2 Kierto yleisesti peilausten avulla

Koko: px
Aloita esitys sivulta:

Download "2 Kierto yleisesti peilausten avulla"

Transkriptio

1 1 Rotaatioista Viime kerralla nähtiin, että jokainen R 3 rotaatio voidaan esittää kvaternien avulla kuvauksena ρ y (x) = yxy, missä y = 1. Lemma 1.1. Kuvaus ρ : S 3 SO(3), missä ρ(y) = ρ y on surjektiivinen ryhmähomomorsmi, jonka ydin on { 1, 1}. Todistus. Katso [1]. 2 Kierto yleisesti peilausten avulla Lemma 2.1 (R 3 rotaatioiden ryhmä). Kolmiulotteisen vektoriavaruuden rotaatiot muodostavat ryhmän yhdistetynkuvauksen suhteen, identiteetti alkio on kuvaus ρ 1 (x). Todistus. Suoraan laskemalla. Lause 2.2 (Eulerin lause). Rotaatioiden ryhmä kolmiulotteisessa vektoriavaruudessa on isomornen 3 3 matriisien ryhmän kanssa, jonka alkiot toteuttavat yhtälöt A T A = I ja det(a) = 1. Todistus. Katso lähde [3]. Edellisen Lauseen johdosta on mielekästä määritellä rotaatiot yleisesti vektoriavaruudessa R n, niiden kuvausten joukkona, jotka ovat muotoa y = Ax, missä A on R n n ortogonaalinen matriisi, jonka determinantti on yksi. Vektoriavaruudessa V, jossa on määritelty tavanomainen sisätulo (.,.) ja euklidinen normi., lineaarinen kuvaus T on ortogonaalinen, jos (T x, T y) = (x, y) kaikilla x, y V ([2]). Lemma 2.3. Vektoriavaruudessa R n ortogonaalikuvausten joukko muodostaa ryhmän yhdistetyn kuvauksen suhteen, ja sitä merkitään O(n), identiteettialkiona identiteettikuvaus. Tällä joukolla on aliryhmänä rotaatioiden joukko, sitä merkitään SO(n) = {T T O(n) ja det(t ) = 1}. Todistus. Suoraan laskemalla. Huomautus. Koska ortogonaalinen kuvaus on lineaarinen ja lineaariset kuvaukset voidaan esittää matriisien avulla, niin ortogonaalisten kuvausten ryhmä O(n) esitetään usein matriisiryhmänä {A A GL(n, R), A T A = I} ja rotaatioiden ryhmä SO(n) edellisen aliryhmänä {A A GL(n, R), A T A = I ja det(a) = 1}. 1

2 Lemma 2.4. Olkoon V vektoriavaruus varustettuna normaalilla sisätulolla ja euklidisella normilla. Tällöin kuvaus T : V V on ortogonaalinen, jos ja vain jos T (0) = 0 ja T (x) T (y) = x y. Todistus. 1. Olkoon kuvaus T ensin ortogonaalinen, tällöin (T x T y, T x T y) = (T x, T x) 2(T x, T y) + (T y, T y) = (x, x) 2(x, y) + (y, y) = (x y, x y). Edelleen linearikuvaukselle pätee tietenkin T (0) = Olkoon kuvaukselle T voimassa yhtälöt T (0) = 0 ja T (x) T (y) = x y. Edellä olleesta yhtälöketjusta saadaan 2(T x, T y) = (T x, T x) (T x T y, T x T y) + (T y, T y) = (T x T 0, T x T 0) (T x T y, T x T y) + (T y T 0, T y T 0) = T x T 0 2 T x T y 2 + T y T 0 2 = x 2 x y 2 + y 2, mistä edelleen 1. kohdan nojalla 2(T x, T y) = 2(x, y). Lopuksi on vielä näytettävä lineaarisuus. Olkoon {e j j = 1, 2,..., n} Vektoriavaruuden ortonormaali kanta. Koska edellisen nojlla kuvaus T säilyttää normin, niin (T e i, T e j ) = (e i, e j ), siis myös {T (e j ) j = 1, 2,..., n} muodostaa ortonormaalin kannan. On siis olemassa jotkin kertoimet a i, joille pätee T v = a i T ei, missä v = v i e i. Mutta koska a i = (T v, T e i ) = (v, e i ) = v i, niin kuvaus T on myös lineaarinen. 2

3 Määritellään vektoriavaruuden R n kuvaus S a : R n R n seuraavasti: S a (x) := x 2(a, x) a 2 a, missä a on kiinteä avaruuden R n alkio. Geometrisesti kuvaus on peilaus tason suhteen, jonka normaali on vektori a. Vektori x voidaan esittää muodossa (a, x) x = a 2 a (a, x) + x a }{{} 2 a, }{{} normaalin suuntainen komp. tason suuntainen komp. mistä peilaus saadaan helposti, kun siirrytään ensin tasoon vähentämällä normaalin suuntainen komponentti ja tästä edelleen tason toiselle puolelle vähentämällä toisen kerran normaalin suuntainen komponentti. Siis muodostuvva peilauspiste x saadaan yhtälöstä: x = x 2( (a, x) 2(a, x) a) = x a 2 a 2 a. Lemma 2.5 (Peilauksen ominaisuuksia). Kuvaukselle S a : R n R n pätee: (a) Kuvaus oma inverssinsä, S a S a x = x kaikilla x R n. (b) Kuvaukselle pätee S a (a) = a. (c) Ortogonaalinen alkio ei muutu, S a (b) = b kaikille b a. (d) Kuvaus on lineaarinen. (e) Kuvaus on ortogonaalinen. Todistus. Täydennetään.. Lemma 2.6. Olkoon u ja v vektoriavaruuden R n eri elementtejä, joiden normit ovat samat. Tällöin on olemassa peilaus vektorilta u vektorille v. Todistus. Ensin huomataan, että u v u + v, sillä (u + v, u v) = (u, u) (u, v) + (v, u) (v, v) = u 2 v 2 = 0, 3

4 koska oletuksena oli vektorien sama pituus. Nyt Lemman 2.5 mukaan S u v (u) = S u v ( 1 2 (u v) + 1 (u + v)) 2 = 1 2 S u v(u v) S u+v(u + v) = 1 2 (u v) + 1 (u + v) 2 = v. Lemma 2.7. Jokainen vektoriavaruuden R n ortogonaalisen kuvauksen T, lukuunottamatta identiteettikuvausta I, esittämiseen tarvitaan korkeintaan n kappaletta peilauksia. Todistus. Olkoon {e j j = 1, 2,..., n} vektoriavaruuden R n ortonormaali kanta. Koska kuvaus T on ortogonaalinen, niin yhtälöketju (T e n, T e n ) = (e n, e n ) = 1 on voimassa, ja Lemman 2.6 mukaan, kun T (e n ) e n on olemassa peilaus S T en e n, jolle S T en e n (e n ) = e n. Mikäli T (e n ) = e n, niin valitaan identiteetti kuvaus peilauksen sijaan. Kokonaisuudessaan merkitään valittua kuvausta S n. Siis kokonaisuudessaan kuvaus S n T on edelleen kahden ortogonaalikuvauksen yhdisteenä lineaarinen ja ortogonaalinen, ja joka kaiken lisäksi kuvaa kantavektorin e n itsekseen. Nyt vastaavasti kuin edellä, muodostetaan identiteetti kuvaus siten, että jokainen kantavektori säilyy muuttumattomana. Kuten edellä (S n T e n 1, S n T e n 1 ) = (e n 1, e n 1 ) = 1, siis voidaan kirjoittaa S n 1 S n T e n 1 = e n 1, missä S n 1 = { I, jos Sn T e n 1 = e n 1 S Sn T e n 1 e n 1, muuten. Huomattavaa on, että uudessa kuvauksessa S n 1 S n T kantavektori e n säilyy itsenään. Sillä mikäli S n 1 valittiin identiteetiksi tämä on selvää, ja valinnalla S n 1 = S Sn T e n 1 e n 1 tämä johtuu siitä, että (S n T e n 1 e n 1, e n ) = (S n T e n 1, e n ) = (S n T e n 1, S n T e n ) = (e n 1, e n ) = 0. Jatkamalla kuten edellä, saadaan lopulta: S 1 S 2... S n T = I, kun jokainen S i on valittu vastaavalla periaatteella kuin S n ja S n 1. Edelleen 4

5 saadaan (S i on oma inverssinsä) T = S n S n 1... S 1. 3 Takaisin kvaternien maailmaan Tutkitaan peilausta kvaternien joukossa. Lemma 3.1. Kvaternien joukossa H voidaan peilaus S a muodossa S a (q) = aqa, : H H esittää kun a on yksikkökvaterni. Todistus. Täydennetään.. Kvatenien joukossa peilauksen lisäksi, myös kuvaus p a : H H, jolle p a (q) = aqa, on mielenkiintoinen. Koska jokaiselle kvaternille pätee, S a S b (q) = a( bqb)a = ab q ba = p a p b (q), (1) niin voidaan sanoa, että S a S b = p a p b. Lause 3.2 (Cayleyn lause). Kvaternien joukossa kiertojen, eli rotaatioiden, kuvausten joukko koostuu kuvauksista x ϑ a,b (x) = axb, missä a = b = 1 ja a, b H. Todistus. Koska peilaus on ortogonaalikuvaus, mutta se ei kuitenkaan ole kierto, niin peilausta vastaavan matriisin determinantin arvo on oltava 1. (Itseasiassa tämä on selvää vain kolmiulotteisessa tapauksessa) Koska Lemman 2.6 mukaan kierto voitiin esittää peilausten avulla, ja koska kierron determinantti on yksi, niin Lemman 2.6 esityksessä saa olla peilauksia vain parillinen määrä. Tämän takia esitysksen peilaukset voidaan korvata yhtälöketjun 1 mukaan, kuvauksilla p a. Toisin sanoen, jokainen kierto voidaan esittää muodossa a 1 a 2 a 3 a }{{} 4 q a 4 a 3 a 2 a 1. Edellä a }{{} i = 1, mistä päätellään myös a = b = 1. a b 5

6 Tosin päin katso [1]. 4 Kvaterniluvun loppu 4.1 Eräs matriisiesitys Näytetään, että kvaternit ovat erään 4 4 matriisien alialgebran kanssa isomor- nen rakenne. Tehdään työläät laskennat Maple-ohjelmistolla, josta komennolla latex() saadaan mukavasti esitysmuoto. Lemma 4.1. Määritellään kuvaus L : H R 4 4, L(x) = x 0 x 1 x 2 x 3 x 1 x 0 x 3 x 2 x 2 x 3 x 0 x 1 x 3 x 2 x 1 x 0.Joukko {A A = x 0 x 1 x 2 x 3 x 1 x 0 x 3 x 2 x 2 x 3 x 0 x 1 x 3 x 2 x 1 x 0, x 0, x 1, x 2, x 3 R} on 4 4 matriisien alialgebra. Kuvaus L on algebra isomorsmi. Todistus. Näytetään ensin, että kuvauksen L muodostama joukko on todella alialgebra. Siis käytännössä riittää näyttää, että kertolasku on suljettu tässä joukossa, koska muu yhteenlaskun osalta tämä on selvä. Määritellään joukon x 0 x 1 x 2 x 3 {A A = x 1 x 0 x 3 x 2 x 2 x 3 x 0 x 1, x 0, x 1, x 2, x 3 R} x 3 x 2 x 1 x 0 kaksi mielivaltaista matriisia X ja Y, x 0 x 1 x 2 x 3 x 1 x 0 x 3 x 2 X = x 2 x 3 x 0 x 1 x 3 x 2 x 1 x 0, 6

7 y 0 y 1 y 2 y 3 y 1 y 0 y 3 y 2 y 2 y 3 y 0 y 1 y 3 y 2 y 1 y 0. Nyt tulo XY = x 0 y 0 x 1 y 1 x 2 y 2 x 3 y 3 x 0 y 1 x 1 y 0 x 2 y 3 + x 3 y 2 x 0 y 2 + x 1 y 3 x 2 y 0 x 3 y 1 x 0 y 3 x 1 y 2 + x 2 y 1 x 3 y 0 x 1 y 0 + x 0 y 1 x 3 y 2 + x 2 y 3 x 0 y 0 x 1 y 1 x 2 y 2 x 3 y 3 x 0 y 3 x 1 y 2 + x 2 y 1 x 3 y 0 x 1 y 3 + x 0 y 2 + x 3 y 1 + x 2 y 0 x 1 y 3 + x 0 y 2 + x 3 y 1 + x 2 y 0 x 2 y 1 + x 3 y 0 + x 0 y 3 + x 1 y 2 x 0 y 0 x 1 y 1 x 2 y 2 x 3 y 3 x 0 y 1 x 1 y 0 x 2 y 3 + x 3 y 2 x 2 y 1 + x 3 y 0 + x 0 y 3 + x 1 y 2 x 0 y 2 + x 1 y 3 x 2 y 0 x 3 y 1 x 1 y 0 + x 0 y 1 x 3 y 2 + x 2 y 3 x 0 y 0 x 1 y 1 x 2 y 2 x 3 y 3 (2) mikä on vaadittua muotoa. Lopuksi isomorsuus, kuvauksesta riittää jälleen todeta vain, että L(xy) = L(x)L(y), muu on selvää. Yhtälöstä (2) oikeanpuolen matriisista poimimalla ensimmäinen sarake, varmistutaan asiasta., 4.2 Bilineaariset tulot Käydään läpi kvaternien kertolaskua geometrisesti. Normaali kolmiuloteinen vektoriavaruus ajatellaan joukkona V ech, toisin sanoen jokainen vektori voidaan esittää muodossa x 1 e 1 + x 2 e 2 + x 3 e 3. Ensin muistetaan, että pistetulo voidaan kirjoittaa muodossa (x, y) = x y = Scx y = 1 2 (x y + y x) = x 1y 1 + x 2 y 2 + x 3 y 3. (3) ja vastaavasti ristitulolle x y = V ecx y = 1 (x y x y) = 2 e 1 e 2 e 3 x 1 x 2 x 3 y 1 y 2 y 3. (4) Lemma 4.2. Olkoot x, y H. (a) Skalaari- sekä ristitulo ovat homogeeniset, siis kaikille r R r(x y) = (rx) y = x (ry) ja r(x y) = (rx) y = x (ry) 7

8 (b) Molemmat kertolaskut ovat distributiiviset yhteenlaskun suhteen. (c) Skalaaritulo on kommutatiivinen ja ristitulo on antikommutatiivinen x y = y x. Todistus. Sivuutetaan.. Ennen kertolaskujen geometrista tulkintaa, tarvitaan yksi aputulos, tai oikeastaan kaksi, mutta toinen on tavallinen laajennettu pythagoraan lause, eli kosinilause, joka oletetaan tunnetuksi. Lemma 4.3 (Lagrange identiteetti). Olkoon x, y vektoreita. Voidaan kirjoittaa x 2 y 2 = x y 2 + x y 2. Todistus. Koska skalaaritulo on reaalinen ja vektorien ristitulo on vektoriarvoinen, ja x y = x y + x y niin tulos saadaan suoraan ottamalla pituudet puolittain. Nyt ollaan valmiit tulkitsemaan skalaari- ja ristitulo geometrisesti. Lemma 4.4. Pistetulolle pätee x y = x y cos( (x, y)), ja ristitulolle pätee x y = x y sin( (x, y))e x y, missä kolmikko x/ x, y/ y, e x y on ortonormaali ja toteuttaa oikean käden säännön. Todistus. 1. Pistetulo itsensä kanssa on toisaalta vektorin pituuden neliö, ja toisaalta x y 2 = x x + y y 2x y, mistä kosinilauseen nojalla voidaan päätellä, x y = x y cos( (x, y)). 2. Yhtälöiden (3) ja (4) avulla voidaan helposti osoittaa, että 4x (x y) = 0 = 4y (x y). Siis vektorien x ja y ristitulo on kohtisuorassa kummankin 8

9 tekijänsä kanssa. Lemman 4.3 mukaan x 2 y 2 = x y 2 + x y 2, mistä edellisen kohdan ja trigonometrian peruslauseen nojalla, x y 2 = x 2 y 2 sin 2 ( (x, y)). Tästä voidaan päätellä, että x y = x y sin( (x, y))e x y, mutta vektorin e x y suunnistuksen näyttäminen sivuutetaan. Lemma 4.5. Olkoon x, y vektoreita. Tällöin voidaan kirjoittaa, (a) xy = yx, jos ja vain jos vektorit ovat yhdensuuntaiset. (b) xy = yx, jos ja vain jos vektorit ovat ortogonaaliset. Todistus. Kirjassa, seuraa suoraan ristitulon ja pistetulon esityksistä kvaternitulon kanssa. 4.3 Multilineaariset tulot Tutkitaan kuinka voidaan mielekkäästi kertoa useampia vektoreja keskenään. Lemma 4.6. Vektoreille x, y ja z pätee (a) x (y z) = (x y) z, (b) x (y z) + (x y)z = (x y) z + x(y z). Todistus. Aloitetaan tunnetuilla yhtälöillä xy = x y + x y ja x(yz) = (xy)z. 9

10 Ydistämällä edelliset saadaan x(y z) x (y z) + x (y z) = x(yz) = (xy)z = (x y)z (x y) z + (x y) z, mistä poimimalla reaaliosat saadaan (a) kohta, ja vektoriosista kohta (b). Määritellään skalaarikolmiotulo (.,.,.) kolmelle vektorille x, y, z seuraavasti (x, y, z) := x (y z). Skalaarikolmiotulolle saadaan (tutut tulokset): Lemma 4.7. (a) Skalaarikolmiotulo on homogeeninen reaalilukujen suhteen ja se on lineaarinen jokaisen komponentin suhteen. (b) (x, y, z) = (y, z, x) = (z, x, y) = (y, x, z) = (x, z, y) = (z, y, x) (c) Skalaarikolmiotulo antaa suunnistetun tilavuuden suuntaissärmiölle, jonka virittää vektorit x, y, z, ja se voidaan esittää muodossa x 1 x 2 x 3 (x, y, z) = y 1 y 2 y 3. z 1 z 2 z 3 Todistus. Melko suoraviivaisia, kirjassa. Lemma 4.8. Olkoot x, y, z, w vektoreita: (a) x (y z) = (x z)y (x (y)z), (b) x (y z + y (z x + z (x y = 0 ja (c) (x y) (z w) = x z y z x w y w. Todistus. (a) Kirjassa lyhyt lasku. (b) Sovelletaan vain edellistä jokaiseen summattavaan termiin. 10

11 (c) Lähtemällä vasemmasta puolesta liikkeelle, lopputulos saadaan suorittamalla seuraavat toimenpiteet: 1. Lemma 4.6 a-kohta. 2. Lemma 4.8 a-kohta ja antikommutatiivisuus. 3. Pistetulon distributiivisuus yhteenlaskun suhteen. 5 Pieni esimerkki sovelluksista Lähteestä löytyy ns. tavanomainen käsittely pallotrigonometriasta. Näytetään nyt kuinka saadaan esimerkiksi pallotrigonometrian kosinikaava kvaternitulon avulla. Ylläolevasta lähteestä voi katsoa toisen tavan. Olkoon yksikkövektoreilla a, b, c yhteinen alkupiste, jolloin ne luovat yksikköpallolle kolmion. Merkitään pallopinnan ja vektorien leikkauspisteita kirjaimin A, B ja C, edelleen olkoon vektorien a ja b välinen kulma γ, vastaavasti (a, c) = β ja (b, c) = α. Lisäksi merkitään, että pallopinnalla kulma (CAB) = α, vastaavasti β ja γ. Geometrisen havainnon π α = (c a, a b) perusteella voidaan näyttää pallotrigonometrian kosinikaava cos(β) = cos(γ) cos(α) + sin(γ) sin(α) cos(β ) todeksi. Sillä (a b) (b c) = cos(γ) cos(α) cos(β), mutta toisaalta (a b) (b c) = sin(γ) sin(α) cos(π β ) = sin(γ) sin(α) cos(β ). Yhdistämällä edelliset saadaan haluttu tulos. 11

12 Viitteet [1] Klaus Habetha ja Wolfgang Sprössig Klaus Gürlebec. Holomorphic Functions in the Plane and n-dimensional Space. Birkhäuser Verlag AG, [2] Eriksson Sirkka-Liisa. Johdatus geometrisiin algebroihin, luentomoniste TTY, Matematiiikan laitos, [3] Tony Suderby. Introdunction to quaternions. In Sirkka-Liisa Eriksson, editor, Cliord algebras and potential theory (Mekrijärvi, 2002), pages Univ. Joensuu Dept. Math. Rep. Ser. No. 7, June

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

2. Geometrinen algebra dimensioissa kaksi ja kolme

2. Geometrinen algebra dimensioissa kaksi ja kolme . Geometrinen algebra dimensioissa kaksi ja kolme William Kingdon Cliord (1845-1879) esitteli geometrisen algebransa 1800- luvulla. Cliord yhdisti sisä- ja ulkotulot yhdeksi tuloksi, geometriseksi tuloksi.

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Pistetulo eli skalaaritulo

Pistetulo eli skalaaritulo Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista Neliömuodoista matriisin ominaisarvoista ja avaruuden kierroista Marko Moisio 1 Neliömuodoista ja matriisin ominaisarvoista Tarkastellaan toisen asteen tasokäyrän määräävää yhtälöä a + by 2 + 2cxy = d

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö. Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

LUKU 10. Yhdensuuntaissiirto

LUKU 10. Yhdensuuntaissiirto LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

Excursio Cliordin analyysiin. 13. helmikuuta 2006

Excursio Cliordin analyysiin. 13. helmikuuta 2006 Excursio Cliordin analyysiin 13. helmikuuta 2006 1 Sisältö 1 Cliordin algebra 3 2 Monogeeniset funktiot 5 3 Cauchyn integraalikaava monogeenisille funktioille 9 2 1 Cliordin algebra Tutustutaan tässä kappaleessa

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Eräs näkökulma euklidiseen tasogeometriaan ja affiiniin geometriaan

Eräs näkökulma euklidiseen tasogeometriaan ja affiiniin geometriaan TAMPEREEN YLIOPISTO Pro gradu -tutkielma Emmi Huhma Eräs näkökulma euklidiseen tasogeometriaan ja affiiniin geometriaan Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2010 TAMPEREEN YLIOPISTO

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:

Lisätiedot

Talousmatematiikan perusteet: Luento 9

Talousmatematiikan perusteet: Luento 9 Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

1 Tensoriavaruuksista..

1 Tensoriavaruuksista.. 1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko

Lisätiedot

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat. JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot