Johdatusta CLIFFORD-paketin käyttöön Maplessa

Koko: px
Aloita esitys sivulta:

Download "Johdatusta CLIFFORD-paketin käyttöön Maplessa"

Transkriptio

1 Johdatusta CLIFFORD-paketin käyttöön Maplessa Heikki Orelma 4. maaliskuuta 2008 Sisältö 1 Lähtöasetelma 1 2 Perusteita 1 3 Cliordin algebrojen rakenteen tutkiminen 3 4 Cliordin tulo cmulnum-algoritmilla 5 5 Asennusohje 6 6 Tehtäviä 7 1 Lähtöasetelma Tämän lyhyehkön kirjoitelman tarkoitus johdattaa lukija Maple-ympäristössä toimivan CLIFFORD-paketin käyttöön. Paketin on kehittänyt 1990-luvulla Rafal Ablamowicz Tenneseen teknillisestä yliopistosta. Pakettia kehitetään jatkuvasti ja uusia paketin versioita ilmestyy samaan tahtiin kuin Maplen uusia versioita. Tässä esityksessä keskeisimpänä lähteenä on Ablamowiczin ja Fauserin artikkeli: Mathematics of CLIFFORD - A Maple Package for Cliord and Grassmann Algebras, lähde [1]. Kuten tiedämme, keskeisimmät tietokoneohjelmilla laskentaa suorittavan henkilön työvälineet ovat kynä ja paperi. Näin on myös nyt. Niinpä tuleekin ymmärtää, että paketti on suunniteltu vain suorittamaan mekaanisia ja tylsiä laskutoimituksia. Näin vapautuu lisää aikaa varsineiselle luovalle (matemaattiselle!?) ajattelulle. 2 Perusteita Maplessa paketti käynnistyy komennolla: [>with(cliord); 1

2 Yleisesti puhuttaessa, Cliordin algebra vektoriavaruudessa V määräytyy täysin bilineaarimuodosta B. Merkitään tällöin Cl(V, B). Otetaan a, b Cl(V, B) pari 1-vektoreita, joiden tulo voidaan esittään muodossa: xy = B(x, y) + x y. Tästä näemme, että tulossa ulkotulo-osuus ei riipu bilineaarimuodosta, kun Cliordin tulo itsessään riippuu bilineaarimuodosta. Tästä syystä, CLIFFORDpaketissa lähtökohdaksi on otettu Cliordin algebran alkioiden lausuminen kantavektoreiden ulkotulojen avulla. Tästä valinnasta ei liiemmin ole ongelmia. Erityisesti jos kantamme on ortonormaali, niin tunnetusti e i e j = e i e j, kun i j. Jatkossa tarkastellaan vain vektoriavaruutta V = R n, missä 1 n 9 1, bilineaarimuotoa B p,q (x, y) = p x i y i i=1 p+q i=p+1 ja näiden generoimia Cliordin algebroja Cl p,q := Cl(R n, B p,q ). Oletetaan lisäksi, että avaruuden R n kanta on ortonormaali {e 1,..., e n }. Yleisempiä tapauksia käsitellään lähteessä [1]. Lähdetään liikkeelle. Aluksi päätetään, missä Cliordin algebrassa halutaan työskennellä. Valitaan avaruuden R 3 Cliordin algebra t.s n = p + q = 3. Kanta muodostetaan komennolla: [> cbasis(3); Kanta-alkioiden välissä w-merkintä tarkoitta ulkotuloa (wedge). Tutumpaan notaatioon päästään merkitsemällä eij=eiwej. Tätä varten paketissa on valmiina makealiases-komento. Siis tehkäämme aliakset: [> eval(makealiases(3)); Nyt olemme muodostaneet kannan laskentaa varten. Määritellään Cliordin luvut a = 5 + 5e 1 + 5e 12 7e 123 ja b = 3e 13 14e 3 kuten tavallista: [> a:=5*id+5*e1+5*e12-7*e123; ja [>b:=3*e13-14*e3; Alkioiden ulkotulo a b lasketaan: [> a &w b; Toinen tapa laskea ulkotulo on käyttää wedge-komentoa. Cliordin tulo ab lasketaan komennolla: [> a &c b; 1 Tämä rajoitus on ohjelmallinen. x i y i 2

3 Vaihtoehtoinen komento tulon laskemiseen on cmul. Kuten lukija saattoi huomata, näytölle ilmestyi lauseke, jossa esiintyy runsaasti B i,j -symboleita. Symbolit B i,j bilineaarimuotoa esittävän matriisin B alkioita B i,j B(e i, e j ). Toistaisksi emme ole ottaneet kantaa mikä on Cliordin algebramme signatuuri. Koska kantamme on ortonormaali, niin B i,j = 0, kun i j, joten B on lävistäjä matriisi. Valitaan algebraksi Cl 2,1. Siis B 1,1 = B 2,2 = 1 ja B 3,3 = 1. Kätevimmin tämä kannattanee syöttää ohjelmaan käyttämällä (esimerkiksi) linalg-pakettia ja komentamalla: [> B:=diag(1,1,-1); Tämän jälkeen tulo voidaan laskea uudelleen. Nyt olemme päässeet alkuun paketin käytössä. Seuraavaksi listataan joitakin tärkeimpiä komentoja. Lisätietoa komennoista löytyy normaalisti helpistä. Alkion a reversio a, pääinvoluutio a ja konjugaatti a lasketaan komennoilla: [> reversion(a); [> gradeinv(a); [> conjugation(a); Alkion a inverssi a 1 lasketaan (kunhan vain on olemassa) komennolla: [> cinv(a); Alkion a k-vektoriosa [a] k saadaan komennolla vectorpart. Esimerkiksi 2-vektoriosa: [> vectorpart(a,2); Alkion a skalaariosa [a] 0 saadaan komennolla vectorpart(a,0) tai [> scalarpart(a); Olkoon x vektori ja a Cliordin luku. Vasen ja oikea kontraktio x a ja a x saadaan komennoilla [> LC(a,x); ja [> RC(a,x); 3 Cliordin algebrojen rakenteen tutkiminen CLIFFORD-paketin avulla voidaan myös helposti tutkia Cliordin algebrojen rakennetta. Tähän tarvittava komento on clidata([p,q]). Komento tulostaa listan [F, N, (semi)simple, f, S, K, M]. Keskeisin informaatio listalla on kolmen ensimmäisen kohdan antama informaatio, muut kohdat voi aluksi vapaasti sivuuttaa. Listalla: 3

4 1. Kolme ensimmäistä kohtaa kertovat, Cl p,q :n kanssa isomorsesta matriisialgebrasta. F {R, C, H} sen mukaan, onko matriisesityksen matriisien alkiot reaalisia, kompleksisia vai kvaternioita. Luku N kertoo matriisiesityksen matriisien dimension, esim. N = 2 kertoo, että esitys on 2 2- matriiseina. Kolmas alkio kertoo onko esitys yksinkertainen (simple) vai puoliyksinkertainen (semisimple) t.s. onko esitys muotoa Mat(F, N) vai Mat(F, N) Mat(F, N). 2. Neljännessä kohdassa tulostuu alkio f Cl p,q joka on ns. primitiivinen idempotentti. f:n avulla muodostetaan joukko S = Cl p,q f joka on Cl p,q :n minimaalinen vasen ideaali Viidennessä kohdassa on lista [g 1,..., g k ], jossa on sellaiset alkiot, että joukko {g 1 f,..., g k f} generoivat vasemman minimaalisen ideaalin S. 4. Kuudes kohta antaa sen Cl p,q :n osajoukon R generaattorit siten, että R = F. 5. Viimeinen kohta antaa listan [c 1,..., c r ] Cliodin lukuja. Tulostus tarkoittaa sitä, että joukko {c 1 f,..., c r f} virittää S:n, kun S ajatellaan oikeana F-modulina. Matriisiesityksen generoivia matriiseita voi etsiä komennolla matkrepr. Esimerkkinä tarkastellaan Cliordin algebraa Cl 2,0. Komennetaan [> clidata([2,0]); Komento tulostaa listan [real, 2, simple, 1/2 Id + 1/2 e1, [Id, e2], [Id], [Id, e2]. Listalta voimme päätellä seuraavaa: 1. Kolmesta ensimmäisestä kohdasta nähdään, että Cl 2,0 = Mat(2, R). 2. Neljännestä listan jäsenestä nähdään, että f = e 1 on primitiivinen idempotentti ja S = Cl 2,0 ( e 1) on minimaalinen vasen Cl2,0 :n ideaali. 3. Viides jäsen kertoo, että joukko {f, e 2 f} generoi S:n. 4. Kuudes jäsen kertoo, että alkion 1 Cl 2,0 virittämä joukko on isomornen R:n kanssa. 5. Seitsemäs jäsen kertoo, että S ajateltuna oikeana R-modulina on generoitu joukosta {f, e 2 f}. Matriisiesityksen generoivat matriisit saadaan komennolla matkrepr([2,0]). 2 Primitiivisitä idempotenteista, vasemmista ideaaleista ja spinoreista kiinnostuneiden kannattaa lukea esim. Louneston kirjaa: Cliord Algebras and Spinors, jossa asiaa käsitellään syvällisemmin. 4

5 4 Cliordin tulo cmulnum-algoritmilla Tarkastellaan tässä kappaleessa nopeasti sitä, miten ohjelma laskee Cliordin tulon. Algoritmeja tulon laskemiseksi on kaksi: rekursiivinen cmulnum-algoritmi ja ns. Rota-Steinin kombinatoriaalinen algoritmi cmulrs. Tässä esitellään ainoastaan cmulnum-algoritmi. Algorimiin cmulrs voi tutustua lähteessä [1]. Yleisesti voidaan sanoa, että cmulnum-algoritmi on käyttökelpoinen kun bilineaarimuodon matriisi on harva ja vektoriavaruuden dimensio on suuri (lähteessä [1] edellä oleva suuri tarkoittaa tilannetta: dim V 5). Puolestaan cmulrs on suunniteltu symbolista laskentaa silmällä pitäen. Varsinaisesti käyttäjän ei tarvitse tietää mitään edellä olevista algoritmeista käyttääkseen pakettia. Oletuksena käytettävän algoritmin (ja kaikkea muuta paketin toiminnasta kertovaa dataa) saa esille komentamalla: [> CLIFFORD_ENV(); cmulnum-algoritmissa kehitetään tuloa alkio kerrallaan ulkotuloiksi. Algoritmi perustuu seuraavaan ideaan. Olkoon u, v Cl p,q ja x Cl 1 p,q vektori. Tällöin (v x)u = (vx)u (v x)u = v(x u + x u) (v x)u. Tästä nähdään, että identiteetti vähentää ensimmäisen alkion v x astetta yhdellä Cliordin tulossa. Välivaiheissa tarvittavaa sievennystä hoidellaan tunnetuilla kaavoilla: x (u v) = (x u) v + u (x v) ja missä x Cl 1 p,q ja u, v, w Cl p,q. (u v) w = u (v w) Toistamalla tämä uudestaa riittävän monta kertaa, saadaan tulo esitettyä kokonaisuudessaan ulkotulojen ja kontraktioiden avulla. Jäljelle jäävät kontraktiot vektoreiden välillä lasketaan bilineaarimuodon avulla: x y = x y = B(x, y). Kun merkitään Cliordin tulo symbolilla c, yksittäinen askel rekursiossa on siis: (e a1... e ak ) c (e b1... e bm ) =(e a1... e ak 1 ) c (e ak (e b1... e bm ) + e ak e b1... e bm ) ((e a1... e ak 1 ) e ak ) c (e b1... e bm ). 5

6 Lasketaan seuraavaksi alkioiden e 1 e 2 ja e 3 e 4 Cliordin tulo edellä olevalla algoritmilla. Ensimmäinen askel: (e 1 e 2 ) c (e 3 e 4 ) = e 1 c ( e 2 (e 3 e 4 ) }{{} =B(e 2,e 3)Id e 4 B(e 2,e 4)Id e 3 +e 2 e 3 e 4 ) B(e 1, e 2 )Id c (e 3 e 4 ) = e 1 c (B(e 2, e 3 )e 4 B(e 2, e 4 )e 3 + e 2 e 3 e 4 ) B(e 1, e 2 )(e 3 e 4 ) = B(e 2, e 3 )e 1 c e 4 B(e 2, e 4 )e 1 c e 3 + e 1 c (e 2 e 3 e 4 ) B(e 1, e 2 )(e 3 e 4 ). Toisessa askeleessa lasketaan jäljelle jääneet tulot (edelleen samalla algoritmilla): e 1 c e 4 = B(e 1, e 4 ) + e 1 e 4 ja sekä e 1 c e 3 = B(e 1, e 3 ) + e 1 e 3 e 1 c (e 2 e 3 e 4 ) = e 1 (e 2 e 3 e 4 ) + e 1 e 2 e 3 e 4 = B(e 1, e 2 )e 3 e 4 e 2 (e 1 (e 3 e 4 )) + e 1 e 2 e 3 e 4 = B(e 1, e 2 )e 3 e 4 B(e 1, e 3 )e 2 e 4 + B(e 1, e 4 )e 2 e 3 + e 1 e 2 e 3 e 4. Joten lopputulokseksi saadaan (e 1 e 2 ) c (e 3 e 4 ) = B(e 2, e 3 )B(e 1, e 4 ) + B(e 2, e 3 )e 1 e 4 B(e 2, e 4 )B(e 1, e 3 ) B(e 2, e 4 )e 1 e 3 + B(e 1, e 2 )e 3 e 4 B(e 1, e 3 )e 2 e 4 + B(e 1, e 4 )e 2 e 3 + e 1 e 2 e 3 e 4 B(e 1, e 2 )(e 3 e 4 ). 5 Asennusohje Tässä kappaleessa kerrotaan lyhyesti CLIFFORD-paketin asentamisesta. Tekijän taitamattomuuden johdosta keskitytään vain PC-koneisiin ja Windows-ympäristöön. Ensinnä menkäämme Rafal Ablamowiczin kotisivuille: Täältä valitaan sopiva Maplen versio ja ladataan tarvittavat kirjastot: library_mx.zip. Oletetaan, että Maplesi on asennettu hakemistoon: C:/Maple. Tallennetaan hakemistoon C:/Maple/Cliordlib edellä olevasta kirjastosta.ind,.lib ja.hbd -tiedostot. Tämän jälkeen tehdään users - kansioon maple.ini - tiedosto (tekstieditorilla), jossa rivi: libname:="c:\\maple/cliordlib",libname: Tämän jälkeen paketin pitäisi toimia Maplessa. 6

7 6 Tehtäviä Tässä joitakin tehtäviä tehtäväksi CLIFFORD-paketilla. Tehtävä 1 1. Olkoon x = e 1 + 5e 2 tason vektori. Esitä vektori x vektorien a = e 1 + e 2 ja b = 15e 2 lineaarikombinaationa. 2. Olkoon x = 4e 1 + 2e 2 + 9e 3 avaruuden vektori. Esitä vektori x vektorien a = πe 1 + 2e 2 + 4e 3, b = e 1 12e 3 ja c = 16e 1 e 2 + 4e 3 lineaarikombinaationa. Tarkista kummassakin kohdassa tuloksesi. Tehtävä 2 Miten ohjelma laskee u v, u v ja u v, kun 1. u R ja v Cl p,q? 2. u Cl k p,q ja v Clm p,q 3. u Cl k p,q ja v Clm p,q ja k < m? ja k > m? Tehtävä 3 Tarkastellaan vektoreiden x = 2e 1, y = 3e 2 e 3 ja z = 7e 1 + e e 3 virittämää tetraedria. Tällöin sivut ovat joko edellä olevia vektoreita tai niiden erotuksia. Muodosta tahkojen suunnistetut pinta-alat B 1,..., B 4. Osoita laskemalla, että tahkojen suunnistettujen pinta-alojen summa on nolla. Tehtävä 4 Tarkastellaan tasoa e 1 e 2 ja vektoreita 1. a 1 = e 1 + 4e 2, 2. a 2 = e 1 + e 3, 3. a 3 = e 1 + e 2 + e 3. Laske vektorien kohtisuorat ja tasolla olevat komponentit. Laskemalla sopiva ulkotulo, määritä mitkä vektoreista ovat tasolla (nyt ei saa nähdä suoraa...)? Tehtävä 5 Olkoon x = e 2. Kierrä vektori x tasolla e 2 e 3 kulman π/2. Kierrä näin saatua vektoria vielä kulma π/2 tasolla e 1 e 3. Tehtävä 6 Peilaa vektori x = 13e 1 tason (e 1 + e 3 ) e 2 läpi. Kierrä peilattua vektoria kulman 2π/3 verran z-akselin ympäri. Tehtävä 7 Etsi sellainen Cliordin algebran Cl 0,3 osajoukko R, että R = H. Mikä on Cl 0,3 :n matriisiesitys? Tehtävä 8 Mitkä ovat Cliordin algebrojen Cl 1,1 ja Cl 2,1 matriisiesitykset? Tehtävä 9 Paketilla voidaan käsitellä myös pelkästään kvaternioita. Kyseiset komennot alkavat q:lla, esim. q_conjug, qdisplay, qinv, qmul, qnorm. Tutustu näiden käyttöön. Ota q 1 = 5 + 4i 7j + 9k ja q 2 = i 3j k ja laske q 1 q 2, (q 1 q 1 2 ) 1. Tarkista, että kvaternioille on voimassa: q 1 q 2 = q 1 q 2. Tehtävä 10 Laske e 1 c (e 2 e 4 ) ja (e 1 e 3 ) c (e 2 e 4 ) cmulnum-algoritmilla. Tarkista vastauksesi Maplella. 7

8 Viitteet [1] R. Ablamowich and B. Fauser, Mathematics of CLIFFORD - A Maple Package for Cliord and Grassmann Algebras, Tennessee Technological University, Department of Mathematics, Technical Report No

Paulin spinorit ja spinorioperaattorit

Paulin spinorit ja spinorioperaattorit Paulin spinorit ja spinorioperaattorit Spinoreita on useita erilaisia. Esimerkiksi Paulin, Dirackin ja Weyelin spinorit. Yhteisenä piirteenä eri spinoreilla on se, että kukin liittyy tavallisesti johonkin

Lisätiedot

Diracin yhtälö Björkenin ja Drellin formulaation mukaan on I 0. 0 i 1 0

Diracin yhtälö Björkenin ja Drellin formulaation mukaan on I 0. 0 i 1 0 Diracin spinorit. Määritelmiä Diracin yhtälö Björkenin ja Drellin formulaation mukaan on γ µ (i µ ea µ ψ = mψ, ψ C 4, missä matriisit γ µ ovat ( γ = γ = I I, γ k = γ k = ( σ k σ k missä edelleen I on 2

Lisätiedot

1 Cli ordin algebra. Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n :

1 Cli ordin algebra. Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n : 1 Cli ordin algebra Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n : Joukossa R voidaan määritellä summa ja tulo. Myöskin

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

2. Geometrinen algebra dimensioissa kaksi ja kolme

2. Geometrinen algebra dimensioissa kaksi ja kolme . Geometrinen algebra dimensioissa kaksi ja kolme William Kingdon Cliord (1845-1879) esitteli geometrisen algebransa 1800- luvulla. Cliord yhdisti sisä- ja ulkotulot yhdeksi tuloksi, geometriseksi tuloksi.

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos

Lisätiedot

Excursio Cliordin analyysiin. 13. helmikuuta 2006

Excursio Cliordin analyysiin. 13. helmikuuta 2006 Excursio Cliordin analyysiin 13. helmikuuta 2006 1 Sisältö 1 Cliordin algebra 3 2 Monogeeniset funktiot 5 3 Cauchyn integraalikaava monogeenisille funktioille 9 2 1 Cliordin algebra Tutustutaan tässä kappaleessa

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

1 Tensoriavaruuksista..

1 Tensoriavaruuksista.. 1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

2 Kierto yleisesti peilausten avulla

2 Kierto yleisesti peilausten avulla 1 Rotaatioista Viime kerralla nähtiin, että jokainen R 3 rotaatio voidaan esittää kvaternien avulla kuvauksena ρ y (x) = yxy, missä y = 1. Lemma 1.1. Kuvaus ρ : S 3 SO(3), missä ρ(y) = ρ y on surjektiivinen

Lisätiedot

Latinalaiset neliöt ja taikaneliöt

Latinalaiset neliöt ja taikaneliöt Latinalaiset neliöt ja taikaneliöt LuK-tutkielma Aku-Petteri Niemi Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Latinalaiset neliöt 3 1.1 Latinalainen neliö.........................

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Matriiseista. Emmi Koljonen

Matriiseista. Emmi Koljonen Matriiseista Emmi Koljonen 3. lokakuuta 22 Usein meillä on monta systeemiä kuvaavaa muuttujaa ja voimme kirjoittaa niiden välille riippuvaisuuksia, esim. piirin silmukoihin voidaan soveltaa silmukkavirtayhtälöitä.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla 2.5. YDIN-HASKELL 19 tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla kirjaimilla. Jos Γ ja ovat tyyppilausekkeita, niin Γ on tyyppilauseke. Nuoli kirjoitetaan koneella

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Lineaarialgebra b, kevät 2019

Lineaarialgebra b, kevät 2019 Lineaarialgebra b, kevät 2019 Harjoitusta 5 Maplella with(linearalgebra): Määritellään sääntö L L := u - 3*u[2] + 2*(u[1]-4*u[2])*x - (u[1]+2*u[3])*x^2; u := Vector([u1,u2,u3]); v := Vector([v1,v2,v3]);

Lisätiedot

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151 Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat. JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE. Olemme jo (harjoituksissa!) löytäneet Lien ryhmälle SL 2 (R) seuraavat redusoitumattomat esitykset:

GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE. Olemme jo (harjoituksissa!) löytäneet Lien ryhmälle SL 2 (R) seuraavat redusoitumattomat esitykset: GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE KAREN E. SMITH 32. Ryhmän SL 2 (R) esitykset Example 32.1. Palautamme mieleen, että { x y SL 2 (R) = A = det A = xw yz = 1} ja z w { a b sl 2 (R) = A = Tr

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot