TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

Koko: px
Aloita esitys sivulta:

Download "TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat"

Transkriptio

1 TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria, poikkileikkaukseltaan symmetrisiä ja materiaaliltaan homogeenisia Lisäksi tutkitaan jännityskeskittymiä epäjatkuvuuskohdissa 1 SISÄLTÖ 1. Leikkausvoima- ja taivutuskuvaajat 2. Graafinen menetelmä leikkausvoima- ja taivutuskuvaajien määrittämiseksi 3. Suoran sauvan taivutusmuodonmuutos 4. Taivutusyhtälö 5. Jännityskeskittymät 2 1

2 6.1 LEIKKAUS- JA TAIVUTUSMOMENTTIJAKAUMAT Hoikkia sauvoja, joita kuormitetaan poikittaissuunnassa sanotaan palkeiksi LEIKKAUS- JA TAIVUTUSMOMENTTIJAKAUMAT Palkin suunnittelu edellyttää suurimman leikkausvoiman ja taivutusmomentin määrittämistä Muodostetaan leikkausvoiman ja taivutusmomentin lausekkeet pituuskoordinaatin x funktiona Esitetään funktiot graafisesti: leikkausvoima- ja taivutusmomenttijakaumat Suunnittelijoiden on tunnettava leikkausvoiman ja taivutusmomentin jakauma, jolloin palkkia voidaan tarvittaessa vahvistaa joltain osalta 4 2

3 6.1 LEIKKAUS- JA TAIVUTUSMOMENTTIJAKAUMAT Leikkausvoiman ja taivutusmomentin lausekkeet pitää määrittää jokaisella alueella, jonka rajaa kuormituksen epäjatkuvuus LEIKKAUS- JA TAIVUTUSMOMENTTIJAKAUMAT Merkkisääntö Käytetään samaa merkkisääntöä kuin statiikassa: 6 3

4 6.1 LEIKKAUS- JA TAIVUTUSMOMENTTIJAKAUMAT Määritelmiä Palkit ovat pitkiä suoria rakenneosia, jotka kantavat poikittaiskuormia. Leikkausvoima- ja taivutusmomenttijakaumien määrittäminen on tärkeää, jotta suunnittelija näkee missä pisteessä rasitus on suurimmillaan Merkkisäännön avulla voidaan muodostaa em. rasitusyhtälöt ja piirtää ne kuvaajina Leikkausvoima- ja taivutusmomenttijakaumien määrittäminen on esitetty statiikan kurssissa, joten tässä ne kerrataan vain esimerkin avulla 7 ESIMERKKI 6.6 Määritä kuvan palkin leikkausvoima- ja taivutusmomenttijakaumat: 8 4

5 ESIMERKKI 6.6 (RATKAISU) Tukireaktiot: Lasketaan vapaakappalekuvasta Leikkausvoima- ja taivutusmomenttifunktiot : Palkki on jaettava kahteen osaan, koska keskellä on kuormituksen epäjatkuvuus (pistevoima 15 kn) 0 x 1 5 m, + Σ F y = 0;... V = 5.75 N + Σ M = 0;... M = (5.75x ) kn m 9 ESIMERKKI 6.6 (RATKAISU) Leikkausvoima- ja taivutusmomenttifunktiot 5 m x 2 10 m, + Σ F y = 0;... V = ( x 2 ) kn + Σ M = 0;... M = ( 2.5x x ) kn m Tarkista tulos: w = dv/dx ja V = dm/dx. 10 5

6 ESIMERKKI 6.6 (RATKAISU) Leikkausvoima- ja Taivutusmomenttifunktiot: graafinen esitys GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Edellä esitetty tapa on varsin työläs yksinkertaistenkin rakenteiden analyysissa. Yksinkertaisempi vaihtoehto on käyttää differentiaaliyhtälöitä, jotka sitovat yhteen kuormitustiheyden, leikkausvoiman ja taivutusmomentin: dv ( ) dx = wx V = w( x) dx dm V dx = M = Vdx 12 6

7 6.2 GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Alueet, joissa vaikuta kuormitustiheys w dv dx = w(x) dm dx = V Leikkaus- = kuormitustiheys ko. voima- jakauman pisteessä kulmakerroin Taivutus- = leikkausvoima ko. momentti- jakauman pisteessä kulmakerroin GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Alueet, joissa vaikuta kuormitustiheys w V = w(x) dx Leikkausvoiman muutos = kuormitustiheyden rajaama alue Taivutusmomentin muutos M = V(x) dx = leikkausvoimakuvion rajaama alue 14 7

8 6.2 GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Pistemäisen voiman ja momentin alueet GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Alueet, joissa vaikuta kuormitustiheys w 16 8

9 6.2 GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Analyysin vaiheet Tukireaktiot Ratkaise tukireaktiot ja määritä kuormat, jotka vaikuttavat palkin poikittais- ja pitkittäissuunnassa Leikkausvoimajakauma Piirrä tunnetut leikkausvoiman arvot palkin kahteen pisteeseen GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Analyysin vaiheet Leikkausvoimajakauma Koska dv/dx = w, leikkausvoimajakauman kulmakerroin on sama kuin kuormitustiheyden negatiivinen arvo ko. pisteessä Leikkausvoiman numeerinen arvo määrätyssä pisteessä saadaan joko leikkausmenetelmällä ja tasapainoyhtälöillä. Toinen vaihtoehto on käyttää yhteyttä V = w(x) dx eli leikkausvoiman muutos kahden pisteen välillä on kuormitustiheyden rajaama alue negatiivisena. 18 9

10 6.2 GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Analyysin vaiheet Leikkausvoimajakauma Koska w(x) on integroitava V:n laskemiseksi, on kuormitustiheyden w(x) asteluku yhtä astetta pienempi kuin leikkausvoimajakauman asteluku Taivutusmomenttijakauma Piirrä tunnetut taivutusmomentin arvot palkin kahteen pisteeseen Koska dm/dx = V, momenttijakauman kulmakerroin on sama kuin leikkausvoima ko. pisteessä GRAAFINEN MENTELMÄ LEIKKAUSVOIMA- JA TAIVUTUSMOMENTTIJAKAUMIEN MÄÄRITYKSELLE Analyysin vaiheet Taivutusmomenttijakauma Pisteessä, jossa leikkausvoima on nolla on dm/dx = 0 ja taivutusmomentilla on pienin tai suurin arvonsa (paikallisesti) Mikäli halutaan momentin numeerinen arvo, on käytettävä leikkausmenetelmää ja tasapainoehtoja. Toinen tapa on laskea M = V(x) dx, ts. momentin muutos on kahden pisteen rajaaman alueen leikkausvoimakuvaajan pinta-ala. Momenttifunktio on siis astetta korkeampi kuin leikkausvoimafunktio

11 ESIMERKKI 6.11 Piirrä leikkausvoima- ja taivutusmomenttijakaumat kuvan palkille. 21 ESIMERKKI 6.11 (RATKAISU) Tukireaktiot: Vapaakappalekuvasta Leikkausvoimajakauma Kuormitustiheyden perusteella leikkausvoimajakauman kulmakerroin muuttuu arvosta nolla pisteessä x = 0 arvoon 2 pisteessä x = 4.5. Siten sen muoto on parabolinen. Leikkausmenetelmällä saadaan piste, jossa leikkausvoima on nolla: + Σ F y = 0;... x = 2.6 m 22 11

12 ESIMERKKI 6.11 (RATKAISU) Taivutusmomenttijakauma Leikkausvoimakuvaajan mukaan kulmakerroin alussa on +1.5 ja se pienenee arvoon nolla pisteessä 2.6 m. Sen jälkeen se pienenee arvoon 3 pisteessä x = 4.5 m. Momenttijakauma on kolmannen asteen yhtälö. + Σ M = 0;... M = 2.6 kn m TAIVUTUSMUODONMUUTOS (TAIPUMA) Suoraa, prismaattista palkkia kuormitetaan taivutusmomentilla. Pitkittäissäikeet kaartuvat ja poikittaissäikeet pysyvät suorina, mutta kiertyvät: 24 12

13 6.3 TAIVUTUSMUODONMUUTOS (TAIPUMA) Neutraaliakselilla pitkittäissäikeiden pituus ei muutu: TAIVUTUSMUODONMUUTOS (TAIPUMA) Teknisen taivutusteorian perusoletukset: 1. Neutraaliakselilla pituussuuntaiset säikeet eivät veny tai puristu 2. Kaikki poikkileikkaukset pysyvät tasoina ja ovat kohtisuorassa pituusakselia vastaan myös muodonmuutoksessa 3. Poikkileikkauksen omaa muodonmuutosta ei oteta huomioon 26 13

14 6.3 TAIVUTUSMUODONMUUTOS (TAIPUMA) Poikkileikkauksessa pitkittäinen normaalivenymä muuttuu lineaarisesti neutraaliakselilta etäisyyden y funktiona (kuva) Positiivisella momentilla neutraaliakselin yläpuoliset säikeet (+y) ovat puristuksella ( ε) Positiivisella momentilla neutraaliakselin alapuoliset säikeet (-y) ovat vedolla (+ε) Yhtälö 6-8 ε = (y/c)ε max Normaalivenymän jakauma TAIVUTUKSEN PERUSYHTÄLÖ Oletetaan materiaalin käyttäytyvän lineaarielastisesti joten Hooken laki pätee Normaalivenymän lineaarinen muutos tarkoittaa silloin myös normaalijännityksen lineaarisuutta Soveltaen Hooken lakia edellisen sivun yhtälöön 6-8 saadaan Normaalivenymän jakauma Yhtälö 6-9 σ = (y/c)σ max Taivutusnormaalijännityksen jakauma 28 14

15 6.4 TAIVUTUKSEN PERUSYHTÄLÖ Soveltaen statiikan tasapainoyhtälöitä voidaan kuvan jännitysjakaumasta johtaa yhteydet Yhtälö 6-10 A y da = 0 Yhtälö 6-11 M = σ max c A y 2 da Taivutusnormaalijännityksen jakauma Alemman yhtälön integraali on poikkileikkauksen ns. neliömomentti tai taivutusjäyhyys. Se merkitään suuremerkinnällä I TAIVUTUKSEN PERUSYHTÄLÖ Jälkimmäisestä yhtälöstä voidaan ratkaista suurin taivutusnormaalijännitys eli Mc σ Yhtälö 6-12 max = I σ max = poikkileikkauksen suurin jännitys, joka sijaitsee pisteessä joka on kauimpana neutraaliakselilta M = sisäinen taivutusmomentti I = taivutusjäyhyys c = suurin kohtisuora etäisyys neutraaliakselilta poikkileikkauksessa 30 15

16 6.4 TAIVUTUKSEN PERUSYHTÄLÖ Normaalijännitys mielivaltaisessa pisteessä y voidaan määrittää yhtälöstä My Yhtälö 6-13 σ = I Yhtälöitä 6-12 ja 6-13 sanotaan taivutusyhtälöiksi. Negatiivinen taivutus +y +x TAIVUTUKSEN PERUSYHTÄLÖ Vasemmassa kuvassa on skemaattisesti esitetty ulokepalkin taivutusnormaalijännityksen kehittyminen pituuden kasvaessa Rasituksena on oma paino Sininen väri kuvaa vetojännitystä, punainen puristusjännitystä 32 16

17 6.4 TAIVUTUKSEN PERUSYHTÄLÖ Neliömomentti tai taivutusjäyhyys lasketaan yleisesti kaavasta I = A y 2 da Usein poikkileikkaus voidaan jakaa suorakaideosiin (leveys b, korkeus h), jolloin voidaan em. integraali laskea summalausekkeena I = Σ( I i +d i2 A i )= Σ( b i h i 3 /12+d i 2 A i ) missä d i on koko pinnan A=ΣA i pintakeskiön etäisyys osapinnan A i pintakeskiöstä ESIMERKKI: I-PALKIN TAIVUTUSJÄYHYYS Laske oheisen I-profiilin neliömomentti eli taivutusjäyhyys Jaetaan poikkileikkaus kolmeen osaan: ylä- ja alalaippa sekä uuma ovat suorakaideosia. Pintakeskiö C on symmetrian vuoksi keskellä. Siten 34 17

18 6.4 TAIVUTUKSEN PERUSYHTÄLÖ TAIVUTUSTEORIAN YHTEENVETOA Poikkileikkaus säilyy tasona muodonmuutoksessa Neutraaliakselilla on normaalijännitys nolla puhtaassa taivutuksessa Muodonmuutoksessa pituussuuntainen venymä muuttuu lineaarisesti nollasta neutraaliakselilla suurimpaan arvoonsa uloimmissa palkin säikeissä Jännitys muuttuu siten myös lineaarisesti mikäli materiaali on homogeenista ja jännitys pysyy suhteellisuusrajan alapuolella, ts. Hooken laki pätee TAIVUTUKSEN PERUSYHTÄLÖ TAIVUTUSTEORIAN YHTEENVETOA Lineaarielastisella (kimmoisella) materiaalikäyttäytymisellä neutraaliakseli käy poikkipinnan pintakeskiön kautta. Tämä perustuu siihen, että normaalivoima leikkauksessa on oltava nolla (leikkauksessa vaikuttaa voimapari!) Taivutusyhtälö perustuu edellytykseen, että sisäinen taivutusmomentti on lineaarisen normaalijännitysjakauman resultantin momentti neutraaliakselin suhteen 36 18

19 6.4 TAIVUTUKSEN PERUSYHTÄLÖ Yksinkertainen esimerkki Määritä oheiseen puupalkin poikkileikkauksen sisäinen rasitus (taivutusmomentti), kun suurin taivutusnormaalijännitys on 20 MPa TAIVUTUKSEN PERUSYHTÄLÖ Analyysin vaiheet Sisäinen taivutusmomentti Määritä leikkausmenetelmällä tutkittavan poikkileikkauksen sisäinen taivutusmomentti M Poikkileikkauksen pintakeskiö tai neutraaliakseli on tunnettava, koske taivutusmomentti M lasketaan tämän akselin suhteen Taivutusmomenttikuvaajasta saa suurimman taivutusmomentin mikäli taivutusnormaalijännitys on määritettävä 38 19

20 6.4 TAIVUTUKSEN PERUSYHTÄLÖ Analyysin vaiheet Poikkileikkaussuure Määritä taivutusjäyhyys I neutraaliakselin suhteen Taivutusjäyhyys saadaan joko suoraan taulukoista normeeratuille poikkipinnoille tai laskemalla TAIVUTUKSEN PERUSYHTÄLÖ Analyysin vaiheet Normaalijännitys Määritä etäisyys y neutraaliakselilta pisteessä, jossa jännitys määritetään Sovella yhtälöä σ = My/I, tai maksimijännitystä laskettaessa σ max = Mc/I Yksiköt! 40 20

21 ESIMERKKI 6.16 Kuvan ulokepalkin poikkileikkaus on U- profiili. Määritä suurin taivutusnormaalijännitys leikkauksessa a-a. y 41 ESIMERKKI 6.16 (RATKAISU) Sisäinen taivutusmomentti Tukireaktioita ei tässä tapauksessa tarvitse määrittää. Sen sijaan käytetään leikkausmenetelmää ja otetaan tutkittavaksi alue leikkauksen a-a vasemmalta puolelta. Huomaa, että leikkauksen normaalivoima N vaikuttaa pintakeskiössä. Taivutusmomentti lasketaan neutraaliakselin suhteen, joka käy poikkileikkauksen pintakeskiön kautta. y y 42 21

22 ESIMERKKI 6.16 (RATKAISU) Neutraaliakseli Neutraaliakselin sijainti saadaan laskemalla pintakeskiön paikka: y = Σ y A Σ A =... = mm 43 ESIMERKKI 6.16 (RATKAISU) Sisäinen rasitus Tasapainoehto neutraaliakselin suhteen antaa + Σ M NA = 0; 24 kn(2 m) kn( m) M = 0 M = kn m 44 22

23 ESIMERKKI 6.16 (RATKAISU) Poikkileikkaussuure (taivutusjäyhyys) Neliömomentti (tai taivutusjäyhyys) lasketaan jakamalla poikkileikkaus kolmeen suorakaideosaan ja soveltamalla paralleeliakseliteoreemaa jokaiselle osalle erikseen. I = [1/12(0.250 m)(0.020 m) 3 + (0.250 m)(0.020 m)( m m) 2 ] + 2[1/12(0.015 m)(0.200 m) 3 + (0.015 m)(0.200 m)(0.100 m m) 2 ] I = 42.26(10-6 ) m 4 45 ESIMERKKI 6.16 (RATKAISU) Suurin taivutusnormaalijännitys Suurin taivutusnormaalijännitys sijaitsee kauimpana neutraaliakselilta. Palkin alapinnalla c = 200 mm mm = mm. Siten σ = Mc max I = kn m( m) 42.26(10 = 16.2 MPa -6 ) m 4 Yläpinnalla σ = 6.79 MPa. Lisäksi normaalivoima N = 1 kn ja leikkausvoima V = 2.4 kn aiheuttavat lisäjännityksiä palkkiin

24 6.5 VINO TAIVUTUS Tässä esityksessä keskitytään vain symmetrisiin profiileihin ja pääakselien suhteen vaikuttaviin rasituksiin Taivutusyhtälöä voidaan kuitenkin soveltaa myös tapauksiin, jolloin profiili on epäsymmetrinen tai poikittaiskuormitus eroaa päätasoista (vino taivutus) VINO TAIVUTUS Huomaa alempien kuvien pääakselien suunta: 48 24

25 6.5 VINO TAIVUTUS Mielivaltaisesti vaikuttava momentti voidaan jakaa pääakseleille ja soveltaa superpositioperiaatetta: JÄNNITYSKESKITTYMÄT Taivutusyhtälöä voidaan käyttää vain silloin jännitysjakauman määrittämiseen poikkileikkauksessa kun palkki on prismaattinen eli poikkileikkaus ei muutu palkin pituussuunnassa Mikäli poikkileikkaus äkillisesti muuttuu, voidaan jännitysjakauma määrittää kokeellisesti tai kimmoteorialla, palkin taivutusteoria ei enää päde 50 25

26 6.9 JÄNNITYSKESKITTYMÄT Usein rakenneosissa on kuvan mukaisia epäjatkuvuuksia, ts. reikiä, koloja tai muita poikkipinnan muutoksia. Suurin taivutusnormaalijännityksen arvo sijaitsee pienimmässä poikkileikkauksessa JÄNNITYSKESKITTYMÄT Suunnittelussa/analyysissa ei tarvitse tietää tarkkaa jännitysjakaumaa, vaan suurin jännitys leikkauksessa saadaan käyttämällä jännityskonsentraatiokerrointa K Siten suurin taivutusnormaalijännitys voidaan laskea kaavasta σ = K Mc I Yhtälö

27 6.9 JÄNNITYSKESKITTYMÄT TÄRKEÄÄ Mitä suurempi muutos epäjatkuvuudessa, sitä suurempi huippujännitys Suunnittelussa/analyysissa ei tarvitse tietää tarkkaa jännitysjakaumaa vaan suurin arvo Suurin normaalijännitys vaikuttaa pienimmässä leikkauksessa Mikäli materiaali on haurasta tai rakenne on vaihtelevan kuormituksen alainen (väsymisvaara), on huippujännitys otettava huomioon 53 ESIMERKKI 6.26 Määritä suurin taivutusjännitys kuvan palkissa, johon vaikuttaa taivutusmomentti 5 knm. Myötöraja σ Y = 500 MPa

28 ESIMERKKI 6.26 (RATKAISU) Jännityshuippu on olakkeen kohdalla. Kuvasta saadaan konsentraatiokerroin K. r/h =... = 0.2 w/h =... = 1.5 Arvojen perusteella käyrästä saadaan K = ESIMERKKI 6.26 (RATKAISU) Soveltamalla yhtälöä 6-26: σ = K Mc I =... = 340 MPa Eli jännitys pysyy myötörajan alapuolella. Jännitysjakauma on epälineaarinen (kuva) Saint-Venantin periaatteen mukaisesti paikallinen jännityshuippu tasoittuu nopeasti siirryttäessä epäjatkuvuuskohdasta ja on lähes hävinnyt 80 mm etäisyydellä olakkeesta

29 ESIMERKKI 6.26 (RATKAISU) Jännitys olakkeen ulkopuolella on siis taivutusyhtälön mukaan σ max = 234 MPa. Huomaa, että olakkeen loiventaminen pienentää merkittävästi huippujännitystä σ max, koska r :n kasvaessa K pienenee. 57 YHTEENVETO Leikkausvoima- ja taivutusmomenttijakaumat ovat palkin sisäisten rasitusten graafisia esityksiä. Ne voidaan muodostaa statiikan leikkausmenetelmällä jakaen palkki sopiviin osiin ja soveltamalla tasapainoyhtälöillä. Toinen vaihtoehto on soveltaa rasitusten matemaattisia yhteyksiä, joiden perusteella tiedetään, että leikkausvoimakuvaajan kulmakerroin on kuormitustiheys w = dv/dx ja taivutusmomenttijakauman kulmakerroin on leikkausvoima V = dm/dx

30 YHTEENVETO Kuormitustiheyden pinta-ala (negatiivisena) vastaa leikkausvoiman muutosta eli V = w dx. Vastaavasti leikkausvoimajakauman rajaama pinta-ala vastaa taivutusmomentin muutosta M = Vdx. Leikkausmenetelmällä voidaan laskea missä tahanasa pisteessä leikkausvoima ja taivutusmomentti. Taivutusmomentti aiheuttaa lineaarisesti muuttuvan normaalivenymän palkin poikkileikkaukseen Mikäli materiaali on homogeeninen ja Hooken laki pätee eli momentin aiheuttama jännitys ei ylitä myötörajaa, saadaan sisäinen momentti laskettua jännitysjakauman momenttitasapainosta. 59 YHTEENVETO Tuloksena saadaan taivutusyhtälö σ = Mc/I, jossa I ja c määräytyvät neutraaliakselista joka käy poikkileikkauksen pintakeskiön kautta Mikäli poikkileikkaus ei ole symmetrinen, on kyseessä vino taivutus, jota tässä kurssissa ei käsitellä Suuriin jännitys yleisessä kuormitustapauksessa saadaan jakamalla taivutusmomentti pääakseleille ja soveltamalla superpositioperiaatetta suurimman jännityksen selvittämiseksi

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko.

10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko. Elementtimenetelmän perusteet Esimerkki. kn kn/m 5 = 8 E= GPa mm 5 5 mm (a) 5 5 6 Y X (b) Kuva. Tasokehä ja sen elementtiverkko. Tarkastellaan kuvassa (a) olevan tasokehän statiikan ratkaisemista elementtimenetelmällä.

Lisätiedot

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen

Lisätiedot

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/16

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/16 1/16 MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen Mitoitettava hitsattu palkki on rakenneosa sellaisessa rakennuksessa, joka kuuluu seuraamusluokkaan CC. Palkki on katoksen pääkannattaja. Hyötykuorma

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Myötölujuuden ja vetomurtolujuuden arvot f R ja f R y eh u m tuotestandardista tai taulukosta 3.1 Sitkeysvaatimukset: - vetomurtolujuuden ja myötörajan f y minimiarvojen

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Hämeenkylän koulun voimistelusalin vesikaton liimapuupalkkien kantavuustarkastelu

Hämeenkylän koulun voimistelusalin vesikaton liimapuupalkkien kantavuustarkastelu TUTKIMUSSELOSTUS Nro VTT S 01835 10 4.3.010 Hämeenkylän koulun voimistelusalin vesikaton liimapuupalkkien kantavuustarkastelu Tilaaja: Vantaan Tilakeskus, Hankintapalvelut, Rakennuttaminen TUTKIMUSSELOSTUS

Lisätiedot

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

Katso lasiseinän rungon päämitat kuvista 01 ja Jäykistys ja staattinen tasapaino

Katso lasiseinän rungon päämitat kuvista 01 ja Jäykistys ja staattinen tasapaino YLEISTÄ itoitetaan oheisen toimistotalo A-kulman sisääntuloaulan alumiinirunkoisen lasiseinän kantavat rakenteet. Rakennus sijaitsee Tampereen keskustaalueella. KOKOAISUUS Rakennemalli Lasiseinän kantava

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

Ruuvien päiden muotoja. [Decker ja esimerkiksi: ]

Ruuvien päiden muotoja. [Decker ja esimerkiksi:  ] Ruuvien päiden muotoja [Decker ja esimerkiksi: http://www.schrauben-lexikon.de/norm/din_609.asp ] Erilaisia muttereita [Decker] Torx- ja kuusiokolokannat Vasemmassa kuvassa esitetty Torx kanta ei rikkoonu

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

2 SUORA SAUVA ja PALKKI Suoran sauvan puhdas veto tai puristus Suoran palkin taivutus Harjoitustehtäviä 71

2 SUORA SAUVA ja PALKKI Suoran sauvan puhdas veto tai puristus Suoran palkin taivutus Harjoitustehtäviä 71 7 SISÄLLYSLUETTELO Alkulause 5 Kirjallisuus 12 1 JOHDANTO 13 1.1 Yleistä 13 1.2 Rakenteiden statiikan historiallista taustaa 15 1.3 Rakennetyyppejä 17 1.4 Rakenteen tuennat 22 1.5 Kuormitukset 25 2 SUORA

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

NELIÖJUURI. Neliöjuuren laskusääntöjä

NELIÖJUURI. Neliöjuuren laskusääntöjä NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

KANTAVUUS- TAULUKOT W-70/900 W-115/750 W-155/560/840

KANTAVUUS- TAULUKOT W-70/900 W-115/750 W-155/560/840 KANTAVUUS- TAUUKOT W-70/900 W-115/750 W-155/560/840 SISÄYSUETTEO MITOITUSPERUSTEET... 3 KANTAVUUSTAUUKOT W-70/900... 4-9 W-115/750... 10-15 W-155/560/840... 16-24 ASENNUS JA VARASTOINTI... 25 3 MITOITUSPERUSTEET

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

Kerto-Tyyppihyväksynnät. Toukokuu 2001

Kerto-Tyyppihyväksynnät. Toukokuu 2001 Kerto-Tyyppihyväksynnät Toukokuu 2001 Kerto-S Tuoteseloste 1. Kerto-S, standardikertopuun kuvaus Kerto-S valmistetaan sorvatuista havupuuviiluista liimaamallla siten, että kaikkien viilujen syysuunta on

Lisätiedot

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY

RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY YLEISTÄ Kaivanto mitoitetaan siten, että maapohja ja tukirakenne kestävät niille kaikissa eri työvaiheissa tulevat kuormitukset

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

YEISTÄ KOKONAISUUS. 1 Rakennemalli. 1.1 Rungon päämitat

YEISTÄ KOKONAISUUS. 1 Rakennemalli. 1.1 Rungon päämitat YEISTÄ Tässä esimerkissä mitoitetaan asuinkerrostalon lasitetun parvekkeen kaiteen kantavat rakenteet pystytolppa- ja käsijohdeprofiili. Esimerkin rakenteet ovat Lumon Oy: parvekekaidejärjestelmän mukaiset.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

y 1 x l 1 1 Kuva 1: Momentti

y 1 x l 1 1 Kuva 1: Momentti BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

1.5 KIEPAHDUS Yleistä. Kuva. Palkin kiepahdus.

1.5 KIEPAHDUS Yleistä. Kuva. Palkin kiepahdus. .5 KEPAHDUS.5. Yleistä Kuva. Palkin kiepahdus. Tarkastellaan yllä olevan kuvan palkkia. Palkilla vaikuttavasta kuormituksesta palkki taipuu. Jos rakenteen eometria, tuenta ja kuormituksen sijainti palkin

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim.

MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim. MAA7 7. Koe Jussi Tyni 8.1.01 1. Laske raja-arvot: a) 9 lim 6 lim 1. a) Määritä erotusosamäärän avulla funktion f (). 1 f ( ) derivaatta 1 Onko funktio f ( ) 9 kaikkialla vähenevä? Perustele vastauksesi

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

7. PINTA-ALAFUNKTIO. A(x) a x b

7. PINTA-ALAFUNKTIO. A(x) a x b 7. PINTA-ALAFUNKTIO Edellä on käsitelty annetun funktion integraalifunktion määrittämiseen liittyviä asioita kurssille asetettuja vaatimuksia jonkin verran ylittäenkin. Jodantoosassa muistanet mainitun,

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5)

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5) MEI-55 Mallintamisen perusteet Harjoitus 2 Tehtävä Dyadin a b, jossa a,b R 3 jälki on skalaari jota merkitään tr(a b) ja määritellään pistetulona tr(a b) = a b. (). Mikäli vektorit a ja b on annettu suorakulmaisessa

Lisätiedot

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332.

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332. Laudatur MAA ratkaisut kertausharjoituksiin. Polynomit. Vakiotermi 8 Kolmannen asteen termin kerroin, 5 8 = 9, Neljännen asteen termi n kerroin, 8 9, = 7,6 Kysytty polynomi P(a) = 7,6a + 9,a +a + ya +

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

1.3 Pilareiden epäkeskisyyksien ja alkukiertymien huomioon ottaminen

1.3 Pilareiden epäkeskisyyksien ja alkukiertymien huomioon ottaminen 1. MASTOPILARIN MITOITUSMENETELMÄ 1.1 Käyttökohteet Mitoitusmenetelmä soveltuu ensisijaisesti yksilaivaisen, yksikerroksisen mastojäykistetyn teräsbetonikehän tarkkaan analysointiin. Menetelmän soveltamisessa

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Palkin teknisen taivutusteorian historiasta

Palkin teknisen taivutusteorian historiasta Rakenteiden Mekaniikka Vol. 46, Nro 3, 013, s. 55-69 Palkin teknisen taivutusteorian historiasta Timo Saksala Tiivistelmä. Tässä artikkelissa tarkastellaan palkin teknisen (Eulerin-Bernoullin) taivutusteorian

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

TIESILTOJEN VÄSYTYSKUORMAT

TIESILTOJEN VÄSYTYSKUORMAT TIESILTOJEN VÄSYTYSKUORMAT Siltaeurokoodien koulutus Teräs-, liitto- ja puusillat 29-30.3.2010 Heikki Lilja Liikennevirasto 2 MILLE RAKENNEOSILLE TEHDÄÄN VÄSYTYSMITOITUS (TERÄS- JA LIITTOSILLAT) EN1993-2

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

EN : Teräsrakenteiden suunnittelu, Levyrakenteet

EN : Teräsrakenteiden suunnittelu, Levyrakenteet EN 993--5: Teräsrakenteiden suunnittelu, Levyrakenteet Jouko Kouhi, Diplomi-insinööri jouko.kouhi@vtt.fi Johdanto Standardin EN 993--5 soveltamisalasta todetaan seuraavaa: Standardi EN 993--5 sisältää

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot