k}. Määritelmä Joukkojen A 1,A 2,... numeroituva yhdiste on 1[ A i = {x x 2 A i jollakin i =1, 2,...} i=1 ja numeroituva leikkaus on 1\ A i = {x x 2 A i kaikilla i =1, 2,...}. i=1 Esimerkki (1) Tarkastellaan joukkoja A =] 1, 0[,B=]0, 1],C= 1 2, 2 ja D = {0, 3}. Mitä ovat A [ B, A [ B [ D, B [ C [ D, A \ B \ C \ D ja B \ C \ D? 26

11 Ratkaisu: Määritelmien perusteella saadaan A [ B = {x 2 R 1 <x<0 tai 0 <xapple 1} =] 1, 1] \{0}, A [ B [ D = {x 2 R 1 <x<0 tai 0 <xapple1 tai x =0tai x =3} =] 1, 1] [{3}, B [ C [ D = {x 2 R 0 <xapple 1 tai 1 apple x apple 2 tai x =0tai x =3} =[0, 2] [{3}, 2 A \ B \ C \ D = ; ja B \ C \ D = ;. (2) Kaikilla k 2 N määritellään A k =[k, k +1[. Mitä ovat 5[ A k, [ 10 A k, [ 10 A k ja 1[ A k? k=5 Ratkaisu: Määritelmien perusteella 5[ A k = A 1 [ A 2 [ A 3 [ A 4 [ A 5 =[1, 2[[[2, 3[[[3, 4[[[4, 5[[[5, 6[= [1, 6[, 10 [ A k = A 1 [ A 2 [...[ A 10 =[1, 2[[[2, 3[[...[ [10, 11[= [1, 11[, 10 [ A k = A 5 [ A 6 [...[ A 10 =[5, 6[[[6, 7[[...[ [10, 11[= [5, 11[ k=5 1[ A k = {x 2 R x 2 A k jollakin k =1, 2,...} =[1, 1[. ja (3) Kaikilla k =1, 2,... määritellään A k =[0, 1 [. Mitä ovat k 5\ A k, \ 10 A k, \ 10 A k ja 1\ A k? k=5 27

12 Ratkaisu: Määritelmien perusteella 5\ A k = A 1 \ A 2 \ A 3 \ A 4 \ A 5 =[0, 1[\[0, 1[\[0, 1[\[0, 1[\[0, 1[= [0, 1[, \ 10 \ k=5 A k = A 1 \ A 2 \...\ A 10 =[0, 1[\[0, [\...\ [0, [= [0, [, A k = A 5 \ A 6 \...\ A 10 =[0, 1[[[0, [\...\ [0, [= [0, [ ja \ A k = {x 2 R x 2 A k kaikilla k =1, 2,...} = {0}. Perustellaan viimeinen yhtäsuuruus, ts. todistetaan, että 1\ A k = {0} (ks. 2.12). On siis osoitettava, että 1\ {0} A k ja 1\ A k {0}. Koska 0 2 [0, 1 k [ kaikilla k =1, 2,...,niin{0} T 1 A k. Osoitetaan vielä, että T 1 A k {0}. Oletus: x 2 T 1 A k,ts.x 2 A k kaikilla k =1, 2,... Väite: x =0. Antiteesi: x 6= 0. Koska x 2 A 1 ja x 6= 0,niin0 <x<1. Valitaanniinsuurii =1, 2,...,että i> 1 x. Tällöin 1 i <x,jotenx /2 A i. Tämä on ristiriita, sillä oletuksen mukaan x 2 A i.näinollenantiteesieioletosi,jasitenväitepätee. 28

13 4.2 Karteesinen tulo Määritelmä Joukkojen A ja B tulojoukko eli karteesinen tulo on A B = {(a, b) a 2 A, b 2 B}. Karteesisen tulon alkioita (a, b) sanotaan järjestetyiksi pareiksi. Järjestettyjen parien olennainen ominaisuus on seuraava: jos (x, y) ja (a, b) ovat järjestettyjä pareja, niin (x, y) =(a, b) jos ja vain jos x = a ja y = b. Esimerkki (1) Jos A = {a, b, c} ja B = {0,a}, niin A B = {(a, 0), (a, a), (b, 0), (b, a), (c, 0), (c, a)}. (2) Olkoot A = {1}, B = {2, 3}, C = {1, 2} ja D = {3}. Mitä ovat A (B [ C), (A B) [ (A C), A (B \ C), (A B) \ (A C), (A B) [ (C D) ja (A [ C) (B [ D)? Ratkaisu. Määritelmistä saadaan A (B [ C) ={1} {1, 2, 3} = {(1, 1), (1, 2), (1, 3)} (A B) [ (A C) ={(1, 2), (1, 3)}[{(1, 1), (1, 2)} = {(1, 1), (1, 2), (1, 3)} A (B \ C) ={1} {3} = {(1, 3)} (A B) \ (A C) ={(1, 2), (1, 3)}\{(1, 1), (1, 2)} = {(1, 3)} (A B) [ (C D) ={(1, 2), (1, 3)}[{(1, 3), (2, 3)} = {(1, 2), (1, 3), (2, 3)} (A [ C) (B [ D) ={1, 2} {2, 3} = {(1, 2), (1, 3), (2, 2), (2, 3)}. (3) Euklidinen avaruus R n : R 2 = R R = {(x, y) x 2 R ja y 2 R} (xy-taso) R 3 = R R R = {(x, y, z) x 2 R, y2 R ja z 2 R} R n = R R... R {z } n-kpl (n-ulotteinen euklidinen avaruus). (xyz-avaruus) (4) Jos A =[ 1, 1[, B =]0, 1[ ja C =[1, 1[, niin A B =[ 1, 1[ ]0, 1[ = {(x, y) 2 R 2 1 apple x<1 ja 0 <y<1} A C =[ 1, 1[ [1, 1[ ={(x, y) 2 R 2 1 apple x<1 ja y 1} C A =[1, 1[ [ 1, 1[ = {(x, y) 2 R 2 x 1 ja 1 apple y<1}. 29

14 4.3 Miten joukot osoitetaan samoiksi? Kun todistetaan, että A = B, onpäättelyssäkaksivaihetta: (i) osoitetaan, että A B, ts.josx 2 A, niinx 2 B, (ii) osoitetaan, että B A, ts.josx 2 B, niinx 2 A. Esimerkki (1) Olkoot A = {x 2 R x 2 5x +6=0} ja B = {n 2 N 3 < n 2 < 10}. Osoita,ettäA = B. Todistus.Onosoitettava,ettäA B ja B A. (i) Väite 1: A B, ts.josx 2 A, niinx 2 B. Todistus.Olkoonx 2 A. Tällöin x 2 R ja x 2 5x +6=0.Ratkaistaantoisen asteen yhtälö jakamalla polynomi x 2 5x +6tekijöihin: 0=x 2 5x +6=(x 2)(x 3). Tästä nähdään, että x =2tai x =3.Koska2 2 N ja 3 < 2 2 < 10, niin2 2 B. Koska 3 2 N ja 3 < 3 2 < 10, niin3 2 B. SiisA B. (ii) Väite 2: B A, ts.josx 2 B, niinx 2 A. Todistus.Olkoonn 2 B, ts.n 2 N ja 3 <n 2 < 10. Tällöin n =2tai n =3. Sijoittamalla 2 x:n paikalle lausekkeeseen x 2 5x +6saadaan = = 0. Siis 2 2 A. Sijoittamalla3 muuttujan x paikalle lausekkeeseen x 2 5x+6 saadaan = = 0. Siis 3 2 A. NäinollenB A. Kohdista (i) ja (ii) seuraa, että A = B. (2) Osoita, että A [ (B \ C) =(A [ B) \ (A [ C). Todistus. 30

15 (i) Väite 1: A [ (B \ C) (A [ B) \ (A [ C), ts.josx 2 A [ (B \ C), niin x 2 (A [ B) \ (A [ C). Todistus.Oletetaan,ettäx 2 A[(B\C). Tällöin x 2 A tai x 2 B\C. Käsitellään nämä tapaukset erikseen. Jos x 2 A, niinx 2 A [ B ja x 2 A [ C yhdisteen määritelmän nojalla. Siis x 2 (A [ B) \ (A [ C). Jos x 2 B\C, niin x 2 B ja x 2 C leikkauksen määritelmän perusteella. Edelleen yhdisteen määritelmän nojalla x 2 A[B ja x 2 A[C. Siisx 2 (A[B)\(A[C). Koska molemmissa tapauksissa x 2 (A [ B) \ (A [ C), niinväite1ontotta. (ii) Väite 2: (A [ B) \ (A [ C) A [ (B \ C), ts.josx 2 (A [ B) \ (A [ C), niin x 2 A [ (B \ C). Todistus.Oletetaan,ettäx 2 (A [ B) \ (A [ C). Tällöin x 2 A [ B ja x 2 A [ C. Jos x 2 A, niinyhdisteenmääritelmännojallax 2 A [ (B \ C). Jostaasx/2 A, niin koska x 2 A [ B ja x 2 A [ C, onx molempien joukkojen B ja C alkio. Näin ollen x 2 B \ C, mistäseuraa,ettäx 2 A [ (B \ C). Siisväite2ontotta. Kohdista (i) ja (ii) seuraa, että A [ (B \ C) =(A [ B) \ (A [ C). (3) Osoita, että (A [ B) C = A C \ B C. Todistus. (i) Väite 1: (A [ B) C A C \ B C,ts.josx 2 (A [ B) C,niinx 2 A C \ B C. Todistus.Oletetaan,ettäx 2 (A [ B) C,ts.x/2 A [ B. Perustellaan,ettätästä seuraa, että x/2 A ja x/2 B. Antiteesi: x 2 A tai x 2 B. Tällöin x 2 A [ B, mikäonristiriita,silläoletuksen perusteella x/2 A [ B. Siis antiteesi on väärä. Näin ollen x/2 A ja x/2 B, ts.x 2 A C ja x 2 B C.Siis x 2 A C \ B C.Väite1onsiistotta. 31

16 (ii) Väite 2: A C \ B C (A [ B) C,ts.josx 2 A C \ B C,niinx 2 (A [ B) C. Todistus.Oletetaan,ettäx 2 A C \ B C,ts.x/2 A ja x/2 B. Perustellaan,että tästä seuraa, että x/2 A [ B. Antiteesi: x 2 A [ B. Tällöin x 2 A tai x 2 B, mikäonristiriita,silläoletuksen mukaan x/2 A ja x/2 B. Siis antiteesi on väärä. Näin ollen x /2 A [ B, ts.x 2 (A [ B) C,javäite2on osoitettu todeksi. Kohdista (i) ja (ii) seuraa, että (A [ B) C = A C \ B C. (3) Osoita, että A (B [ C) =(A B) [ (A C). Todistus. (i) Väite 1: A (B [ C) (A B) [ (A C), ts.jos(x, y) 2 A (B [ C), niin (x, y) 2 (A B) [ (A C). Todistus.Oletetaan,että(x, y) 2 A (B [ C), ts.x 2 A ja y 2 B [ C. Jos y 2 B, niin(x, y) 2 A B. Jostaasy 2 C, niin(x, y) 2 A C. Näinollen (x, y) 2 (A B) [ (A C), jotenväite1ontotta. Väite 2: (A B) [ (A C) A (B [ C), ts.jos(x, y) 2 (A B) [ (A C), niin (x, y) 2 A (B [ C). Todistus. Oletetaan,että(x, y) 2 (A B) [ (A C), ts.(x, y) 2 A B tai (x, y) 2 A C. Jos (x, y) 2 A B, niinx 2 A ja y 2 B, joten(x, y) 2 A (B [ C). Jostaas (x, y) 2 A C, niinx 2 A ja y 2 C, joten(x, y) 2 A (B [ C). Näin ollen väite 2 on totta. Kohdista (i) ja (ii) seuraa, että A (B [ C) =(A B) [ (A C).. 32

17 Harjoitellaan vielä todistamista joukko-opin käsitteitä käyttäen. Esimerkki Osoita, että A [ B A, josjavainjosb A. Todistus.Väitekoostuukahdestaväitelauseesta.Todistetaanneerikseen. ) Oletus 1: A [ B A. Väite 1: B A, ts.josx 2 B, niinx 2 A. Todistus. Olkoon x 2 B. Tällöin x 2 A [ B, jotenoletuksen1perusteellax 2 A. Siis väite 1 on totta. ( Oletus 2: B A. Väite 2: A [ B A, ts.josx 2 A [ B, niinx 2 A. Todistus.Olkoonx 2 A [ B, ts.x 2 A tai x 2 B. Josx 2 A, niinväite2on totta. Jos taas x 2 B, niinoletuksen2perusteellax 2 A. Siisväite2ontotta. Kohdista ( ja ) seuraa, että A [ B A, josjavainjosb A. 33

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Johdatus matemaattiseen päättelyyn (5 op)

Johdatus matemaattiseen päättelyyn (5 op) Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

1 Perusasioita joukoista

1 Perusasioita joukoista 1 Perusasioita joukoista 1.1 Merkintöjä Joukko voidaan määritellä luettelemalla siihen kuuluvat alkiot. Esimerkiksi voidaan merkitä = { 2, 1, 0, 1, 2}. Tästä merkinnästä nähdään, mitkä luvut ovat joukon

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Johdatus yliopistomatematiikkaan. JYM, Syksy /197 Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. 3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen. Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 14.8.2003 Sisältö 1 Todistamisen ja matemaattisen päättelyn alkeita 3 1.1 Maalaisjärjellä päätteleminen.................. 3 1.2 Todistamisen alkeita.......................

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Johdatus yliopistomatematiikkaan

Johdatus yliopistomatematiikkaan Johdatus yliopistomatematiikkaan Lotta Oinonen 1. maaliskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Perusasioita joukoista................................ 1 1.1 Merkintöjä..................................

Lisätiedot

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 7. toukokuuta 04 Sisältö Joukko-oppia 4. Joukko-opin peruskäsitteitä ja merkintöjä........... 4 Todistamisen ja matemaattisen päättelyn alkeita 3. Alkupala..............................

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 6 MAA11 Lukuteoria ja logiikka Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Lukuteoria ja logiikka (MAA11) Pikatesti ja kertauskokeet

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

U β T. (1) U β T. (2) {,X} T. (3)

U β T. (1) U β T. (2) {,X} T. (3) 1.1 a) Joukkoperhe T = α I T α P(X) on topologia. Todistus. Osoitetaan, että topologian määritelmän 1.1 ehdot (1), (2) ja (3) toteutuvat. Ehtoa (1) varten olkoon {U β β J} T. Pitää osoittaa, että U β T.

Lisätiedot

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto Tehtävä 3 : 1 Olkoon G mielivaltainen epätyhjä verkko. Erityisesti siltä ei vaadita äärellisyyttä. Polut ovat verkon G koosta riippumatta määritelmän mukaan aina äärellisiä, joten kahden solmun välisen

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista Matematiikan johdantokurssi, syksy 0 Harjoitus, ratkaisuista. Esitä seuraavat joukot luettelemalla niiden alkiot: a) := { y y = ( ) n n+ n+, n N } b) := { n Z n = k, k Z } c) := { sin( nπ ) n N } Ratkaisut.

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet.

1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet. 1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet. Differentiaalilaskennassa on aika tavallinen tilanne päästä tutkimaan SULJETUL- LA VÄLILLÄ JATKUVAA FUNKTIOTA. Oletuksena on tällöin funktion

Lisätiedot

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA

TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA Arttu Ojanperä (Eero Hyryn luentojen mukaan) 2013 Sisältö 1 Johdanto 4 1 Jatkuvat kuvaukset........................ 4 2 Avoimet joukot..........................

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot