DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

Koko: px
Aloita esitys sivulta:

Download "DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi"

Transkriptio

1 DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

2 LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän kappaleen suhteellinen liike. Jäykän kappaleen kinetiikka: Liikemäärän ja liikemäärän momentin tase. Kappaleen massaominaisuudet.

3 KERTAUS

4 KERTAUS: SUHTEELLINEN LIIKE z Z ω ρ y x Y = + ρ X Derivoimalla edeltä esitystä r = r C + ρ saadaan (kannattaa johtaa ) XY Z ρ xyz Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt Nopeus: Kiihtyvyys: v = ṙ C + ρ r + ω ρ a = r C + ρ r + ω ρ + ω (ω ρ) + 2ω ρ r (alaviite r viittaa suhteellisiin derivaattoihin)

5 KERTAUS: JÄYKÄN KAPPALEEN PARTIKKELIN LIIKE z Z ω ρ y Y x = + ρ X Koska ρ r = 0 jäykälle kappaleelle (kappalekoordinaatistossa) Jäykän kappaleen partikkelin partikkelin nopeus ja kiihtyvyys asema: r = r C + ρ CP nopeus: v = ṙ C + ω ρ CP kiihtyvyys: a = r C + ω ρ CP + ω (ω ρ CP ),

6 KERTAUS: JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE Kuinka saadaan absoluuttinen kulmanopeus ja -kiihtyvyys (ω ja α), jos (1) niistä tehdyt suhteelliset havainnot (ω r ja α r ) ja (2) suhteellisen havainnon tekijän kannan kulmanopeus ja -kiihtyvyys (Ω ja Λ) tunnetaan? Kulmanopeus: Kulmakiihtyvyys: ω = Ω + ω r α = Λ + α r + Ω ω r Näissä yhtälöissä ω, α B:n kulmanopeus ja -kiihtyvyys (abs.) Ω, Λ A:n kannan kulmanopeus ja -kiihtyvyys (abs., Ω = Λ) ω r, α r A:n havainto B:n kulmanopeudesta ja -kiihtyvyydestä (suht.)

7 KERTAUS: ESIMERKKI Oheisen kuvan sauvaan kiinnitetty levy on nivelöity kitkattomasti pisteeseen O. Kappale pyörii symmetria-akselinsa ympäri vakiokulmanopeudella ω s ja pystyakselin ympäri vakiokulmanopeudella ω p. Käytä jäykän kappaleen suhteellisen liikkeen yhtälöitä ja esitä kappaleen kulmanopeus ja -kiihtyvyys Eulerin kulmiin liittyvässä välikoordinaatistossa ξηζ.

8 DYNAMIIKKA II: L5: JÄYKÄN KAPPALEEN KINETIIKKAA I Arttu Polojärvi

9 OPPIMISTAVOITTEET Tämän luennon jälkeen opiskelija: Ymmärtää kappaleen liikemäärän momentin taseen johdon perusperiaatteet siten, että pystyy soveltamaan niitä jatkossa jäykän kappaleen liikeyhtälöiden johtamisessa. Hahmottaa kappaleen massan vaikutusmittojen merkityksen jäykän kappaleen liikeyhtälöiden muodostamisessa. Osaa soveltaa kappaleen massan vaikutusmittojen määritelmiä geometrialtaan yksinkertaisten kappaleiden massan vaikutusmittojen määrittämiseen.

10 MEKANIIKAN PERUSLAIT Kinetiikka = liikkeen ja sen syyn (voimien ja niiden momenttien) tarkastelu. Liikemäärän taseen periaate: Kappaleen liikemäärän muutosnopeus on yhtä suuri kuin siihen vaikuttavien voimien summa f = d (mv) = ṁv + m v = m v = ma dt Liikemäärän momentin taseen periaate: Kappaleen liikemäärän momentin muutosnopeus on yhtä suuri kuin siihen vaikuttavien ulkoisten voimien aiheuttaminen momenttien summa m = l Lisäksi: massan säilymisen, energian taseen ja entropian kasvun periaatteet.

11 LIIKEMÄÄRÄN MOMENTIN TASE

12 LIIKEMÄÄRÄN MOMENTIN TASE: MÄÄRITELMIÄ Peruskäsitteet ja määritelmät kirjoitettuna partikkelisysteemille: Ulkoisten voimien momentti*: m = Liikemäärän momentti: l = Liikemäärän momentin tase: r i F i r i m iv i m = dl dt (= l) *Tässä hieman sopimuksen vastaisesti merkintä: F i ulkoinen voimavektori Liikemäärän momentin tase pätee kaikille partikkelisysteemeille ja kappaleille (ääretön määrä partikkeleita), mutta on erityisen hyödyllinen jäykän kappaleen rotaatioiden tapauksessa, koska jäykän kappaleen pisteiden väliset etäisyydet ovat vakioita (massaominaisuudet saadaan temppuiltua vakioiksi). Seuraavaksi johdetaan m = l lähtien tutusta liikelaista f = ma

13 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Sisäiset voimat f ij ovat systeemin partikkelien toisiinsa välittämiä voimia. Määritellään ensin i-partikkeliin vaikuttava sisäisten voimien resultantti f i = j=1,i j Eli i-partikkeliin vaikuttaa muiden systeemin partikkelien aiheuttamat sisäiset voimat - ei sen oma. Tässä ja jatkossa merkintä f ij : partikkeliin i partikkelin j kohdistama voima (voi ajatella, että esim. muodonmuutoksesta johtuva voima). On oltava f ij = f ji, jotta systeemin partikkelit i ja j olisivat tasapainossa (voima ja vastavoima). f ij

14 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Huomioi liikeyhtälöissä sekä ulkoiset että sisäiset voimat F i + f i = m ia i sekä ota momentti pisteen O (mielivaltainen) suhteen r i (F i + f i) = r i m ia i. Pädettävä jokaiselle partikkelille on myös pädettävä r i (F i + f i ) = r i m i a i. jonka oikeaa ja vasenta puolta täytyy johdossa tarkastella.

15 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Yhtälön vasemmalta puolelta häviää termejä ja saadaankin heti ulkoinen momentti r i (F i + f i) = r i F i + r i f i = r i F i = m, jossa viimeinen = on määritelmä edeltä. Tulos saadaan, koska (hankalin kohta) r i f i = r i f ij = r i f ij,i j,i j = r 1 f 12 + r 1 f r 1 f 1n + r 2 f 21 + r 2 f r 2 f 2n ja koska f ij + f ji = 0 niin esim. edellä termit r 1 f 12 + r 2 f 21 = r 1 f 12 r 2 f 12 = r 1 f 12 r 2 f 12 = (r 1 r 2 ) f 12 = 0, koska r 1 r 2 f 12 ks. kuva ja r i f i = 0. O 1 r 2 f 12 r 1 f 21 r 1 r 2 2

16 LIIKEMÄÄRÄN MOMENTIN TASE: JOHTO Sijoitetaan edeltä ja tarkastellaan yhtälön m = r i F i = r i m ia i. oikeaa puolta. Huomioidaan tulon derivaatta d dt r i m i v i = = dr i dt m iv i + r i m i dv i dt v i m iv i + r i m ia i } {{ } =0,b b=0 kaikilla b = r i m ia i, Sijoitetaan tähän vain l:n määritelmä m = r i F i = r i m ia i = d dt r i m iv i = dl dt (= l)

17 LIIKEMÄÄRÄN MOMENTIN TASE: ESIMERKKI Oheisessa kuvassa esitetyssä systeemissä henkilö (partikkeli, jonka massa on m) pyörii massattomassa ja kitkattomassa karusellissa. Oletetaan, että systeemiin ei vaikuta mitään ulkoisia momentteja ja henkilö siirtyy etäisyydeltä R etäisyydelle r suhteessa karusellin keskipisteeseen A. Mikä on karusellin kulmanopeudeksien ω 0 (kun etäisyys R) ja ω (kun etäisyys r) suhde? Voit olettaa, että tarkasteluhetkillä henkilö ei ole liikeessä kohti karusellin keskustaa.

18 LIIKEMÄÄRÄN MOMENTIN TASE: MASSAN VAIKUTUSMITAT Edellä ollaan siis johdettu liikemäärän momentin taseelle yhtälö, jonka voi ajatella olevan liikemäärä m iv i mielivaltaisen pisteen O suhteen. Tämähän oli m = dl dt = d dt r i m i v i. Selkeästi yhtälössä esiintyy partikkelisysteemin partikkelien massat m i ja niiden asemat r i eräiden nk. partikkelisysteemin tai kappaleen massan vaikutusmittojen johto ja käyttö helpottaa jatkossa paljon. Huomautetaan jo, että jäykälle kappaleelle partikkelien määrä on ääretön, ja aiemmissa johdoissa voidaan korvata kaikki summat integraaleilla ( ) ja partikkelien massat korvataan massa-alkioilla ( dm = ρdv m i ). Johdetaan tarvittavat massaominaisuudet ennen dl/dt:n (yllä) aukaisemista

19 MASSAN VAIKUTUSMITAT

20 MASSAN VAIKUTUSMITAT: MÄÄRITELMIÄ Massa: m = m i Massakeskp.: ρ AC = 1 ρ m Ai m i J xx J xy J xz Hitausmatriisi: J = J yx J yy J yz J zx J zy J zz Edellä ominaisuudet esitetty mv. pisteen A suhteen: eli paikkavektori ρ Ai on vektori A:sta partikkeliin i. Nämä suureet kuvaavat jäykän kappaleen massan ja sen jakautumisen täydellisesti mekaniikan ongelmien tapauksessa (yhteensä kymmenen toisistaan riippumatonta parametria). Kaksi ensimmäistä lienevät tuttuja, viimeinen ehkä vähän hankalampi

21 MASSAN VAIKUTUSMITAT: HITAUSMATRIISI PARTIKKELISYST. J xx = m i (yi 2 + zi 2 ) J yx = J zx = J xy = m i (y i x i ) J yy = m i (z i x i ) m i (x i y i ) m i (x 2 i + zi 2 ) J zy = J xz = J yz = m i (z i y i ) J zz = m i (x i z i ) m i (y i z i ) m i (x 2 i + yi 2 ) Huomaa, että tässä siis koordinaatit x i, y i ja z i ovat ihan oikeasti partikkelin i paikkavektorin (mv. pisteen suhteen) komponentteja (ρ i = x i i + y i j + z i k)! Hitausmatriisin diagonaali-alkiot (J xx, J yy, J zz ) ovat hitausmomentteja ja muut alkiot hitaustuloja. Huomaa, että hitaustuloille pätee J ij = J ji hitausmatriisi on symmetrinen eli kappaleen hitautta rotaatiossa kuvaa kuusi toisistaan riippumatonta parametria.

22 MASSAN VAIKUTUSMITAT: ESIMERKKI olme partikkelia, joiden kunkin massa on m, ovat ellä b origosta kuvan osoittamalla tavalla. dosta partikkelisysteemin Kuvan kolme partikkelia, massan joiden vaikutusmitat kunkin (oriuhteen) massa kuvan on koordinaatistossa m, ovat etäisyydellä (kokonaismassa b origosta m, skipisteen kuvan paikka osoittamalla ~r tavalla. Ratkaise partikkelisysteemin massan vaikutusmitat (ori- C ja hitaustensori J $ O. aise kappaleen liikemäärän momentti L ~ O (origon O gon O suhteen) kuvan koordinaatistossa ~ tapauksessa, jossa kappaleen kulmanopeus! on (kokonaismassa, massakeskipisteen paikka y j +! z ~ k? ja hitausmatriisin alkiot). : 3 m, ~r C = b/3(~i+~j+ ~ k) ja J $ O = 2 3 mb2 (~i~i+~j~j+ ~ k ~ k) 2 mb 2 (! 3 x ~i +! y ~j +! z ~ k) yrrä on kiinnitetty pallonivelellä kiinteään origoon ale pyörii symmetria-akselinsa ympäri vakiokulmalla! s. Määritä kappaleeseen vaikuttava pisteeseen oitu momenttivektori (välikoordinaatiston kannassa), pale kiertää Z-akselia vakiokulmanopeudella! p

23 MASSAN VAIKUTUSMITAT: HITAUSMATRIISI KAPPALEELLE Esitys kappaleelle saadaan korvaamalla edelliset summat integraaleilla ja partikkelien massat massa-alkioilla (J:n ominaisuudet säilyvät samoina): J xx = y 2 + z 2 ρdv J xy = xyρdv J xz = xzρdv V V V J yx = yxρdv J yy = x 2 + z 2 ρdv J yz = yzρdv V V V J zx = zxρdv J zy = zyρdv J zz = x 2 + y 2 ρdv V V Huomaa, että tässä siis koordinaatit x, y ja z ovat ihan oikeasti kappaleen jonkin pisteen paikkavektorin (mv. pisteen suhteen) komponentteja (ρ = xi + yj + zk)! Tärkeää: kannan valintaa ei ole tässä vielä rajoitettu - voidaan siis käyttää esim. kappalekoordinaatistoa (ja usein näin tehdäänkin)! Kuten skalaarit ja vektorit hitaustensori on invariantti koordinaatistonmuunnoksissa mutta (yleensä) eri kannoissa hitaustensorin komponentit saavat eri arvoja. V

24 MASSAN VAIKUTUSMITAT: STEINERIN SÄÄNTÖ Jos hitaustensori J tunnetaan kappaleen keskipisteen suhteen, saadaan kuvan mukaisen x y z -koordinaatiston origon suhteen hitaustensorin J alkiot seuraavasti: J xx = J xx + m(d 2 y + d 2 z) J xy = J xy + md x d y J xz = J xz + md x d z J yx = J yx + md y d x J yy = J yy + m(d 2 x + d 2 z) J yz = J yz + md y d z J zx = J zx + md zd x J zy = J zy + md zd y J zz = J zz + m(d 2 x + d 2 y) z z x y x y d = d x i + d y j + d z k Huomaa: hitausmomenttien minimit, kun J ratkaistaan massakeskipisteen suhteen!

25 MASSAN VAIKUTUSMITAT: ESIMERKKI y Ratkaise oheisen kuvan mukaisen ohuen kolmiolevyn (paksuus t) hitausmomentti x-akselin suhteen (J xx ). Mikä olisi J xx :n arvo ratkaistuna kolmion massakeskipisteen suhteen (massakeskipiste korkeudella y = h/3)? h b x

26 MASSAN VAIKUTUSMITAT: YHDISTETTY KAPPALE Yksinkertaisista osista koostuvan kappaleen hitausmomentti pisteen A suhteen saadaan summaamalla sen osien hitausmomentit pisteen A suhteen (jos haluaisit momentin massakeskipisteen C suhteen, täytyy myös ratkaista massakeskipiste yhdistetylle kappaleelle). Yhdistetty kappale (ympyrälevy ja massa m etäsiyydellä R levyn keskipisteestä). Muista huomioida Steinerin sääntö!

27 MASSAN VAIKUTUSMITAT: PÄÄHITAUSKOORDINAATISTO z x z x y y Hitausmatriisi x y z -koordinaatistossa J = LJL T, jossa L antaa kantojen välisen yhteyden i i j k = L j k J x x 0 0 Päähitauskoordinaatistossa (x y z ): J = 0 J y y J z z

28 MASSAN VAIKUTUSMITAT: PÄÄHITAUSKOORDINAATISTO J x x 0 0 Päähitauskoordinaatistossa (x y z ): J = 0 J y y J z z Hitaustensori on reaalinen, symmetrinen ja positiividefiniitti: mille tahansa kappaleelle löytyy (kappaleeseen nähden) kulma-asemaltaan sellainen ortogonaalinen kanta, että hitaustensori on diagonaalinen. Päähitauskoordinaatisto löytyy ominaisarvotehtävän tuloksena (ei ratkaista täällä) ja on tyyppillisesti kappalekoordinaatisto asemoituna s.e hitaustulot häviävät diagonaalinen hitaustensori! Voidaan näyttää esimerkiksi, että kappaleen symmetria-akseli on aina yksi päähitauskoordinaatiston akseleista valitse kappalekoordinaatisto s.e. yksi akseleista yhtyy symmetria-akseliin.

29 MASSAN VAIKUTUSMITAT: PYÖRÄHDYSYMMETRIA Pyörähdyssymmetrisen kappaleen symmetria-akselin mv. pisteen suhteen ratkaistu J on vakio kaikkien symmetria-akselin suhteen pyöräytettyjen koordinatistojen tapauksissa! x x y y ϕ z, z Kuvan x y z-koordinaatisto on pyöräytetty symmetria-akselin z (ja z ) suhteen kulman θ verran: J on sama kummassakin koordinaatistossa. Kuvan sylinterisymmetrisessä tapauksessa J xx = J yy ja hitaustulot ovat nollia! Näin on aina sylinterisymmetrisissä tapauksissa (merkinnät voivat vaihtua).

30 MASSAN VAIKUTUSMITAT: PYÖRÄHDYSYMMETRIA x x y y ϕ z, z Eulerin kulmien välikoordinaatisto: jos pyörähdyssymetrinen (riittää myös että J xx = J yy ) kappale spinnaa akselinsa ympäri ξηζ-koordinaatistossa, on sen hitausmatriisi vakio ξηζ-koordinaatistossa. Helpottaa jatkossa (esim. hyrräyhtälöt välikoordinaatossa)! Tyypillisesti näissä ongelmissa hitausmatriisi tulee olemaan muotoa I O 0 0 J = 0 I O I

31 MASSAN VAIKUTUSMITAT: ESIMERKKI Muodosta homogeenisen sylinterin (säde R, pituus L, materiaalin tiheys ρ) hitausmatriisi origon suhteen, kun z-akseli yhtyy symmetria-akseliin ja koordinatiston origo sijaitsee massakeskipisteessä. x y z

DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta: jäykkä kappale, kulma-asema, Eulerin kulmat, kulmanopeus. Suhteellinen liike: Vektorin muutosnopeudet eri koordinaatistoissa.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

Luento 9: Pyörimisliikkeen dynamiikkaa

Luento 9: Pyörimisliikkeen dynamiikkaa Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

Klassista mekaniikkaa - kahden kappaleen probleema

Klassista mekaniikkaa - kahden kappaleen probleema Klassista mekaniikkaa - kahden kappaleen probleema 24. marraskuuta 2005 Sisältö 1 Periaatteet 2 1.1 Liikemäärämomentti....................... 4 1.2 Partikkelisysteemi......................... 5 2 Kahden

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

RTEK-2000 Statiikan perusteet 4 op

RTEK-2000 Statiikan perusteet 4 op RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat Osaamistavoitteet

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R, Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi.

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi. Tehtävä 1 Kirjoita neljä eri funktiota (1/2 pistettä/funktio): 1. Funktio T tra saa herätteenä 3x1-kokoisen paikkavektorin p. Se palauttaa 4x4 muunnosmatriisin, johon sijoitettu p:n koordinaattien mukainen

Lisätiedot

Luento 8: Liikemäärä ja impulssi

Luento 8: Liikemäärä ja impulssi Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

FYSA210/2 PYÖRIVÄ KOORDINAATISTO

FYSA210/2 PYÖRIVÄ KOORDINAATISTO FYSA210/2 PYÖRIVÄ KOORDINAATISTO Johdanto Inertiaalikoordinaatisto on koordinaatisto, jossa Newtonin mekaniikan lait pätevät. Tällaista koordinaatistoa ei reaalimaailmassa kuitenkaan ole. Epäinertiaalikoordinaatisto

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

DYNAMIIKKA II, LUENTO 1 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 1 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 1 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Yleisiä asioita syksyn 2015 kurssista. Johdanto: Dynamiikka osana mekaniikkaa ja sen tarkastelukohteet. Dynamiikan ongelmien ratkaiseminen.

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

5. OSITTAISINTEGROINTI

5. OSITTAISINTEGROINTI 5 OSITTAISINTEGROINTI Kahden funktion f ja g tulo derivoidaan kuten muistetaan seuraavasti: D (fg) f g + f Kun tämä yhtälö integroidaan puolittain, niin saadaan fg f ()g()d + f ()()d Yhtälö saattaa erota

Lisätiedot

Mat Matematiikan peruskurssi S2

Mat Matematiikan peruskurssi S2 Mat-1.122 Matematiikan peruskurssi S2 Ratkaisuehdotuksia Harjoitus 12 alkuviikko Tehtävä 1 Hahmottele annetut vektorikentät sekä niiden kenttäviivat tapauksissa. a)f(x, y) xi + yj b)f(x, y) e x i + e -x

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Differentiaali- ja integraalilaskenta 2

Differentiaali- ja integraalilaskenta 2 ifferentiaali- ja integraalilaskenta 2 Riikka Kangaslampi Syksy 214 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 2 tueksi

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) 18 ( 9) ( ) ( + ) lim = lim = lim + + ( + ) = lim ( 6) = ( ) 6 = 1 + 6 ( ) + 6 0 lim = = = 0 6 8 K. a) f () =,

Lisätiedot

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA Kahden kappaleen suhteellisen liikkeen yhtälö: R m 2 R = µ R r 3 jossa µ = G(m 1 + m 2 ) Liikeyhtälön integraalit m 1 R 1 R 2 k = R R suhteellisen liikkeen imp.mom/massayksikkö

Lisätiedot