Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

Koko: px
Aloita esitys sivulta:

Download "Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:"

Transkriptio

1 Mapu I Laskuharjoitus 2, tehtävä 1 1. Eräs trigonometrinen ientiteetti on sin2x = 2sinxcosx Derivoimalla yhtälön molemmat puolet x:n suhteen, joha lauseke cos 2x:lle. Ratkaisu: Derivoiaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että: [f(g(x))] = f (g(x))g (x) eli ulkofunktion erivaatta kertaa sisäfunktion erivaatta. Tässä tapauksessa ulkofunktio on sin(x) ja sisäfunktio 2x. sin(2x) = 2cos(2x) sitten erivoiaan oikea puoli, muistetaan tulon erivoimissääntö: jolloin saaaan f(x)g(x) = f (x)g(x) + f(x)g (x) 2sin(x)cos(x) = 2cos(x) cos(x) 2sin(x) sin(x) = 2cos2 (x) 2sin 2 (x) Merkitään lasketut vasen ja oikea puoli yhtäsuuriksi: 2cos(2x) = 2cos 2 (x) 2sin 2 (x) jaetaan molemmat puolet kahella, jolloin saaaan lopullinen muoto, eli tehtävän vastaus cos(2x) = cos 2 (x) sin 2 (x) 1

2 H2 Malliratkaisut - Tehtävä 2 Eelis Mielonen 9. syyskuuta 2017 a) 2xe x2 b) 1 x 2 +1 c) 2x tan(x 2 ) 2 a) Meiän pitäisi siis erivoia yhistettyjä funktioita. Tähän tarvitsemme ketjusääntöä: f(g(x)) = g g Tarkastelemalla tehtävän funktiota huomaamme että se on muoossa f(x) = e g(x) niin että g(x) = x 2 joten voimme soveltaa ketjusääntöä näin: f(g) = e g g = eg = e x 2 g(x) = x 2 g = 2x g 2 = 2x ex g Pääytään siis tulokseen lasketaan f n erivaatta g n suhteen (1a)... ja sitten g n erivaatta x n suhteen. (1b) lopulta voiaan laskea f n erivaatta x n suhteen = 2 2xex (1c) 2 b) Tällä kertaa funktio on monimutkaisempi. Funktion ln sisällä on funktio x + x ja tämän funktion sisällä on vielä funktio x Meiän pitää siis 1

3 soveltaa ketjusääntöä peräkkäin kaksi kertaa. Mutta, yksinkertaisuuen takia tehään vaan sijoitus g(x) = x + x jotta pysymme kärryllä. Ongelma on nyt siinä mielessä ienttinen viimeiseen että meiän pitää löytää g g ja ja kertoa ne yhteen. f(g) = ln(g) g = 1 g = 1 x + x g(x) = x + x g = (x) + ((x2 + 1) 1/2 ) = 1 + 2x 1 2 (x2 + 1) 1/2 x = 1 + x2 + 1 Viimeisellä rivillä funktion (x 2 +1) 1/2 erivaatan laskemiseen käytettiin ketjusääntöä uuestaan. Nyt kun molemmat erivaatat on löyetty, voiaan laskea haluttu f n erivaatta: g g = 1 x + x (1 x ) 1 + = x2 + 1 x + x ( x2 + 1 x x ) x2 + 1 = 1 (x + x 2 + 1) (x + x 2 + 1) x2 + 1 = 1 x c) Tässä on taas tilanne jossa sisäisen funktion sisällä on toinen sisäinen funktio. Menetelmä on sama kuin eellisissä kysymyksissä: ensin paloitellaan funktio osiksi, löyetään osien erivaatat ja sitten kerrotaan ne yhteen. f(g) = ln(g), g(u) = cos(u), u(x) = x 2 g = 1 g, g u = sin(u), u = 2x = g u g u = 1 g sin(u) 2x = 2x sin(x2 ) cos (x 2 ) = 2x tan(x2 ) 2

4 Tehtävä 3 Käänteisfunktion erivaatta saaaan laskettua, jos y = f(x) ja x = f 1 (y), seuraavasti: 1 y = y = 1 y = 1 (1) a) Nyt y = f(x) = tan x ja x = f 1 (y) = arctan y. Lasketaan funktion f erivaatta x:n suhteen = tan x = 1 + tan2 x (2) Toisaalta tieetään, että y = tan x. Sijoittamalla se kaavaan 2 saaaan 1 + tan 2 x = 1 + y 2 (3) Nyt voimme laskea käänteisfunktion erivaatan sijoittamalla saaun tuloksen kaavaan 1 1 y = y arctan y = 1 tan x = y 2 (4) b) Nyt z = f(x) = cosh x ja x = f 1 (z) = arccosh z. Suoritetaan muuten samankaltainen lasku kuin a)-kohassa paitsi että nyt y:n tilalla on z. Aloitetaan taas laskemalla funktion f erivaatta x:n suhteen = cosh x = sinh x (5) Tämä halutaan ilmaista z:n avulla. Käytetään hyväksi relaatiota cosh 2 x sinh 2 x = 1 sinh x = cosh 2 x 1 (6) Toisaalta tieetään myös, että z = cosh x. Tällöin saaaan cosh 2 x 1 = z 2 1 (7) Nyt voiaan laskea käänteisfunktion erivaatta 1 z = z arccoshx = 1 cosh x = 1 z2 1 (8) 1

5 Mapu I Viikko 2 tehtävä 4 malli Tarkastellaan parametrimuoossa olevaa käyrää { x(t) = 3t y(t) = t 2 + t missä t 0. Milloin funktion tangentin kulmakerroin on 1? Ratkaisu: Lasketaan siis milloin funktion erivaatta on 1, eli y = 1 Nyt y tieetään parametrin t funktioina ja t voiaan helposti ratkaista x:n funktioksi, joten voiaan käyttää ketjusääntöä: Lasketaan ensin y t : ja sitten t kun t = x 3 y = y t t y t = (t2 + t) = 2t + 1 t t = ( x 3 ) = 1 3 Yhistetään lauseet ja sijoitetaan t = x 3 niin saaaan: Ja ratkaistaan yhtälö y = 1: y = (2t + 1)1 3 = 2x x = 1 2x 9 = 2 3 x = 3 Tässä kohassa t(x = 3) = 3 3 = 1, jolloin saaaan y: y(t = 1) = (1) = 2 Vastaus: Pisteessä (3, 2) 1

6 5. Erään värähtelevän kappaleen poikkeamaa tasapainoasemasta esittää lauseke x(t) = A sin(ωt + ϕ), missä A, ω ja ϕ ovat vakioita. (a) Laske kappaleen nopeus v(t) = 2 tx(t) ja kiihtyvyys a(t) = t x(t). 2 (b) Osoita, että x(t) toteuttaa yhtälön eräällä C:n arvolla. Millä? 2 x(t) t 2 = Cx(t) Vastaukset: (a) v(t) = Aω cos(ωt + ϕ), a(t) = Aω 2 sin(ωt + ϕ) (b) Näinhän se on. C = ω 2. Ratkaisut: Vastauksiin päästään suoraan erivoimalla annettua paikan yhtälöä. Tässä tulee muistaa ketjusääntö F t = F u u t. Lisäksi muistetaan, että erivoiessa vakiokertoimet voiaan jättää roikkumaan. Syy tähän tulee tulon erivointisäännöstä: (a) (C f) = =0 {}}{ C f + Cf = Cf v(t) = t x(t) = =u t (A sin( {}}{ ωt + ϕ)) = A u sin(u) t u = A cos(u) (ωt + ϕ) t = A cos(ωt + ϕ) ω = Aω cos(ωt + ϕ) 1

7 =u a(t) = 2 t 2 x(t) = t v(t) = {}}{ (Aω cos( ωt + ϕ)) t = Aω u cos(u) t u = Aω( sin(u)) (ωt + ϕ) t = Aω( sin(ωt + ϕ) ω = Aω 2 sin(ωt + ϕ) (b) Huomataan, että muoostamamme yhtälö toella on haluttua muotoa: 2 =C(vakio) x(t) {}}{ t 2 = Aω 2 sin(ωt + ϕ) = ω 2 A sin(ωt + ϕ) missä vakiomme C = ω 2 = C sin(ωt + ϕ) = Cx(t), 2

8 Mapu 1. Laskuharjoitus 2 Tehtävä 6 Vetyatomin elektronin sijainnin toennäköisyyttä etäisyyellä r atomin ytimestä kuvaa funktio: P(r) = 4r2 2r a 3 e a Elektronin toennäköisin sijainti saaaan siten etsimällä kyseisen funktion maksimiarvo, joka löytyy erivaatan nollakohtia tarkastelemalla: P(r) r Ääriarvot löytyvät siis kohista: = 8r a 3 e 2r a + 4r2 a 3 e 2r a ( 2 ) = 8r a a 3 e 2r a 8r2 a 4 e 2r a = 8r a 3 e 2r a (1 r ) = 0 a 1 r = 0 r = a a 8r 2r a 3 e a = 0 r = 0 Joista jälkimmäisessä kohassa oletettiin että r (muuten jaettaisiin nollalla) Jos r, P(r) 0 (eksponenttifunktiot pesee potenssifunktiot), mikä on myös fysikaalisesti järkevää sillä elektroni tuskin sijaitsee äärettömän kaukana ytimestä. Koska lisäksi: P(r = 0) = 0 ja P(r = a) = 4 a e 2 > 0, kun a > 0, (eli siis liikuttaessa kohasta r = a oikealle tai vasemmalle saaaan pienempiä P(r):n arvoja) voiaan toeta, että funktiolla P(r) on (lokaali) maksimi kohassa r = a, joka on siis etäisyys jolta elektroni toennäköisimmin löytyy. Huom! Funktio P(r) saa kyseistä lokaalia maksimia suurempia arvoja, kun mennään r:n negatiiviselle alueelle, mutta koska r on etäisyys (eikä esimerkiksi sijainti jonkin suhteen), voiaan automaattisesti keskittyä alueeseen r 0. Tästä myös seuraa, että on oltava a > 0, koska negatiivisia toennäköisyyksiä ei ole olemassa. Fysikaalisissa tehtävissä maalaisjärjen käyttö on siis useimmiten sallittua ja jopa suotavaa!

9

10

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 Differentiaalikehitelmä Funktion f erivaatta pisteessä x 0 eli f (x 0 ) on erotusosamäärän rajaarvo: f (x) f (x 0 ). x x 0 x x 0 Tämä voiaan esittää hieman eri muoossa

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

H5 Malliratkaisut - Tehtävä 1

H5 Malliratkaisut - Tehtävä 1 H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 3. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 3. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/07 Differentiaali- ja integraalilaskenta Ratkaisut 3. viikolle / 5. 7.4. Taylorin Polynomit, Taylorin sarjat, potenssisarjat, Newtonin menetelmä Tehtävä

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Mapusta. Viikon aiheet

Mapusta. Viikon aiheet Infoa Mapusta Tiistaina: Ongelmanratkaisu ryhmässä luento klo 8-10 D101. Tähän liittyviä tehtäviä tehään myöhemmin perusopintojen laboratoriotöihin integroituna. Mikäli luento menee ex-temporen päälle,

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely Talousmatematiikan perusteet: Luento 17 Osittaisintegrointi Sijoitusmenettely Motivointi Viime luennolla käsittelimme integroinnin perussääntöjä: Vakiolla kerrotun funktion integrointi: af x dx = a f x

Lisätiedot

Rautaisannos. Simo K. Kivelä 30.8.2011

Rautaisannos. Simo K. Kivelä 30.8.2011 Yhteenlasku Rautaisannos 30.8.011 Yhteenlasku sin x + cos x Yhteenlasku sin x + cos x = 1 sin x + cos x = 1 x R Yhteenlasku sin x + cos x = 1 x C Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A > B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

MATP153 Approbatur 1B Harjoitus 5 Maanantai

MATP153 Approbatur 1B Harjoitus 5 Maanantai MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö:

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö: 9//3 Osi+aisintegroin3 Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) = df(x) g(x) + f(x) dg(x) f(x)

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

2.2 Jatkuva funktio Funktio f(x) jatkuva pisteessä x 0, jos f on määritelty. Esim. sin x. = lim. lim. (1 x 2 /6 + O(x 4 )) = 1.

2.2 Jatkuva funktio Funktio f(x) jatkuva pisteessä x 0, jos f on määritelty. Esim. sin x. = lim. lim. (1 x 2 /6 + O(x 4 )) = 1. 2 Raja-arvo ja erivaatta 2 Raja-arvon määritelmä Funktiolla f() on raja-arvo f 0 pisteessä 0 jos f() lähestyy arvoa f 0 kun lähestyy arvoa 0 Merkitään f() f 0 kun 0 (2) tai Raja-arvo matemaattisemmin:

Lisätiedot

6 Eksponentti- ja logaritmifunktio

6 Eksponentti- ja logaritmifunktio ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

MS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko

MS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko MS-A0107 - Differentiaali- integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko 1 Tehtävä Etsi seuraavien yhtälöiden yleiset ratkaisut: Ratkaisu: a) y y 2y = 4x, b) y + 4y = sin 3x, c) y + 2y + 5y = e x

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Fysiikan matematiikka P

Fysiikan matematiikka P Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

f (t) + t 2 f(t) = 0 f (t) f(t) = t2 d dt ln f(t) = t2, josta viimeisestä yhtälöstä saadaan integroimalla puolittain

f (t) + t 2 f(t) = 0 f (t) f(t) = t2 d dt ln f(t) = t2, josta viimeisestä yhtälöstä saadaan integroimalla puolittain Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoituksen mallit Kevät 09 Tehtävän ratkaisu a) Analyysin peruslauseen mukaan missä c, c R y () = 3 sin() y () = 3 sin() = 3 cos()

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b , interpolointi, jousto, rajatuotto, L4b Funktioita Potenssifunktio: x (axn ) = nax n 1 Eksponentin n ei tarvitse olla kokonaisluku, vaan se voi olla murtoluku tai esimaaliluku! Neliöjuuri: ax = x x (

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Esimerkki 1 Ratkaise differentiaaliyhtälö

Esimerkki 1 Ratkaise differentiaaliyhtälö Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x)

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x) /9/ Osi*aisintegroin Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) df(x) g(x) + f(x) dg(x) f(x) g(x)

Lisätiedot

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p) Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT

Lisätiedot

3. Differen-aalilaskenta

3. Differen-aalilaskenta //. Differen-aalilaskenta Differen-aali "yvin pieni uutos" Derivaa

Lisätiedot

y + 4y = 0 (1) λ = 0

y + 4y = 0 (1) λ = 0 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Lien ryhmät D 380 klo Ratkaisut 6+6=12

Lien ryhmät D 380 klo Ratkaisut 6+6=12 JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lien ryhmät 22.5.2012 D 380 klo. 10-12 Ratkaisut 6+6=12 1. Käytä ehtoa g = {X M n n exp(tx) kaikille t R} ja tarvittaessa tietoa et exp A = exp r A toistaksesi

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p) Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT

Lisätiedot

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3 Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi

Lisätiedot

MS-A0103 / Syksy 2015 Harjoitus 2 / viikko 38 / Ennakot

MS-A0103 / Syksy 2015 Harjoitus 2 / viikko 38 / Ennakot Harjoitus 2 / viikko 38 / Ennakot Sekä tiistain 15.9. että torstain 17.9. luentoja pohjustavat ennakkotehtävät löytyvät MyCoursesin Tehtävät-osiosta. Lisätietoja itse tehtävissä. Tiedostoa viimeksi muokattu:

Lisätiedot

sin x cos x cos x = sin x arvoilla x ] π

sin x cos x cos x = sin x arvoilla x ] π Matematiikan johdantokurssi, syksy 08 Harjoitus 0, ratkaisuista. Todenna, että = + tan x. Mutta selvitäppä millä reaaliarvoilla se oikeasti pitää paikkansa! Ratkaisu. Yhtälön molemmat puolet ovat määriteltyjä

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 3A (Vastaukset) Alkuviikolla

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään: Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän

Lisätiedot

1.5. Trigonometriset perusyhtälöt

1.5. Trigonometriset perusyhtälöt Tämän asian otsake on takavuosina ollut Trigonometriset yhtälöt ja sen käsittely tuolloin ollut huomattavasti laajempi. Perusyhtälöillä tarkoitetaan muotoa sin x = a tan x = c cos x = b (cot x = d) olevia

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

= 9 = 3 2 = 2( ) = = 2

= 9 = 3 2 = 2( ) = = 2 Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali Viikon aiheet Integroimisen työkalut: Rationaalifunktioiden jako osamurtoihin Rekursio integraaleissa CDH: Luku 4, Prujut206: Luvut 4-4.2.5, Prujut2008: s. 89-6 Kun integraali h(x) ei näytä alkeisfunktioiden

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Osoita, että eksponenttifunktio ja logaritmifunktio ovat differentiaaliyhtälön

Osoita, että eksponenttifunktio ja logaritmifunktio ovat differentiaaliyhtälön 3. Lineaariset differentiaaliyhtälöt 3.1. Lineaariyhtälöiden teoriaa 99. Onko differentiaaliyhtälö y + x(y y )=y + 1 a) lineaarinen, b) homogeeninen? 100. Olkoot funktiot f (x) ja g(x) jatkuvasti derivoituvia

Lisätiedot