DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
|
|
- Krista Keskinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
2 LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän kappaleen suhteellinen liike. Jäykän kappaleen kinetiikka: Liikemäärän ja liikemäärän momentin tase. Kappaleen massaominaisuudet.
3 KERTAUS
4 KERTAUS: SUHTEELLINEN LIIKE z Z ω ρ y x Y = + ρ X Derivoimalla edeltä esitystä r = r C + ρ saadaan (kannattaa johtaa ) XY Z ρ xyz Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt Nopeus: Kiihtyvyys: v = ṙ C + ρ r + ω ρ a = r C + ρ r + ω ρ + ω (ω ρ) + 2ω ρ r (alaviite r viittaa suhteellisiin derivaattoihin)
5 KERTAUS: JÄYKÄN KAPPALEEN PARTIKKELIN LIIKE z Z ω ρ y Y x = + ρ X Koska ρ r = 0 jäykälle kappaleelle (kappalekoordinaatistossa) Jäykän kappaleen partikkelin partikkelin nopeus ja kiihtyvyys asema: r = r C + ρ CP nopeus: v = ṙ C + ω ρ CP kiihtyvyys: a = r C + ω ρ CP + ω (ω ρ CP ),
6 KERTAUS: JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE Kuinka saadaan absoluuttinen kulmanopeus ja -kiihtyvyys (ω ja α), jos (1) niistä tehdyt suhteelliset havainnot (ω r ja α r ) ja (2) suhteellisen havainnon tekijän kannan kulmanopeus ja -kiihtyvyys (Ω ja Λ) tunnetaan? Kulmanopeus: Kulmakiihtyvyys: ω = Ω + ω r α = Λ + α r + Ω ω r Näissä yhtälöissä ω, α B:n kulmanopeus ja -kiihtyvyys (abs.) Ω, Λ A:n kannan kulmanopeus ja -kiihtyvyys (abs., Ω = Λ) ω r, α r A:n havainto B:n kulmanopeudesta ja -kiihtyvyydestä (suht.)
7 KERTAUS: ESIMERKKI Oheisen kuvan sauvaan kiinnitetty levy on nivelöity kitkattomasti pisteeseen O. Kappale pyörii symmetria-akselinsa ympäri vakiokulmanopeudella ω s ja pystyakselin ympäri vakiokulmanopeudella ω p. Käytä jäykän kappaleen suhteellisen liikkeen yhtälöitä ja esitä kappaleen kulmanopeus ja -kiihtyvyys Eulerin kulmiin liittyvässä välikoordinaatistossa ξηζ.
8 DYNAMIIKKA II: L5: JÄYKÄN KAPPALEEN KINETIIKKAA I Arttu Polojärvi
9 OPPIMISTAVOITTEET Tämän luennon jälkeen opiskelija: Ymmärtää kappaleen liikemäärän momentin taseen johdon perusperiaatteet siten, että pystyy soveltamaan niitä jatkossa jäykän kappaleen liikeyhtälöiden johtamisessa. Hahmottaa kappaleen massan vaikutusmittojen merkityksen jäykän kappaleen liikeyhtälöiden muodostamisessa. Osaa soveltaa kappaleen massan vaikutusmittojen määritelmiä geometrialtaan yksinkertaisten kappaleiden massan vaikutusmittojen määrittämiseen.
10 MEKANIIKAN PERUSLAIT Kinetiikka = liikkeen ja sen syyn (voimien ja niiden momenttien) tarkastelu. Liikemäärän taseen periaate: Kappaleen liikemäärän muutosnopeus on yhtä suuri kuin siihen vaikuttavien voimien summa f = d (mv) = ṁv + m v = m v = ma dt Liikemäärän momentin taseen periaate: Kappaleen liikemäärän momentin muutosnopeus on yhtä suuri kuin siihen vaikuttavien ulkoisten voimien aiheuttaminen momenttien summa m = l Lisäksi: massan säilymisen, energian taseen ja entropian kasvun periaatteet.
11 LIIKEMÄÄRÄN MOMENTIN TASE
12 LIIKEMÄÄRÄN MOMENTIN TASE: MÄÄRITELMIÄ Peruskäsitteet ja määritelmät kirjoitettuna partikkelisysteemille: Ulkoisten voimien momentti*: m = Liikemäärän momentti: l = Liikemäärän momentin tase: r i F i r i m iv i m = dl dt (= l) *Tässä hieman sopimuksen vastaisesti merkintä: F i ulkoinen voimavektori Liikemäärän momentin tase pätee kaikille partikkelisysteemeille ja kappaleille (ääretön määrä partikkeleita), mutta on erityisen hyödyllinen jäykän kappaleen rotaatioiden tapauksessa, koska jäykän kappaleen pisteiden väliset etäisyydet ovat vakioita (massaominaisuudet saadaan temppuiltua vakioiksi). Seuraavaksi johdetaan m = l lähtien tutusta liikelaista f = ma
13 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Sisäiset voimat f ij ovat systeemin partikkelien toisiinsa välittämiä voimia. Määritellään ensin i-partikkeliin vaikuttava sisäisten voimien resultantti f i = j=1,i j Eli i-partikkeliin vaikuttaa muiden systeemin partikkelien aiheuttamat sisäiset voimat - ei sen oma. Tässä ja jatkossa merkintä f ij : partikkeliin i partikkelin j kohdistama voima (voi ajatella, että esim. muodonmuutoksesta johtuva voima). On oltava f ij = f ji, jotta systeemin partikkelit i ja j olisivat tasapainossa (voima ja vastavoima). f ij
14 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Huomioi liikeyhtälöissä sekä ulkoiset että sisäiset voimat F i + f i = m ia i sekä ota momentti pisteen O (mielivaltainen) suhteen r i (F i + f i) = r i m ia i. Pädettävä jokaiselle partikkelille on myös pädettävä r i (F i + f i ) = r i m i a i. jonka oikeaa ja vasenta puolta täytyy johdossa tarkastella.
15 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Yhtälön vasemmalta puolelta häviää termejä ja saadaankin heti ulkoinen momentti r i (F i + f i) = r i F i + r i f i = r i F i = m, jossa viimeinen = on määritelmä edeltä. Tulos saadaan, koska (hankalin kohta) r i f i = r i f ij = r i f ij,i j,i j = r 1 f 12 + r 1 f r 1 f 1n + r 2 f 21 + r 2 f r 2 f 2n ja koska f ij + f ji = 0 niin esim. edellä termit r 1 f 12 + r 2 f 21 = r 1 f 12 r 2 f 12 = r 1 f 12 r 2 f 12 = (r 1 r 2 ) f 12 = 0, koska r 1 r 2 f 12 ks. kuva ja r i f i = 0. O 1 r 2 f 12 r 1 f 21 r 1 r 2 2
16 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Sijoitetaan edeltä ja tarkastellaan yhtälön m = r i F i = r i m ia i. oikeaa puolta. Huomioidaan tulon derivaatta d dt r i m i v i = = dr i dt m iv i + r i m i dv i dt v i m iv i + r i m ia i } {{ } =0,b b=0 kaikilla b = r i m ia i, Sijoitetaan tähän vain l:n määritelmä m = r i F i = r i m ia i = d dt r i m iv i = dl dt (= l)
17 LIIKEMÄÄRÄN MOMENTIN TASE: ESIMERKKI Oheisessa kuvassa esitetyssä systeemissä henkilö (partikkeli, jonka massa on m) pyörii massattomassa ja kitkattomassa karusellissa. Oletetaan, että systeemiin ei vaikuta mitään ulkoisia momentteja ja henkilö siirtyy etäisyydeltä R etäisyydelle r suhteessa karusellin keskipisteeseen A. Mikä on karusellin kulmanopeudeksien ω 0 (kun etäisyys R) ja ω (kun etäisyys r) suhde? Voit olettaa, että tarkasteluhetkillä henkilö ei ole liikeessä kohti karusellin keskustaa.
18 LIIKEMÄÄRÄN MOMENTIN TASE: MASSAN VAIKUTUSMITAT Edellä ollaan siis johdettu liikemäärän momentin taseelle yhtälö, jonka voi ajatella olevan liikemäärä m iv i mielivaltaisen pisteen O suhteen. Tämähän oli m = dl dt = d dt r i m i v i. Selkeästi yhtälössä esiintyy partikkelisysteemin partikkelien massat m i ja niiden asemat r i eräiden nk. partikkelisysteemin tai kappaleen massan vaikutusmittojen johto ja käyttö helpottaa jatkossa paljon. Huomautetaan jo, että jäykälle kappaleelle partikkelien määrä on ääretön, ja aiemmissa johdoissa voidaan korvata kaikki summat integraaleilla ( ) ja partikkelien massat korvataan massa-alkioilla ( dm = ρdv m i ). Johdetaan tarvittavat massaominaisuudet ennen dl/dt:n (yllä) aukaisemista
19 MASSAN VAIKUTUSMITAT
20 MASSAN VAIKUTUSMITAT: MÄÄRITELMIÄ Massa: m = m i Massakeskp.: ρ AC = 1 ρ m Ai m i J xx J xy J xz Hitausmatriisi: J = J yx J yy J yz J zx J zy J zz Edellä ominaisuudet esitetty mv. pisteen A suhteen: eli paikkavektori ρ Ai on vektori A:sta partikkeliin i. Nämä suureet kuvaavat jäykän kappaleen massan ja sen jakautumisen täydellisesti mekaniikan ongelmien tapauksessa (yhteensä kymmenen toisistaan riippumatonta parametria). Kaksi ensimmäistä lienevät tuttuja, viimeinen ehkä vähän hankalampi
21 MASSAN VAIKUTUSMITAT: HITAUSMATRIISI PARTIKKELISYST. J xx = m i (yi 2 + zi 2 ) J yx = J zx = J xy = m i (y i x i ) J yy = m i (z i x i ) m i (x i y i ) m i (x 2 i + zi 2 ) J zy = J xz = J yz = m i (z i y i ) J zz = m i (x i z i ) m i (y i z i ) m i (x 2 i + yi 2 ) Huomaa, että tässä siis koordinaatit x i, y i ja z i ovat ihan oikeasti partikkelin i paikkavektorin (mv. pisteen suhteen) komponentteja (ρ i = x i i + y i j + z i k)! Hitausmatriisin diagonaali-alkiot (J xx, J yy, J zz ) ovat hitausmomentteja ja muut alkiot hitaustuloja. Huomaa, että hitaustuloille pätee J ij = J ji hitausmatriisi on symmetrinen eli kappaleen hitautta rotaatiossa kuvaa kuusi toisistaan riippumatonta parametria.
22 MASSAN VAIKUTUSMITAT: ESIMERKKI olme partikkelia, joiden kunkin massa on m, ovat ellä b origosta kuvan osoittamalla tavalla. dosta partikkelisysteemin Kuvan kolme partikkelia, massan joiden vaikutusmitat kunkin (oriuhteen) massa kuvan on koordinaatistossa m, ovat etäisyydellä (kokonaismassa b origosta m, skipisteen kuvan paikka osoittamalla ~r tavalla. Ratkaise partikkelisysteemin massan vaikutusmitat (ori- C ja hitaustensori J $ O. aise kappaleen liikemäärän momentti L ~ O (origon O gon O suhteen) kuvan koordinaatistossa ~ tapauksessa, jossa kappaleen kulmanopeus! on (kokonaismassa, massakeskipisteen paikka y j +! z ~ k? ja hitausmatriisin alkiot). : 3 m, ~r C = b/3(~i+~j+ ~ k) ja J $ O = 2 3 mb2 (~i~i+~j~j+ ~ k ~ k) 2 mb 2 (! 3 x ~i +! y ~j +! z ~ k) yrrä on kiinnitetty pallonivelellä kiinteään origoon ale pyörii symmetria-akselinsa ympäri vakiokulmalla! s. Määritä kappaleeseen vaikuttava pisteeseen oitu momenttivektori (välikoordinaatiston kannassa), pale kiertää Z-akselia vakiokulmanopeudella! p
23 MASSAN VAIKUTUSMITAT: HITAUSMATRIISI KAPPALEELLE Esitys kappaleelle saadaan korvaamalla edelliset summat integraaleilla ja partikkelien massat massa-alkioilla (J:n ominaisuudet säilyvät samoina): J xx = y 2 + z 2 ρdv J xy = xyρdv J xz = xzρdv V V V J yx = yxρdv J yy = x 2 + z 2 ρdv J yz = yzρdv V V V J zx = zxρdv J zy = zyρdv J zz = x 2 + y 2 ρdv V V Huomaa, että tässä siis koordinaatit x, y ja z ovat ihan oikeasti kappaleen jonkin pisteen paikkavektorin (mv. pisteen suhteen) komponentteja (ρ = xi + yj + zk)! Tärkeää: kannan valintaa ei ole tässä vielä rajoitettu - voidaan siis käyttää esim. kappalekoordinaatistoa (ja usein näin tehdäänkin)! Kuten skalaarit ja vektorit hitaustensori on invariantti koordinaatistonmuunnoksissa mutta (yleensä) eri kannoissa hitaustensorin komponentit saavat eri arvoja. V
24 MASSAN VAIKUTUSMITAT: STEINERIN SÄÄNTÖ Jos hitaustensori J tunnetaan kappaleen keskipisteen suhteen, saadaan kuvan mukaisen x y z -koordinaatiston origon suhteen hitaustensorin J alkiot seuraavasti: J xx = J xx + m(d 2 y + d 2 z) J xy = J xy + md x d y J xz = J xz + md x d z J yx = J yx + md y d x J yy = J yy + m(d 2 x + d 2 z) J yz = J yz + md y d z J zx = J zx + md zd x J zy = J zy + md zd y J zz = J zz + m(d 2 x + d 2 y) z z x y x y d = d x i + d y j + d z k Huomaa: hitausmomenttien minimit, kun J ratkaistaan massakeskipisteen suhteen!
25 MASSAN VAIKUTUSMITAT: ESIMERKKI y Ratkaise oheisen kuvan mukaisen ohuen kolmiolevyn (paksuus t) hitausmomentti x-akselin suhteen (J xx ). Mikä olisi J xx :n arvo ratkaistuna kolmion massakeskipisteen suhteen (massakeskipiste korkeudella y = h/3)? h b x
26 MASSAN VAIKUTUSMITAT: YHDISTETTY KAPPALE Yksinkertaisista osista koostuvan kappaleen hitausmomentti pisteen A suhteen saadaan summaamalla sen osien hitausmomentit pisteen A suhteen (jos haluaisit momentin massakeskipisteen C suhteen, täytyy myös ratkaista massakeskipiste yhdistetylle kappaleelle). Yhdistetty kappale (ympyrälevy ja massa m etäsiyydellä R levyn keskipisteestä). Muista huomioida Steinerin sääntö!
27 MASSAN VAIKUTUSMITAT: PÄÄHITAUSKOORDINAATISTO z x z x y y Hitausmatriisi x y z -koordinaatistossa J = LJL T, jossa L antaa kantojen välisen yhteyden i i j k = L j k J x x 0 0 Päähitauskoordinaatistossa (x y z ): J = 0 J y y J z z
28 MASSAN VAIKUTUSMITAT: PÄÄHITAUSKOORDINAATISTO J x x 0 0 Päähitauskoordinaatistossa (x y z ): J = 0 J y y J z z Hitaustensori on reaalinen, symmetrinen ja positiividefiniitti: mille tahansa kappaleelle löytyy (kappaleeseen nähden) kulma-asemaltaan sellainen ortogonaalinen kanta, että hitaustensori on diagonaalinen. Päähitauskoordinaatisto löytyy ominaisarvotehtävän tuloksena (ei ratkaista täällä) ja on tyyppillisesti kappalekoordinaatisto asemoituna s.e hitaustulot häviävät diagonaalinen hitaustensori! Voidaan näyttää esimerkiksi, että kappaleen symmetria-akseli on aina yksi päähitauskoordinaatiston akseleista valitse kappalekoordinaatisto s.e. yksi akseleista yhtyy symmetria-akseliin.
29 MASSAN VAIKUTUSMITAT: PYÖRÄHDYSYMMETRIA Pyörähdyssymmetrisen kappaleen symmetria-akselin mv. pisteen suhteen ratkaistu J on vakio kaikkien symmetria-akselin suhteen pyöräytettyjen koordinatistojen tapauksissa! x x y y ϕ z, z Kuvan x y z-koordinaatisto on pyöräytetty symmetria-akselin z (ja z ) suhteen kulman θ verran: J on sama kummassakin koordinaatistossa. Kuvan sylinterisymmetrisessä tapauksessa J xx = J yy ja hitaustulot ovat nollia! Näin on aina sylinterisymmetrisissä tapauksissa (merkinnät voivat vaihtua).
30 MASSAN VAIKUTUSMITAT: PYÖRÄHDYSYMMETRIA x x y y ϕ z, z Eulerin kulmien välikoordinaatisto: jos pyörähdyssymetrinen (riittää myös että J xx = J yy ) kappale spinnaa akselinsa ympäri ξηζ-koordinaatistossa, on sen hitausmatriisi vakio ξηζ-koordinaatistossa. Helpottaa jatkossa (esim. hyrräyhtälöt välikoordinaatossa)! Tyypillisesti näissä ongelmissa hitausmatriisi tulee olemaan muotoa I O 0 0 J = 0 I O I
31 MASSAN VAIKUTUSMITAT: ESIMERKKI Muodosta homogeenisen sylinterin (säde R, pituus L, materiaalin tiheys ρ) hitausmatriisi origon suhteen, kun z-akseli yhtyy symmetria-akseliin ja koordinatiston origo sijaitsee massakeskipisteessä. x y z
DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotDYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta: jäykkä kappale, kulma-asema, Eulerin kulmat, kulmanopeus. Suhteellinen liike: Vektorin muutosnopeudet eri koordinaatistoissa.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotDYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Liikemäärän ja liikemäärän momentin tase. Hyrräyhtälöt. Liikeyhtälöiden muodostaminen. Lagrangen formalismi:
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotDYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
Lisätiedot235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti
8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto
Lisätiedota) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
LisätiedotTeknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut
Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
LisätiedotRAK-31000 Statiikka 4 op
RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5
LisätiedotLuento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat
LisätiedotJakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
LisätiedotLuento 9: Pyörimisliikkeen dynamiikkaa
Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotDYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Määritelmiä: yleistetyt koordinaatit, virtuaaliset siirtymät Liike-energian lausekkeita erilaisille
LisätiedotDYNAMIIKKA II, LUENTO 3 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 3 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Lyhyt kertaus edellisen luennon asioista. Jäykkä kappale, kappalekoordinaatisto ja kulma-asema. Eulerin kulmat kulma-aseman ja nopeuden
LisätiedotTarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:
8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
LisätiedotKJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,
LisätiedotPAINOPISTE JA MASSAKESKIPISTE
PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet, tentti
KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j
LisätiedotLuento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä
Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
LisätiedotF dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
Lisätiedot1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
Lisätiedotf(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,
LisätiedotRTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa
RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset
LisätiedotMEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto
LisätiedotJäykän kappaleen mekaniikkaa
Jäykän kappaleen mekaniikkaa 29. joulukuuta 2005 Sisältö 1 Johdanto 1 2 Jäykän kappaleen mekaniikka 2 2.1 Pyörivä koordinaatisto...................... 2 2.2 Vakio Ω.............................. 3 2.3
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotMääritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja
TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti
Lisätiedot2.3 Voiman jakaminen komponentteihin
Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
Lisätiedotkertausta Esimerkki I
tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin
LisätiedotKlassista mekaniikkaa - kahden kappaleen probleema
Klassista mekaniikkaa - kahden kappaleen probleema 24. marraskuuta 2005 Sisältö 1 Periaatteet 2 1.1 Liikemäärämomentti....................... 4 1.2 Partikkelisysteemi......................... 5 2 Kahden
LisätiedotLineaarialgebra MATH.1040 / voima
Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.
LisätiedotTASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Lisätiedotf x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotTalousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotGaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
LisätiedotKALTEVA TASO. 1. Työn tavoitteet. 2. Teoria
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.
LisätiedotSTATIIKKA. TF00BN89 5op
STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
Lisätiedot12. Derivointioperaattoreista geometrisissa avaruuksissa
12. Derivointioperaattoreista geometrisissa avaruuksissa 12.1. Gradientti, divergenssi ja roottori 328. Laske u, kun u on vektorikenttä a) (z y)i + (x z)j + (y x)k, b) e xyz (i + xlnyj + x 2 zk), c) (x
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
LisätiedotMuodonmuutostila hum 30.8.13
Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotSMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE
SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
Lisätiedot3 Yhtälöryhmä ja pistetulo
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5..06 Yhtälöryhmä ja pistetulo Ennakkotehtävät. z = x y, x y + z = 6 ja 4x + y + z = Sijoitetaan z = x y muihin yhtälöihin. x y + x y =
Lisätiedotdx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.
BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
LisätiedotTalousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotRTEK-2000 Statiikan perusteet 4 op
RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat Osaamistavoitteet
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotPerusopintojen Laboratoriotöiden Työselostus 1
Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa
LisätiedotTekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
Lisätiedot7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet
7. Differentiaalimuotoinen jatkuvuusyhtälö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten lähestymistapaa pitää muuttaa, jos halutaan tarkastella virtausta lokaalisti globaalin tasetarkastelun
Lisätiedot