Tilastotieteen perusteet

Koko: px
Aloita esitys sivulta:

Download "Tilastotieteen perusteet"

Transkriptio

1 VAASANYLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso

2 SISÄLLYSLUETTELO. JOHDANTO Mitä tilastotiede o? Tilastotietee historiaa HAVAINTOAINEISTO JA MITTAAMINEN Peruskäsitteitä Mittaamisesta YKSIULOTTEINEN EMPIIRINEN JAKAUMA Frekvessijakauma peruskäsitteitä ja luokitus Graafie esitys Yksiulotteise jakauma tuusluvut Keskiluvut Hajotaluvut Yksiulotteise jakauma muita tuuslukuja KAKSIULOTTEINEN EMPIIRINEN JAKAUMA Ristiitaulukko Korrelaatiodiagrammi ja korrelaatio Järjestyskorrelaatio Regressio TODENNÄKÖISYYSLASKENTAA Kombiatoriikkaa Todeäköisyyde määrittely Ehdollie todeäköisyys ja riippumattomuus Kokoaistodeäköisyys ja Bayesi kaava TEOREETTISISTA JAKAUMISTA Satuaismuuttujista Keskeisiä diskreettejä jakaumia Keskeisiä jatkuvia jakaumia HAVAINTOAINEISTON HANKINNASTA Johdato Otatatutkimuksesta yleesä Otatameetelmistä Otatajakaumista TILASTOLLISESTA PÄÄTTELYSTÄ Estimoiti Piste-estimoiti Väliestimoiti (luottamusvälit) Hypoteesie testaus Testaukse pääpiirteet Keskiarvotestejä Prosettilukutestejä Riippuvuustutkimuksee liittyviä testejä yhteesopivuustesti... 97

3

4 3. JOHDANTO.. Mitä tilastotiede o? Tilasto o empiiristä ilmiötä kuvaava usei taulukkoa esitetty umeerie aieisto. Tilastoiti tuottaa tällaisia eri ilmiöitä kuvaavia aieistoja. Erilaisia empiirisiä ilmiöitä kuvaavissa aieistoissa esiityy samatyyppisiä ogelmia, joide tutkimisessa tilastotieteestä o apua ja muodostetut tilastot ovat tilastollise tutkimukse materiaalia. Professori Leo Törqvisti määritelmä mukaa: "Tilastotiede o tietotuotao tekologiaa, joka avulla voidaa suorittaa kvatitatiiviste tietoje joukkotuotatoa ja havaitoihi perustuvia tieteellisiä ja käytäöllisiä päätöksiä." Tilastotiede o siis empiirisluotoiste tietoje hakia suuittelua keräämistä deskriptiivie eli järjestämistä esittämistä kuvaileva tilastotiede sekä aalysoitia tilastollie päättely eli tulkitaa iferessi *) koskeva tiede. *) Tilastollie päättely o luoteeltaa iduktiivista, jolloi osajoukkoa koskevat tulokset yleistetää koskemaa koko perusjoukkoa. Tilastotiede o s. meetelmätiede, joka tehtävää o kehittää meetelmiä muide tieteide (esim. talous-, luoo- ja yhteiskutatieteide) empiirisiä ilmiöitä kuvaavie tietoje aalysoitia varte. Empiirie ilmiö voi olla sellaie, joho vaikuttavat vai systemaattiset tekijät (determiistie ilmiö) tai sellaie, joho systemaattiste tekijöide lisäksi vaikuttaa myös sattuma (satuaisilmiö). Sattuma käsitteellä tarkoitetaa satuaisilmiö sitä käyttäytymise osuutta, jota ei voida etukätee tarkkaa eakoida. Usei kuiteki sattuma käyttäytymie oudattaa omia lakejaa. Tilastotiedettä käytetää erityisesti satuaisilmiöide tutkimisee. Tilastotietee lisäksi meetelmätieteitä ovat myös matematiikka ja tietotekiikka. Tilastotiede soveltaa meetelmiä kehittäessää matematiika teoriaa, erityisesti todeäköisyyslaskea teoriaa, siksi tilastotiedettä usei pidetääki sovelletu matematiika eräää osa-alueea (matemaattie eli teoreettie tilastotiede). Tilastotietee ja tietotekiika yhteistä aluetta saotaa tilastolliseksi tietojekäsittelyksi.

5 4 Usei tilastolliste meetelmie kehittämisvaiheessa iihi liittyy vaatimus sovellettavuudesta ja käsitys sovellustilateesta. Oki käyyt usei ii, että raja tilastotietee ja soveltavie tieteide välillä o hämärtyyt, jolloi soveltavie tieteide piirissä o raja-aluetta alettu imittää omalla imellä (esim. epidemiologia, biometria, psykometriikka ja ekoometria). Tilastotiedettä voidaa kuiteki soveltaa lähes mihi tahasa tieteesee, koska tilastotietee teoria o yleistä. Esim. Deskriptiivisee eli kuvailevaa tilastotieteesee törmätää päivittäi - osakkeide hiamuutoksissa - työttömyysluvuissa - puolueide kaatusluvuissa - lämpötiloissa yms. Esim. Tilastollista päättelyä käytetää mm. - tulevaisuude eustamisessa - vakuutusyhtiö arvioidessa vakuutukse hitaa - laadutarkkailussa Tilastollisessa aalyysissä tutkittavat ogelmat pelkistyvät usei seuraavalaisiksi kysymyksiksi: - Millaie tilae o keskimääri? - Kuika suuri o prosetuaalie osuus? - Kuika suurta o omiaisuude vaihtelu? - Oko eroa? - Oko samalaisuutta? - Oko muutosta? - Oko riippuvuutta? - Millaista riippuvuus o? - Mite tulevaisuudessa?.. Tilastotietee historiaa Laajassa mielessä tilastotiedettä harrastettii systemaattiste tietoje keräykse muodossa jo muiaisessa Kiiassa ja Egyptissä (väestökirjapito). Moderi tilastotietee juuret voidaa ajoittaa 600-luvulle, jolloi eurooppalaiste yhteiskutie kehittyessä tarvittii luotettavaa tietoa taloude ilmiöistä (= poliittie taloustiede, joka erästä osa-aluetta

6 5 saottii yliopistostatistiikaksi) sekä valtio ja väestö tilasta (= poliittie aritmetiikka). Saa tilasto saksa- ja eglaikieliset vastieet Statistik ja statistics viittaavatki saa alkuperäisee merkityksee: valtio kuvaus. Vuoa 66 julkaistii Eglaissa tilastollise tutkimukse urauurtaja Joh Grauti teos Natural ad Political Observatios o the Bills of Mortality. Merkittävästi tilastotietee sytyy ja kehityksee ovat vaikuttaeet myös uhkapeliogelmat. Uhkapeliharrastuste lisäätymise myötä alettii 600-luvulla tutkia todeäköisyyslasketaa erityisesti Raskassa. Vielä 700-luvulla ja se jälkeeki havaitoaieistoja käsiteltii varsi alkeellisi meetelmi (yksikertaisia meetelmiä, lähiä kuvailevaa tilastotiedettä). Aalysoiva tilastotietee rialla kulki siitä erilliseä halliollie tilastoiti. Nämä yhdistyivät jossai määri 800-luvulla, ku matematiika voimakas kehittymie loi tilastotieteelle selkeä teoreettise pohja. 800-luvulla alettii luoo-, yhteiskuta- ja käyttäytymistieteissä kiiostua tilastotietee meetelmistä. Tältä ajalta ovat peräisi esim. Gregor Medeli periöllisyyskokeet. Myös matemaattie tilastotiede alkoi kehittyä voimakkaasti 800- luvu loppupuolella, esimerkiksi korrelaatioteoria ja regressiolai perusteet esitettii v luvu alkupuolella sytyivät moet tilastotietee perusmeetelmistä. Viime vuosikymmeiä tilastotietee teoria ja sovellusalueet ovat laajetueet valtavasti. Tähä o erityisesti vaikuttaut tietojekäsittelymahdollisuuksie kehittymie. Suomekielie saa tilasto otettii käyttöö 840-luvulla. Ruotsi-Suomi oli esimmäie valtio, jossa alettii sääöllisesti laatia väestötilastoja, esimmäiset tiedot koskivat vuotta 749. Tuolloi Ruotsi-Suome väkiluku oli 3 69 hekeä. Esimmäie suomekielie tilastokirja Suome Suuriruhtiaa Nykyie Tilasto julkaistii vuoa 848. Vuoa 865 perustettii Tilastollie toimisto (yk. Tilastokeskus). Vuoa 905 Karl Willgre julkaisi esimmäise suomalaise tilastotietee oppikirja. Esimmäie tilastotietee professuuri saatii Helsigi yliopistoo vuoa 945.

7 6. HAVAINTOAINEISTO JA MITTAAMINEN Havaitoaieisto o tilastollise aalyysi perusta, jote o tärkeää, että se o huolella koottu ja esikäsitelty... Peruskäsitteitä Tilastollie tutkimus kohdistuu aia joideki tutkimusobjektie muodostamaa joukkoo, joka o tutkimukse perusjoukko eli populaatio. Populaatio rajaamie o tutkimukse esimmäisiä vaiheita. Populaatio alkioita eli tutkimusobjekteja kutsutaa tilastoyksiköiksi, joista käytetää yleesä merkitää a, a, a 3, Jos tutkittavaa o kokreettie aieisto, tilastoyksiköt imetää "omalla imellää". Esim. Tutkittavaa o 0 kpl Suome kutia, joista tiedetää veroäyri hita. Tilastoyksikköä o kuta, mutta mikä o populaatio? - em. kutie joukko, jos tutkitaa vai äitä kutia (kokoaistutkimus) - kaikki Suome kuat (otatatutkimus) - tiety lääi kuat (otatatutkimus) - Huom. Tutkittavista tilastoyksiköistä tehtävät johtopäätökset ulottuvat vai määrättyy populaatioo (vrt. superpopulaatio). Tilastoyksikköö liittyviä omiaisuuksia kutsutaa tilastollisiksi muuttujiksi, joita merkitää usei, y, z, tai,, 3, Jotta tilastollisia meetelmiä voidaa soveltaa, o tutkittava ilmiö omiaisuudet voitava esittää umeerisesti. Tämä tehdää mittaamalla tilastoyksiköiltä muuttujie arvot eli havaitoarvot. Ku tutkittavilta tilastoyksiköiltä mitataa halutut tutkittavat omiaisuudet, saadaa havaitoaieisto. Havaitoaieisto esitetää usei havaitomatriisia seuraavasti j k a a ai a i i j j ji j k k ki k

8 7 Tilastoyksiköitä tässä havaitomatriisissa o kpl (eli vaakarivie lukumäärä). Yhde tilastoyksikö (a i ) eri omiaisuudet esitetää yhdellä vaakarivillä. Tätä vaakariviä saotaa ko. tilastoyksikö havaitovektoriksi eli profiiliksi. Muuttujia havaito-matriisissa o k kpl (eli sarakkeide lukumäärä). Yhdellä sarakkeella esitetää site kaikkie tilastoyksiköide tämä omiaisuus ( j ). Sarake muodostaa site ko. muuttuja jakaumavektori. Esim. SPSS-ohjelma havaitomatriisiesityksessä tilastoyksikö imestä voidaa tehdä muuttuja (esim. kua imi), joka saa arvoksee merkkejä (= kirjaimia). Muut tämä aieisto muuttujat saavat arvoksee lukuja. Yhdellä vaakarivillä o yhde tilastoyksikö eli kua erilaisia omiaisuuksia. Yksi sarake eli pystyrivi esittää yhde omiaisuude eli muuttuja arvoja. (Aieisto peruslähde o Tilastokeskukse Kutafakta-aieisto.).. Mittaamisesta Mittaamisella tarkoitetaa meettelyä (operaatiota, säätöä), jolla tutkittavaa tilastoyksikköö liitetää jotaki se omiaisuutta kuvaava luku eli mittaluku. Ku tilastoyksikö tarkastelualaie omiaisuus mitataa ja saadaa mittaustulos, saotaa tätä tulosta muuttuja arvoksi. Käytetyt mittaluvut ovat tilastollise tutkimukse lähtökohta, joho tutkimukse oistumie perustuu. O huolehdittava siitä, että muuttujalla o korkea validiteetti (asiamukaisuus) eli muuttuja mittaa sitä omiaisuutta, jota se olisi tarkoitus mitata. Esimerkiksi kysymys Kuika mota kertaa syöt viikossa porkkaaraastetta? ei mittaa sitä, pidätkö porkkaaraasteesta vai et. Myös muuttuja reliabiliteeti (pysyvyyde, eisattumavaraisuude) täytyy olla korkea, eli toisistaa riippumattomie samalle tilastoyksikölle tehtyje mittauste tulokset pitäisi olla samat. Tilastolliset muuttujat voivat olla suoraa mitattuja tai teoreettisia muuttujia. Teoreettiste muuttujie (esim. älykkyyde) mittaamisessa käytetää apua idikaattoreita. Älykkyyde idikaattoreita voisivat olla esim. meestymie erilaisissa testeissä, joide tulokset yhdistetää esim. yhdeksi muuttujaksi laskemalla eri testie pistemäärät yhtee.

9 8 Tilastollie muuttuja o jatkuva, jos se voi periaatteessa saada mikä tahasa reaalilukuarvo joltai (järkevältä) väliltä. Vaikka muuttuja olisiki periaatteessa jatkuva, o käytäössä mittaustarkkuus aia äärellie. Jatkuvuude käsite perustuuki ajatuksee, että mittaustarkkuutta voidaa parataa rajatta. Muuttuja o diskreetti eli epäjatkuva, jos se arvoia voivat olla vai jotki erilliset lukuarvot jollaki välillä. Havaitomatriisissa olevat havaitoarvot äyttävät tavallisilta reaaliluvuilta. Näillä arvoilla o kuiteki myös toie sisältö. Ne kuvaavat jotaki omiaisuutta, ja käytetty esitystapa o vai välie ilmiö tutkimisessa. Tavallisia reaalilukuja voidaa laskea yhtee, jakaa keskeää, iistä voidaa ottaa logaritmeja je. Myös havaitoaieistolle tehtävät tilastolliset operaatiot perustuvat tällaisii laskutoimituksii, mutta äitä operaatioita tehtäessä o aia pidettävä mielessä, että saatu tulos o voitava tulkita empiirisesti mielekkäällä tavalla. Tulkia mielekkyys riippuu usei muuttuja mitta-asteikosta. Muuttuja mitta-asteiko tutemie o tärkeää, koska erilaisille muuttujille sopivat vai tietyt tilastolliset tuusluvut ja aalysoitimeetelmät. Mitä korkeampi o mittaustaso, sitä eemmä o käytössä aalyysimeetelmiä. Seuraavassa esitellää mitta-asteikkojako, jossa muuttujat jaetaa eljää ryhmää, jotka esitetää alhaisimmasta korkeimpaa. Nomiaali- eli luokittelu- eli laatueroasteikko Jos tilastoyksiköt aioastaa jaetaa muuttuja perusteella luokkii, mitataa muuttujaa omiaaliasteikolla. Tällöi jokaisesta tilastoyksiköstä a i ja a j voidaa saoa aioastaa, että e ovat joko samalaisia tai erilaisia muuttuja suhtee. Jokaie tilastoyksikkö voi kuulua vai yhtee luokkaa. Nomiaaliasteikollise muuttuja arvoje koodaus voidaa valita vapaasti. Aritmeettiset laskutoimitukset eivät ole sallittuja muuttuja arvoille. Aioastaa lukumäärie laskemie o järkevää. Esim. sukupuoli: mies = aie = ammatti: pappi = lukkari = kattori = 3 Esim. Liisa o pappi ja Leea o kattori. Liisalla ja Leealla o eri ammatit. Liisalla ja Leealla o sama sukupuoli. Ordiaali- eli järjestysasteikko Ordiaaliasteikolla voidaa luokittelu lisäksi luokat asettaa järjestyksee muuttuja arvoje perusteella. Muuttuja arvoje välillä vallitsee joki järjestysrelaatio, joka voidaa ilmaista saoilla "parempi", "vaikeampi", "kauiimpi", Mitää lukua ei vertailuu voida kuitekaa ottaa mukaa. Peruslaskutoimitukset eivät ole sallittuja ordiaaliasteikolla.

10 9 Ordiaaliasteikollise muuttuja arvoje koodaus o muute vapaata, kuha olemassa oleva järjestys tulee yksikäsitteisesti määrätyksi. Esim. arvosaa: tyydyttävä = hyvä = kiitettävä = 3 suhtautumie tiettyy väitteesee: täysi eri mieltä = jokseeki eri mieltä = ei eri mieltä eikä samaa mieltä = 3 jokseeki samaa mieltä = 4 täysi samaa mieltä = 5 sijoitus maastojuoksu piirimestaruuskilpailuissa Esim. Matti sai tetistä arvosaa hyvä ja Liisa sai arvosaa kiitettävä. (Matti ja Liisa saivat eri arvosaa.) Liisa arvosaa o parempi kui Matilla. 3 Itervalli- eli välimatka-asteikko Itervalliasteikolla voidaa luokittelu ja järjestyksee asettamise lisäksi vertailla muuttuja lisäyste suuruutta keskeää lukuje avulla. Kahde tilastoyksikö a i ja a j välistä eroa muuttuja suhtee vastaa muuttuja-arvoje i ja j erotus. Muuttuja-arvoje yhtee- ja väheyslasku o sallittua, ja lieaarie muuos f() = a + b, missä b > 0 säilyttää itervalliasteiko raketee. Asteiko ollapiste o sopimuksevaraie (keiotekoie). Muuttuja voi saada joskus egatiivisiaki arvoja. Esim. lämpötila Celsius- tai Fahreheit-mittarilla mitattua ( Celsius, y Fahreheit; lieaarie muuos y = 3 +.8) kaleteri mukaa mitattava aika leveys- ja pituusasteet Esim. Vaasa lämpötila o -6 C ja Helsigi + C. (Vaasassa ja Helsigissä o eri lämpötila. Helsigissä o lämpimämpää kui Vaasassa.) Helsigissä 8 C lämpimämpää kui Vaasassa. 4 Suhdeasteikko Jos itervalliasteiko vaatimukset ovat voimassa ja lisäksi o olemassa absoluuttie ollapiste, jossa tarkasteltava omiaisuus "häviää" eli omiaisuude määrä o todella olla, o muuttuja mitta-asteikko suhdeasteikko. Aritmeettise laskutoimitukset ovat sallittuja, ja lieaarie muuos f() = a, missä a > 0 o sallittu. Suhdeasteikolla voidaa tilastoyksiköide muuttuja arvoje vertailussa käyttää suhdelukua.

11 0 Esim. pituus cm paio kg Esim. Matti paiaa 90 kg ja Liisa 45 kg. (Matti ja Liisa ovat eri paioisia. Matti o paiavampi kui Liisa. Matti paiaa 45 kg eemmä kui Liisa.) Mati paio o kaksikertaie Liisa paioo verrattua. Huom. Muuttuja mitta-asteikko ilmoitetaa se toteuttama korkeimma asteiko perusteella Huom. Usei mitta-asteikot jaotellaa vielä kahtee luokkaa: omiaali- tai ordiaaliasteiko muuttujia saotaa kvalitatiivisiksi eli laadullisiksi muuttujiksi. Itervalli- tai suhdeasteiko muuttujia saotaa kvatitatiivisiksi eli määrällisiksi muuttujiksi. Huom. Asteikkotyypi määrittämie ei ole välttämättä helppoa eo. tuusmerkkie avulla. Joissaki tilateissa muuttuja mitta-asteikosta esiityy erilaisia äkemyksiä. Tyypillisesti tällaie muuttuja mittaa mielipidettä. Tarkasti ottae ko. muuttuja o järjestysasteiko muuttuja, mutta joskus se ajatellaa oleva välimatka-asteiko muuttuja. Viimeksi maiittu tulkitatapa johtuu siitä, että aieisto käsittelijä mieltää muuttuja-arvoje erotukse umeerise erotukse mukaiseksi.

12 3. YKSIULOTTEINEN EMPIIRINEN JAKAUMA 3.. Frekvessijakauma peruskäsitteitä ja luokitus Jos tutkittavie tilastoyksiköide lukumäärä o suuri, ei havaitomatriisi aia riitä muuttujie yleispiirteide selvittämiseksi. Muuttuja yleiset omiaisuudet hukkuvat yksityiskohtie joukkoo. Aieistoa o järjestettävä ja tiivistettävä. Havaitomatriisi sisältämää tietoa voidaa tiivistää esimerkiksi muodostamalla muuttuja (luokiteltu, suora, yksiulotteie) frekvessijakauma. Frekvessijakauma muodostamiseksi muuttuja saamat arvot jaetaa erillisii luokkii, merk. E, E,, E k, missä k o luokkie lukumäärä. Luokkaa E i kuuluvie : arvoje lukumäärää saotaa luoka E i frekvessiksi, merk. f i. Ku muuttuja luokat ja luokkia vastaavat frekvessit tuetaa, ii silloi tuetaa : frekvessijakauma. Usei absoluuttiste frekvessie sijasta esitetää frekvessit, jotka o suhteutettu havaitoje kokoaismäärää. Näitä suhteutettuja frekvessejä voidaa käyttää esimerkiksi kahde eri havaitoaieisto frekvessijakaumie vertailuu. Lukua p i = f i saotaa luoka E i suhteelliseksi frekvessiksi ja lukua 00p i saotaa prosetuaaliseksi frekvessiksi. Jos muuttuja o epäjatkuva eli diskreetti, o luokkie määrittely yleesä selvää. Luokkia käytetää muuttuja arvoja joko sellaiseaa tai iitä vastaavia koodilukuja. Jos muuttuja luokilla o joki vakiituut esittämisjärjestys tai muuttuja o aiaki järjestysasteikolla mitattu, o luokat esitettävä vastaavassa järjestyksessä. Esim. Vuode 003 alussa Suome kutie lääijakauma oli seuraavalaie: (Aieisto peruslähde o Tilastokeskukse Kutafakta) Lääi f i p i 00p i Etelä-Suome Läsi-Suome Itä-Suome Oulu Lapi Ahveamaa Yhteesä

13 Jos luokkia tulee hyvi paljo ja suuri osa frekvesseistä o pieiä, kaattaa luokkia yhdistellä. Tällöi luokat o yhdisteltävä ii, että samaa luokkaa tulevat arvot kuuluvat mahdollisimma loogisesti yhtee. Jos muuttuja o jatkuva-arvoie, o se luokittelu hakalampaa, koska tällaise muuttuja arvot voivat olla mitä tahasa reaalilukuja joltai väliltä, ja kaikki mitatut arvot voivat olla erisuuruisia. Jos muuttujasta halutaa muodostaa tiivis frekvessijakauma, o luokkie oltava välejä, jotka kattavat muuttuja arvot. Jatkuva muuttuja luokittelussa tietoa häviää, koska yt ei eää ilmoiteta muuttuja havaittuja arvoja vaa luokka, joho havaitoarvo kuuluu. Luokitellu aieisto esitystapa o kuiteki usei selvempi kui luokittelemattoma, koska jatkuva-arvoise muuttuja jakauma esittämie esimerkiksi tilastokuvioa perustuu usei luokitteluu. Jatkuva muuttuja luokittelua voidaa hahmottaa seuraavasti: Oletetaa, että luokiteltavia havaitoja o kpl ja e o pyöristetty jolleki mittaustarkkuudelle, merk. d. (Jos mittaustulokset ovat kokoaislukuja, o d =, jos mittauksissa o käytetty yhtä desimaalia, ii d = 0.). Etsitää piei arvo, merk. (), ja suuri arvo, merk. (). Muuttuja arvoje vaihteluväli muodostaa väli ( (), () ). Vaihteluväli pituus o w = () - (). Päätetää, käytetääkö tasavälistä vai epätasavälistä luokitusta. Luokitus o tasavälie, jos kaikki luokat ovat yhtä leveitä. Jos vai voidaa, kaattaa käyttää tasavälistä luokitusta. 3 Valitaa luokkie lukumäärä k, k 3 tai k. (Jos = 5, ii k 5-7.) Yleesä luokkia o 4-0 kpl. 4 Tasavälisessä luokituksessa määritetää arvio luokkaväli pituudelle c site, että c > w. Luokkie rajoje o oltava selkeitä, ja siksi c valitaa usei hiuka k suuremmaksi kui edellie suhde. 5 Muodostetaa luokat site, että e peittävät koko vaihteluväli. Esimmäise luoka pyöristety alaraja pitäisi olla pieempi tai yhtä suuri kui (). Muut luokat määritellää pyöristettyje luokkarajoje avulla, jotka esitetää samalla mittaustarkkuudella kui muuttujaki o mitattu. 6 Tutkitaa jokaie arvo, ja määrätää luokkie frekvessit. Yksittäie havaito voi kuulua vai yhtee luokkaa. Esim. Tilastokeskukse Kutafakta-aieistossa yhteä omiaisuutea o kuassa v. 00 myytyje asutoje keskihita /m. Asutoje keskihitaa ei ole määritetty 30 kuassa, jote käytettävie havaitoje (eli kutie) kokoaismäärä o 46. Keskihita o määritetty euroia eliömetriä kohde, jote mittaustarkkuus d =. Muuttuja o suhdeasteikolla mitattu ja jatkuva. Piei arvo o 336 ja suuri 66. Vaihteluväli pituus o 830.

14 3 Sopiva luokkie lukumäärä tämä suuruisessa aieistossa o oi 7-9. Tarkastellaa yt valmiiksi luokiteltua aieistoa, jossa luokkie lukumääräksi o valittu k = 8 ja luokkaväli pituudeksi c = 30. Esimmäise luoka pyöristetyksi alarajaksi o valittu luku 330, koska se pieitä arvoa pieempi tasaluku. Toise luoka pyöristetty alaraja o luokkaväli pituude etäisyydellä esimmäise luoka alarajasta. Esimmäise luoka pyöristetty yläraja o mittaustarkkuude verra pieempi kui toise luoka pyöristetty alaraja. Absoluuttiste frekvessie lisäksi jakaumassa o esitetty prosetuaaliset frekvessit. Asutoje keskihita / m f i 00 p i Yhteesä Mittaustarkkuus d äkyy frekvessijakaumataulukossa site, että se o i:e luoka pyöristety alaraja ja sitä edeltävä luoka pyöristety yläraja erotus. Taulukossa äkyvät pyöristetyt luokkarajat ovat luokkie symboleja. Tasavälisessä luokituksessa edeltävä luoka ja seuraava luoka pyöristettyje alarajoje (ja myös ylärajoje) välie etäisyys vastaa luokkaväli pituutta. Peräkkäiste luokkie välie todellie luokkaraja o luoka i pyöristety yläraja ja sitä seuraava luoka pyöristety alaraja välie pyöristysraja. Sitä saotaa edeltävä luoka todelliseksi ylärajaksi ja seuraava luoka todelliseksi alarajaksi. Todellisesta alarajasta käytetää merkitää L i ja todellisesta ylärajasta merkitää U i. Todellisia luokkarajoja käytetää mm. graafisissa esityksissä sekä tuuslukuje laskemisessa. Luokkaväli pituus c i o luoka todellise ylä- ja alaraja erotus eli c i =U i - L i. Tasavälisessä luokituksessa luokkaväli pituus o kaikilla luokilla sama ja tällöi siitä voidaa käyttää merkitää c.

15 4 L U Luoka E i luokkakeskus m i o luoka keskipiste eli m i i i. Koska luokittelussa katoaa tilastoyksiköide tarkat muuttuja-arvot, tulkitaa luokkakeskus usei ko. luoka havaitoje keskiarvoa. Luokkakeskuksia käytetää mm. tilastokuvioissa. Jos muuttuja o epäjatkuva, itervalli- tai suhdeasteikolla mitattu ja jos muuttujalla o paljo erilaisia arvoja, voidaa muuttujaa kohdella kui se olisi jatkuva. Jos muuttuja o mitattu vähitää järjestysasteikolla, voidaa muuttujalle määrittää summafrekvessi eli kumulatiivie frekvessi F i ilmaisee, kuika mota tilastoyksikköä (havaitoa) kuuluu luokkaa E i tai sitä edeltävii luokkii yhteesä eli eli F i i f j j F f F f f F f F3 f f f3 F Fk f f fk f3 Fk fk Edellee saadaa suhteellie summafrekvessi P i F i ja prosetuaalie summa- frekvessi 00P i. Esim. Seuraavassa taulukossa o esitetty keskihia frekvessijakauma lisäksi summafrekvessit, prosetuaaliset summafrekvessit, todelliset luokkarajat ja luokkakeskukset. Asutoje keskihita / m f i F i 00 P i L i U i m i Yhteesä 46

16 5 3.. Graafie esitys Frekvessijakauma voi esittää myös graafisesti. Usei käytetty kuviotyyppi o pylväskuvio. Pylväskuviot muodostuvat joko vaaka- tai pystypylväistä. Pylväide pitaalat (ja tasalevyiste pylväide pituudet) kuvaavat määriä, jote pylvää pituutta osoittava asteiko o lähdettävä luvusta 0. Vaakapylväskuvioita tulisi käyttää silloi, ku kuvataa laadullise muuttuja jakaumaa. Muuttuja luokat esitetää pystyakselilla ja vaaka-akselilla kuvataa frekvessit (absoluuttiset, suhteelliset tai prosetuaaliset). Jos muuttuja o omiaaliasteikolla mitattu, esitetää aieisto ii, että yli pylväs o pisi ja muut pylväät piirretää pituusjärjestyksessä. Pylväide välii jätetää pieet raot. Jos muuttuja o järjestysasteikollie, esitetää pylväät luokkia vastaavassa järjestyksessä. Sektoridiagrammia (ympyräkuvio, piirakkakuvio) käytetää laadullise muuttuja jakauma esittämisessä erityisesti silloi, ku halutaa havaiollistaa joki kokoaisuude jakautumista osii. Jokaise luoka kokoa edustaa sektori pita-ala, joka o suoraa verraollie luoka kokoo. Sektorikuvio sijasta kaattaa käyttää vaakapylväsesitystä erityisesti silloi, jos halutaa esittää, että kahde (tai useamma) melko samakokoise ryhmä välillä o kuiteki eroavuutta havaitomäärässä. Esim. Suome kutie lääijakauma vaakapylväskuvioa Läsi-Suome lääi Etelä-Suome lääi Lääi Itä-Suome lääi Oulu lääi Lapi lääi Ahveamaa kpl

17 6 Esim. Suome kutie tyyppijakauma sektorikuvioa Kaupukimaie 5,% Taajamatyyppie 6,4% Maaseutumaie 68,4% Määrällise epäjatkuva muuttuja jakaumaa voidaa kuvata jaakuviolla, joka o pystypylväskuvio. Jaadiagrammi piirretää ii, että koordiaatistoo piirretää muuttuja arvoje kohdalle kyseiste arvoje frekvessie korkuiset jaat tai pylväät. Esim. Vialliste tuotteide lukumääräjakauma tuote-erissä esitettyä taulukkoa ja jaakuvioa 5 vialliste lkm f i Tuote-erie määrä Vialliste tuotteide määrä Frekvessihistogrammi o pystypylväskuvio, jota käytetää määrällisille jatkuville muuttujille. Ku luokitus o tasavälie, histogrammi muodostuu pylväistä, joide leveys o luokkaväli pituus c, korkeus luoka E i frekvessi f i ja katoje kärkipisteiä vaakaakselilla ovat todelliset luokkarajat. Yleesä kuiteki todelliste luokkarajoje sijasta merkitää vaaka-akselille äkyvii "siistit" luvut, jotka ovat lähellä todellisia luokkarajoja tai luokkakeskuksia. Histogrammissa o pylvää pita-ala tärkeämpi kui korkeus, jote kuvio olisi piirrettävä ii, että luokkie frekvessie suuruus o suoraa verraollie

18 7 pylväide pita-aloihi. Tämä vaatimus toteutuu helposti tasavälise luokitukse yhteydessä, ku piirretää frekvessi korkuisia pylväitä. Jos luokitus o epätasavälie, o pita-alatulkita muistettava! Esim. Asutoje keskihia jakauma frekvessihistogrammia Kutie määrä Asutoje keskihita /m² Yksiulotteie jatkuva määrällise muuttuja frekvessijakauma voidaa esittää myös frekvessimoikulmio avulla. Jokaise luokkakeskukse kohdalle piirretää piste frekvessi (tai suhteellise tai prosetuaalise frekvessi) korkeudelle ja peräkkäiset pisteet yhdistetää toisiisa jaoilla. Frekvessimoikulmio päätepisteet ovat -akselilla s. ollaluokkie (= luokitukse alkuu ja loppuu lisättävie ylimääräiste luokkie) luokkakeskuksissa. Jos ollaluokkia ei voi lisätä, ei frekvessimoikulmiota voi piirtää. Esim. Asutoje keskihia jakauma frekvessimoikulmioa Kutie lukumäärä Asutoje keskihita /m²

19 8 Myös summafrekvessijakauma voidaa esittää kuvioa. Jatkuva määrällise muuttuja summafrekvessijakaumaa kuvataa summakäyrällä. Jokaise luoka todellise yläraja kohdalle piirretää piste summafrekvessi (tai suhteellise tai prosetuaalise summafrekvessi) korkeudelle ja peräkkäiset pisteet yhdistetää toisiisa jaoilla. Summakäyrä lähtee vaaka-akselilta ja ousee :ää asti. Jos summakäyrä muodostetaa prosetuaalisesta summafrekvessijakaumasta, voidaa käyrä avulla selvittää mm. - kuika mota % havaitoarvoista o pieempiä kui luku a - mikä o se muuttuja arvo, jota pieempiä havaitoarvoja o p %. Esim. Asutoje keskihia prosetuaalie summakäyrä 00 Kutie prosetuaalie osuus Asutoje keskihita /m² Diskreeti määrällise muuttuja summafrekvessijakaumaa vastaava summakäyrä o porrasfuktio. Vaaka-akselille merkitää muuttuja arvot ja piirretää käyrä, joka saa arvo kohdalla se frekvessi suuruise hyppäykse ja pysyy arvoje välillä edellise arvo kohdalla saamallaa tasolla. Viivakuviota käytetää ee kaikkea aikasarjoje graafisee esittämisee. Tällöi muuttuja kuvaa yleesä yhde tilastoyksikö yhtä omiaisuutta eri ajakohtia. Viivadiagrammissa vaaka-akselilla kuvataa aika ja pystyakselilla kuvataa muuttuja arvot. Sekä vaaka- että pystyakseli voi katkaista. Esim. Terveyspalvelu yrityste liikevaihto (milj. mk) vuosia vuosi liikevaihto

20 Liikevaihto milj. mk vuosi Jos muuttuja o vähitää järjestysasteiko mittaustasoa, voidaa se havaitoarvoje jakautumie esittää laatikko-viikset - eli bo-plot -kuvioa. Tässä kuviossa ei esitetä luokitteluu perustuvaa jakaumaa, vaa kuviosta ilmeee muuttuja tuuslukuje arvoja. Kuviossa piirretää laatikko, joka pohja o alakvartiili korkeudella ja kasi o yläkvartiili korkeudella. Muuttuja mediaai merkitää laatikkoo poikkiviivalla. Laatiko pohjasta ja kaesta piirretää viikset kummalleki puolella laatikkoa. Viiksie piirtämisessä o useita käytätöjä, viiksie toisia päätepisteiä voivat olla esim. 0 %: ja 90 %: fraktiilit, jolloi kuvaa voidaa vielä eriksee merkitä e havaiot, jotka ovat kauempaa jakauma keskikohdasta kui em. fraktiilit. Määrällise muuttuja jakaumaa voidaa esittää ruko-lehti -kuviolla. Muuttuja-arvoista jätetää esittämättä tietty määrä oikeapuoleisia umeroita. Jäljelle jäävistä muodostetaa esitykse ruko, joka arvot esitetää perättäisiä kokoaislukuia piei luku ylimmällä rivillä ja suuri alimmalla rivillä. Rukoarvoje perää kirjoitetaa lehdet yleesä site, että havaioista pois jätety umero-osuude esimmäiset umerot tulevat oikealle riville suuruusjärjestyksessä. Esim. Seuraavassa o muutama Suome kua verotettavat tulot suuruusjärjestyksessä ( /asukas): 7693, 838, 8664, 8738, 876, 9090, 9573, 000, 0879, 334, 789 ja Ruko-lehti -kuvio, jossa rugo leveys o 000 : 7: 6 8: : 05 0: 8 : 3 : 7 3: 0

21 Yksiulotteise jakauma tuusluvut Frekvessijakaumie laatimisella yritetää saada muuttuja keskeiset omiaisuudet helpommi hahmotettaviksi. Usei muuttuja havaitoarvoje sisältämä iformaatio halutaa tiivistää vieläki voimakkaammi. Tällöi lasketaa havaioista tilastollisia tuuslukuja. Sijaitia kuvaavia tilastollisia tuuslukuja saotaa keskiluvuiksi. Hajotaluvuilla puolestaa kuvataa havaitoarvoje vaihtelua eli "hajaatumista" jakauma keskikohda ympärille. O olemassa myös muita jakauma muotoa kuvaavia tilastollisia tuuslukuja Keskiluvut Muuttuja arvoje keskimääräistä suuruutta ja jakauma sijaitia muuttuja-akselilla kuvataa keskilukuje avulla. Moodi (Mo) eli tyyppiarvo o se muuttuja arvo tai luokka, joka frekvessi o suuri. Moodi sopii kaikille mitta-asteikoille, mutta se ei ole aia yksikäsitteie. Vähitää itervalliasteikollise muuttuja luokitellussa aieistossa moodi voidaa tulkita moodiluoka luokkakeskukseksi. Esim. Kutafakta-aieisto Lääi-muuttuja moodi o Läsi-Suome lääi, koska kutia o eite Läsi-Suome lääissä. Asutoje keskihia moodiluokka o toie luokka: Moodi voidaa yt tulkita oleva moodiluoka luokkakeskus eli. 675 /m. Esim. Erää tilastotietee kurssi opiskelijoista valitussa 9 hekilö otoksessa olivat opiskelijoide iät suuruusjärjestyksessä: 9, 0, 0, 0, 0,,,,,,,, 3, 3, 5, 6, 9, 4 ja 46. Iä moodiarvo o vuotta. Mediaai (Md) eli keskusarvo o se havaitoarvo, jota pieempiä ja suurempia havaitoarvoja o yhtä paljo. Mediaaia ei voi laskea omiaaliasteikollisesta muuttujasta. Jos havaiot o asetettu suuruusjärjestyksee ja kyseessä o luokittelemato aieisto, ii Md voidaa määrätä seuraavasti: parito: Md o keskimmäie havaitoarvo (k), missä k = parillie: etsitää kumpiki keskimmäisistä arvoista. Jos muuttuja o ordiaaliasteikolla mitattu, o mediaai kumpiki äistä arvoista. Jos muuttuja o

22 määrällie, o mediaai keskimmäiste havaitoje keskiarvo eli k k, missä k = Esim. Edellise esimerki ikä-muuttuja mediaai o vuotta. Luokitellulle aieistolle mediaai määräämiseksi o kaksi tapaa. Jos muuttuja o ordiaaliasteikollie tai diskreetti kvatitatiivie, ii mediaai määrätää kute edellä. Jatkuva luokitellu kvatitatiivise muuttuja mediaai lasketaa kaavalla Md L M c f M missä F M, L M = Md-luoka todellie alaraja f M = Md-luoka frekvessi F M- = Md-luokkaa edeltävä luoka summafrekvessi c = luokkaväli pituus = havaitoje lkm. Mediaailuokka o esimmäie sellaie luokka, jossa F i. Mediaai voidaa määrätä myös summakäyrä avulla. Esim. Asutoje keskihia mediaailuokka o toie luokka: Mediaai Md / m 95 Mediaai o fraktiilie erikoistapaus. Fraktiilit ovat jakauma "sijaitia" kuvaavia lukuja, vaikka e eivät yleisesti kuvaakaa keskikohtaa. Muuttuja p: proseti fraktiili (p) o sellaie havaitoarvo, jota pieempiä muuttuja arvoista o p %. Tärkeimpiä fraktiileja ovat alakvartiili Q = (5) yläkvartiili Q 3 = (75) mediaai Md = (50) desiilit (0), (0),, (90) Fraktiilit voidaa määritellä muille paitsi omiaaliasteiko muuttujille. Kvartiilie ja fraktiilie määräämisessä käytetää apua mm. summakäyrää. Fraktiilie määrittämie voidaa toteuttaa myös seuraavasti. Lisätää havaitomäärää luku (eli saadaa +),

23 kerrotaa saatu tulos luvulla p/00 (eli saadaa k = (+)p/00). Jos k o kokoaisluku, o p: proseti fraktiili suuruusjärjestyksessä k. muuttuja-arvo. Jos k ei ole kokoaisluku, o ko. fraktiili määrällise muuttuja tapauksessa iide muuttuja-arvoje keskiarvo, joide sijaluvut ovat k:ta lähimpää olevat kokoaisluvut. Jos k ei ole kokoaisluku ja muuttuja o mitattu järjestysasteikolla, o ko. fraktiili e muuttuja-arvot, joide sijaluvut ovat k:ta lähimpää olevat kokoaisluvut. Esim. Opiskelijoide ikä-havaitoja oli 9 kpl, jote 9+ = 0. Alakvartiili o suuruusjärjestykse (0. 5/00=) 5. havaito eli 0 vuotta ja yläkvartiili suuruusjärjestykse (0. 75/00 =) 5. havaito eli 5 vuotta. Aritmeettie keskiarvo voidaa laskea itervalli- tai suhdeasteikollisesta muuttujasta. Luokittelemattomalle aieistolle keskiarvo saadaa kaavasta i i Esim. Ikä-muuttuja keskiarvo vuotta 9 9 Luokitellulle aieistolle aritmeettie keskiarvo saadaa kaavalla k f i m i, i missä f i m i k = luoka E i frekvessi = luoka E i luokkakeskus = luokkie lkm Huom. Eo. kaavaa voidaa käyttää, vaikka muuttuja olisi diskreetti. Tällöi luokkakeskukset m i korvataa muuttuja arvoilla ja luokkie frekvessit f i korvataa yksittäiste arvoje frekvesseillä. Esim. Asutoje keskihia aritmeettie keskiarvo / m 46

24 3 Keskiarvo omiaisuuksia Olkoo tilastoyksikköä jaettu k:ho ryhmää, joissa o,,, k tilastoyksikköä, ja joissa muuttuja keskiarvot ovat,,, k. Koko aieisto keskiarvo o k i i. i Esim. Eräällä työpaikalla o aisia 400 ja miehiä 500. Keskitutiasiot ovat vastaavasti 6.58 ja Mikä o työtekijöide keskitutiasio? Olkoot a ja b tuettuja vakioita sekä y i = a + b i. Silloi y a b. Jos havaitoarvot,,, ovat suuria yhteelaskettaviksi, voidaa jokaisesta arvosta i vähetää sellaie luku A, s. väliaikaie keskiarvo eli apukeskiarvo, joka arvioidaa oleva lähellä muuttuja keskiarvoa. Tällöi muuttuja y = - A arvot ovat itseisarvoltaa pieempiä kui : arvot. Nyt y A, jote = A y. Keskiarvo o käytetyi keskiluku, joka o kuiteki herkkä poikkeaville havaioille. Varsiki pieissä havaitoaieistoissa yksiki muista selvästi poikkeava arvo vetää keskiarvoa puoleesa. Joskus äärimmäise isot ja pieet muuttuja-arvot halutaa jättää tarkastelu ulkopuolelle. Tällöi voidaa laskea esim. 5 %: leikattu keskiarvo, jolloi sekä 5 % pieimmistä että suurimmista arvoista jätetää pois ja lopuista havaioista lasketaa tavallie keskiarvo. Geometrista keskiarvoa käytetää suhdeasteikolla mitatu muuttuja keskiarvoa silloi, ku halutaa kuvata keskimääräistä suhteellista muutosta. Geometrie keskiarvo voidaa laskea muuttujasta, joka kaikki havaitut arvot ovat positiivisia. Geometrie keskiarvo saadaa laskettua kaavasta G. Esim. Tuottee hita.5-kertaistui esimmäise vuode aikaa, toisea vuotea se 5- kertaistui ja viimeiseä vuotea 4-kertaistui. Hia suhteelliste muutoste geometrie keskiarvo o G

25 4 Harmoista keskiarvoa käytetää myös suhdeasteikolla. Harmoie keskiarvo saadaa laskettua kaavasta H. ii Esim. Matka esimmäie kolmaes ajettii vauhtia 50 km/h, toie kolmaeksella 5 km/h ja viimeisellä 00 km/h. Mikä o keskimääräie vauhti koko matkalla? (Ts. millä vauhdilla ämä välit olisi ajettava, jotta koko matkaa meisi sama aika kui todella mei, ja jokaisella kolmaeksella vauhti o sama?) Lasketaa harmoie keskiarvo H Keskilukuje vertailua Aritmeettie keskiarvo o tärkei keskiluku, koska se o helppo laskea. Aritmeettie keskiarvo o herkkä poikkeaville havaioille. Jos samoista muuttuja arvoista lasketaa kaikki edellä esitetyt keskiarvot (mikä ei yleesä ole mielekästä), ovat tulokset aia järjestyksessä H G. Mediaai o helppo ymmärtää. Se o vakaa keskiluku, joka ei ole herkkä poikkeaville havaioille. Jos muuttuja jakauma o vio, o mediaai yleesä aritmeettista keskiarvoa parempi keskikohda kuvaaja. Mediaaia ei voida kuitekaa käyttää pitkälle meevissä tilastollisissa operaatioissa. Moodi soveltuu kaikille mitta-asteikoille, mutta se o karkea keskiluku. Se ei ole aia yksikäsitteie. symmetrie yksihuippuie jakauma Md Mo

26 5 oikealle loiveeva jakauma Mo Md vasemmalle loiveeva jakauma Md Mo Hajotaluvut Muuttuja arvoje keskimääräistä suuruutta kuvaavat luvut eivät riitä kuvaamaa kaikkea havaitoarvoje omiaisuuksista. O myös pystyttävä kuvaamaa sitä, kuika suurta o muuttuja arvoje vaihtelu. Etropia eli satuaisuusaste mittaa sitä, kuika selvästi tai voimakkaasti havaitut muuttuja arvot keskittyvät yhtee tai vai muutamaa luokkaa. Etropia voidaa laskea kaavasta missä k k H p i log p i p i log 0 p i, i i p i k = luoka E i suhteellie frekvessi = luokkie lkm. Etropia soveltuu kaikille mitta-asteikoille. Se o suurimmillaa silloi, ku eri luokkie frekvessit ovat yhtä suuret eli silloi, ku vaihtelu o suurita. Etropia arvosta o vaikeaa ähdä suoraa, kuika suuresta vaihtelusta o kyse, koska siihe vaikuttaa luokkie lukumäärä. Laskettua arvoa voidaa verrata etropia maksimiarvoo Hma log0 k.

27 6 Esim. Kutie lääijakauma etropia Lääi p i log 0 p i p i log 0 p i Etelä-Suome Läsi-Suome Itä-Suome Oulu Lapi Ahveamaa Yhteesä H = ( ).6 H ma = log Vaihteluväli o pieimmä ja suurimma havaitoarvo määräämä väli ( (), () ). Vaihteluväliä ei voi käyttää omiaaliasteikolla. Luokitellussa aieistossa vaihteluväli muodostavat esimmäise luoka pyöristetty alaraja ja viimeise luoka pyöristetty yläraja. Vaihteluväli pituus w soveltuu itervalli- ja suhdeasteiko muuttujille. Se o suurimma ja pieimmä havaitoarvo erotus eli w = () - (). Luokitellussa aieistossa se o viimeise luoka yläraja ja esimmäise luoka alaraja erotus. Vaihteluväli pituus o helppo laskea, mutta se ei ole yksistää käytettyä hyvä hajotaluku, koska se ottaa huomioo vai muuttuja äärimmäiset arvot. Esim. Lääi vaihteluväliä ei voida määrittää, mutta asutoje keskihia vaihteluväli alkuperäisesta aieistosta o (336, 66). Asutoje keskihia vaihteluväli pituus o w = = 830. Esim. Opiskelijoide iä vaihteluväli o (9, 46) ja vaihteluväli pituus o 7 vuotta. Muuttuja vaihtelua voidaa kuvata kvartiilivälillä (Q, Q 3 ), joka ilmaisee havaitoarvoje keskipaikkeilta sellaise väli, jossa o 50 % keskimmäisistä arvoista. Kvartiiliväli pituus saadaa erotuksea Q 3 - Q. Kvartiilipoikkeamalla tarkoitetaa lukua Q Q 3 Q. Kvartiiliväli voidaa määrätä ordiaaliasteikolliselle muuttujalle, mutta kvartiiliväli pituus ja kvartiilipoikkeama vasta itervalliasteikolla. Muuttuja-arvoje hajaatumista voidaa pelkä kvartiiliväli tarkastelu sijasta tarkastella paremmi vertailemalla kvartiiliväliä ja vaihteluväliä toisiisa.

28 7 Esim. Asutoje keskihia summakäyrä perusteella arvioitu Q 630 /m ja Q 3 90 /m. Kvartiiliväli pituus o oi 90 ja kvartiilipoikkeama 45. Esim. Opiskelijoide iä kvartiiliväli o site (0, 5). Kvartiiliväli pituus o 5 vuotta ja kvartiilipoikkeama.5 vuotta. Käytetyimpiä hajotalukuja ovat variassi s ja keskihajota s, vaikka iide tulkita ei ole ii yksikertaista kui em. hajotaluvuilla. Variassi ja keskihajota voidaa laskea itervalli- tai suhdeasteikollisesta muuttujasta. Keskihajota o variassi positiivie eliöjuuri eli s = s. Variassi kertoo, kuika tiiviisti havaitoarvot ovat keskittyeet keskiarvo ympärille. Jos kaikki mittaustulokset ovat samoja, o s = 0, muulloi s > 0. Keskihajoassa ja variassissa muuttujie arvoje vaihtelu ilmaistaa raketeellisesti samalla tavalla. Keskihajota o kuvailussa havaiollisempi, koska sillä o sama laatu kui muuttuja arvoilla, ja se kertoo, kuika kaukaa keskimääri havaiot ovat keskiarvosta. Variassi o taas parempi teoreettisissa tarkasteluissa. Luokittelemattoma aieisto variassi voidaa laskea kaavalla s i i i i i i. Esim. Opiskelijoide iä variassi ja keskihajoa lasketa: i i s vuotta 9 9 s 7 vuotta Luokitellu aieisto variassi o

29 8 s k fi i mi k fimi i k fimi i missä f i m i k = luoka E i frekvessi = luoka E i luokkakeskus = luokkie lkm. Esim. Asutoje keskihia variassi ja keskihajota s s 44 /m / m Variassi ja myös keskihajoa arvot riippuvat muuttuja mittayksiköstä. Jos muuttujalle tehdää lieaarie muuos y = a + b, ii s y = b s ja sy = b s. Esim. Pituus o mitattu tuumia ja : variassi o 5. Jos pituus mitataa cm:ä eli :lle tehdää muuos y =.54, ii y: variassi s y =.54.5 = Keskiarvoa ja keskihajotaa voidaa käyttää hyväksi muuttuja havaitoarvoje stadardoiissa: zi i s. Stadardoitu arvo z i kertoo, kuika moe keskihajoa etäisyydellä havaitoarvo i o keskiarvosta. Stadardoiduille arvoille z i pätee aia, että z = 0 ja s z =. Stadardoitu muuttuja z o pelkkä luku; se o siis riippumato alkuperäise muuttuja mittayksiköstä. Stadardoituja havaitoarvoja voidaa käyttää mm. ku eri havaitoaieistoje tilastoyksiköitä verrataa toisiisa.

30 9 Esim. Opiskelija osallistui tilastotietee tettii ja sai pistemääräksi 36. Hä osallistui myös talousmatematiika tettii ja sai pistemääräksi 30. Tilastotietee teti pistemäärä keskiarvo oli 9 ja keskihajota 6, talousmatematiika tetissä vastaavat luvut olivat ja 8. Kummassa tetissä opiskelija meestyi suhteellisesti paremmi? Tettitulokset stadardoitua ovat z tt ja z tm Opiskelija meestyi tilastotieteessä suhteellisesti paremmi. Variaatiokerroi V s o mittayksiköstä riippumato hajotaluku. Sitä voidaa käyttää vai suhdeasteikolla. Variaatiokerroi ilmaisee muuttuja suhteellise vaihtelu. Usei variaatiokerroi ilmaistaa prosettilukua, jolloi luku 00V kertoo, kuika mota % keskihajota o keskiarvosta. Variaatiokerroita voidaa käyttää vertailtaessa mittayksiköiltää erilaisia aieistoja. Esim. Opiskelijoide iä variaatiokerroi V = 0.3. Iä hajota o site 30 % iä keskiarvosta. Esim. Asutoje keskihia variaatiokerroi V = 0.3. Hia hajota o site 3 % hia keskiarvosta Huom. Käytäössä o havaittu, että yksihuippuisissa jakaumissa o yleesä oi 70 % havaioista yhde keskihajoa etäisyydellä keskiarvosta ja lähes kaikki havaiot kolme hajotayksikö päässä keskiarvosta. s s s 68% ± s 95% ± s 99% ± 3s s s s

31 Yksiulotteise jakauma muita tuuslukuja Jakauma sijaitia ja vaihtelua kuvaavie tuuslukuje lisäksi voidaa mitata jakauma symmetriasta poikkeamista eli vioutta sekä keskittymise terävyyttä tai tylsyyttä eli huipukkuutta. Kyseisiä tuuslukuja käytetää määrällisille muuttujille. Jos muuttuja arvot ovat keskittyeet voimakkaasti alimpii luokkii, ja jakaumalla o pitkä hätä oikealle päi, saotaa muuttuja jakaumaa oikealle vioksi tai oikealle loiveevaksi. Jos taas muuttuja arvot ovat keskittyeet ylimpii luokkii, o muuttuja jakauma vasemmalle loiveeva tai vio. Symmetrisessä jakaumassa keskiarvo ja mediaai ovat yhtä suuret, ja jakauma muoto oikealle ja vasemmalle keskipisteestä saadaa peilikuvaa. Frekvessijakauma vioude mitta o suure g i i 3 3. s Jos jakauma o täsmällee symmetrie o g 0 (esim. ormaalijakauma); jos jakauma o vasemmalle loiveeva, o g 0; jos jakauma o oikealle loiveeva, o g 0. Usei symmetriseä jakaumaa pidetää jakaumaa, jolle 0.5 < g < 0.5. Jakaumaa voi tutkia myös huipukkuude avulla. Huipukkuude mittaa o suure g 4 i i 4 s 3. Jos muuttuja arvot ovat keskittyeet parii luokkaa, ja muissa luokissa o vai vähä havaitoja, o jakauma huipukas eli leptokurtie. Huipukkaalla jakaumalla g 0. Laakeassa eli platykurtisessa jakaumassa g 0. Jos g 0, o jakauma muoto jotai tältä väliltä eli mesokurtie. Mm. ormaalijakauma huipukkuus g 0. Mesokurtisea jakaumaa pidetää sellaista jakaumaa, jolla 0.5 < g < 0.5.

32 3 4. KAKSIULOTTEINEN EMPIIRINEN JAKAUMA Kahde tilastollise muuttuja arvoilla voi olla taipumus liittyä toisiisa ii, että muuttuja tiety arvo yhteydessä esiityy suhteellisesti ottae muita useammi tietty muuttuja y arvo. Usea muuttuja samaaikaise tarkastelu lähtökohtaa oki usei juuri muuttujie välise mahdollise yhteyde olemassaolo, voimakkuude ja luotee selvittämie. Täydellie (matemaattie, fuktioaalie) riippuvuus o kyseessä silloi, ku vuorovaikutussuhde voidaa ilmaista yksikäsitteisesti jollaki kaavalla. Esim. Neliö pita-ala A riippuu eliö sivu pituudesta kaava A = mukaa. Tilastollise eli epätäydellise riippuvuude kuvaamisee käytetää mm. erilaisia tilastollisia riippuvuustuuslukuja. 4.. Ristiitaulukko Oletetaa, että muuttuja arvot o jaettu luokkii, joita o J kappaletta ja muuttuja y arvot o jaettu luokkii, joita o I kappaletta. Muuttujat ja y voivat olla mittaasteikoiltaa mitä tahasa. Merkitää muuttuja eri luokkia symboleilla E, E,, E J ja muuttuja y eri luokkia symboleilla G, G,, G I. Muuttujie ja y välie ristiitaulukko (frekvessitaulukko, kotigessitaulukko, : ja y: yhteisjakauma) o silloi y E E E J yhteesä G f f f J f G f f f J f... G I f I f I f IJ f I yhteesä f f f J f = f ij missä y f ij o yleesä syy, o yleesä seuraus, o sellaiste tilastoyksiköide lukumäärä joide -muuttuja arvo kuuluu luokkaa E j ja joide y-muuttuja arvo kuuluu luokkaa G i ; saotaa, että f ij o solu ( G i, E j) havaittu frekvessi

33 f i o i:e vaakarivi frekvessie summa eli rivisumma; f i f i f i f ij f j o j:e sarakkee frekvessie summa eli sarakesumma; f j f j f j f Ij f o tilastoyksiköide kokoaismäärä eli kokoaissumma; f f f f J f f f I 3 Luvut f, f,, f I muodostavat muuttuja y reuajakauma, joka o itse asiassa muuttuja y yksiulotteie jakauma. Vastaavasti luvut f, f,, f J muodostavat muuttuja reuajakauma. Kahde muuttuja suhteellie yhteisjakauma saadaa jakamalla jokaie solufrekvessi havaitoje kokoaismäärällä. Prosetuaalie yhteisjakauma saadaa kertomalla suhteelliset solufrekvessit luvulla sata. Esim. Eräällä tilastotietee kurssilla opiskelijoilta kysyttii, ovatko he asiotyössä ja kuika he kokevat opitojesa edistyvä. Saatii ristiitaulukko Oko asiotyössä? Opitoje edistymie kyllä ei Yht. keskimääräistä hitaammi 6 7 keskimääräisesti keskimääräistä opeammi Yhteesä Ristiitaulukosta laskettu prosetuaalie yhteisjakauma o Opitoje edistymie Oko asiotyössä? kyllä ei Yht. keskimääräistä hitaammi % 8 % 9 % keskimääräisesti 7 % 5 % 69 % keskimääräistä opeammi % 0 % % Yhteesä 30 % 70 % 00 %

34 33 Kahde muuttuja yhteisjakaumasta voidaa määrätä lisäksi ehdollisia jakaumia. Jokaie sarake muodostaa y-muuttuja ehdollise jakauma tietyllä muuttuja arvolla, ja jokaie vaakarivi muodostaa -muuttuja ehdollise jakauma tietyllä muuttuja y arvolla. Jakamalla ehdollise jakauma frekvessit iide summalla saadaa suhteellie ehdollie frekvessijakauma. Kertomalla e edellee sadalla, saadaa prosetuaalie ehdollie frekvessijakauma. Esim. Seuraavassa o esitetty y-muuttuja (= opitoje edistymie) prosetuaaliset ehdolliset jakaumat -muuttuja (=oko asiotyössä) eri luokissa: Oko asiotyössä? Opitoje edistymie kyllä ei Yht. keskimääräistä hitaammi 36 % % 9 % keskimääräisesti 57 % 75 % 69 % keskimääräistä opeammi 7 % 4 % % Yhteesä 00 % 00 % 00 % Jos ristiitaulukosta määrätyt prosetuaaliset ehdolliset jakaumat ovat samalaiset eri sarakkeilla (tai riveillä), saotaa muuttujie oleva tilastollisesti riippumattomia. Jos muuttujat eivät ole riippumattomia, saotaa iide oleva tilastollisesti riippuvia. Tilastollise riippuvuude voimakkuutta voidaa mitata ristiitaulukosta seuraavasti: lasketaa riippumattomuustilaetta vastaavat s. odotetut eli teoreettiset frekvessit e ij, jotka saadaa määrättyä havaitu ristiitauluko rivi- ja sarakesummie avulla kaavalla e ij f i f j. Nämä voidaa asettaa samalaisee taulukkomuotoo kui havaitut frekvessit: E E E J yhteesä y G e e e J f G e e e J f... G I e I e I e IJ f I yhteesä f f f J f =

35 34 Ristiitauluko ja odotettuje frekvessie muodostama tauluko välie ero kuvaa muuttujie ja y riippuvuude määrää. Tämä riippuvuude suuruude eräää mittaa voidaa käyttää -arvoa (lue: khii eliö) I J f ij e ij. ij e ij Näi määritelty -arvo saa arvo olla, jos havaitut frekvessit ovat täsmällee riippumattomuustilaetta vastaavia. Se arvo o sitä suurempi, mitä eemmä havaitut frekvessit poikkeavat ideaalisesta riippumattomuude tilateesta. -arvo ei sellaiseaa sovellu riippuvuude mitaksi, koska ristiitauluko koko vaikuttaa se suuruutee. : maksimiarvo ma = (k ), missä k o pieempi luvuista I ja J, ja o havaitoje määrä. Varsiaisea riippuvuuslukua käytetää s. kotigessikerroita C, joka saadaa ormeeraamalla -arvo seuraavasti: C. Jos ja y ovat riippumattomia, o C: arvo olla, koska -arvo o olla. Muuttujie välise riippuvuude lisäätyessä kasvaa C: arvo. Kotigessikertoime maksimiarvo riippuu seki ristiitauluko koosta site, että C ma k k, missä k o pieempi luvuista I ja J. Koska sekä -arvo että kotigessikertoime arvo riippuvat ristiitauluko koosta, ei erikokoiste ristiitaulukoide riippuvuustuuslukuja pitäisi verrata toisiisa. Vertailtavuutta voidaa parataa, kuha havaitut riippuvuusluvut jaetaa vastaavilla maksimiarvoilla.

36 Esim. Seuraavaa taulukkoo o laskettu odotetut frekvessit ja edellee tuuslukuja 35 Oko asiotyössä? Opitoje edistymie kyllä ei Yht. keskimääräistä hitaammi keskimääräisesti keskimääräistä opeammi 5 7 Yhteesä C C ma ma ( ) Kotigessikertoime perusteella voidaa saoa muuttujie välillä oleva riippuvuutta. Asiotyössä käyvistä opiskelijoista 36 % koki opitojesa edistyvä keskimääräistä hitaammi, ku taas muide opiskelijoide joukossa vastaava prosettiosuus oli vai %. Huom. Ristiitaulukkoa, jossa o kaksi vaakariviä ja kaksi saraketta, saotaa eliketäksi. Neliketästä voidaa -arvo laskea kaavasta f f f f f f f f Esim. Muuttuja saa arvot M ja N se mukaa kumpi puolisoista yleesä hoitaa puhumise, ja muuttuja y saa arvot M ja N se mukaa kumpi puolisoista useammi päättää yhteisistä asioista. Satuaisesti poimituista 34 avioparista saatii seuraava ristiitaulukko:

37 36 y M N Yhteesä M N Yhteesä ja ma ( ) 34 = 34 C ja C ma 0. 7 Site voidaa päätellä, että puhumise ja yhteisistä asioista päättämise välillä äyttää tilastollista riippuvuutta oleva. 4.. Korrelaatiodiagrammi ja korrelaatio Tarkastellaa kahta muuttujaa ja y, jotka ovat vähitää itervalliasteikollisia. Muuttujie ja y välisellä korrelaatiodiagrammilla eli pisteparvella eli sirotakuviolla tarkoitetaa sellaista graafista esitystä, missä havaitoparia ( i, y i ) o merkitty koordiaatistoo. Pisteparve muodo avulla voidaa selvittää, oko muuttujie ja y välillä lieaarista eli suoraviivaista riippuvuutta. Mitä suoraomaisempaa muotoo pisteparve pisteet ovat ryhmittyeet, sitä voimakkaampaa o : ja y: välie lieaarie riippuvuus. Positiivisella lieaarisella riippuvuudella tarkoitetaa sitä, että : arvoje kasvaessa myös y: arvot kasvavat tasaisesti; vastaavasti egatiivisella lieaarisella riippuvuudella tarkoitetaa sitä, että : arvoje kasvaessa y: arvot pieeevät tasaisesti. Esim. y y y positiivie lieaarie riippuvuus egatiivie lieaarie riippuvuus käyräviivaie eli epälieaarie riippuvuus

Tilastotieteen perusteet

Tilastotieteen perusteet VAASAN YLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso SISÄLLYSLUETTELO 1. JOHDANTO... 3 1.1. Mitä tilastotiede o?... 3 1.. Tilastotietee historiaa... 4. HAVAINTOAINEISTO JA MITTAAMINEN...

Lisätiedot

Tilastotieteen johdantokurssi

Tilastotieteen johdantokurssi VAASAN YLIOPISTO Tilastotietee johdatokurssi Luetoruko Christia Gustafsso 1 SISÄLLYSLUETTELO 1. JOHDANTO... 1.1. Mitä tilastotiede o?... 1.. Tilastotietee historiaa... 3. HAVAINTOAINEISTON HANKINNASTA

Lisätiedot

Tunnuslukuja 27 III TUNNUSLUKUJA

Tunnuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat

Lisätiedot

TILASTOT: johdantoa ja käsitteitä

TILASTOT: johdantoa ja käsitteitä TILASTOT: johdatoa ja käsitteitä TOD.NÄK JA TILASTOT, MAA10 Tilastotietee tehtävää o esittää ja tulkita tutkimuskohteesee liittyvää havaitoaieistoa eli tilastoaieistoa. Tutkitaa valittua joukkoa ja se

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

Otantajakauman käyttö päättelyssä

Otantajakauman käyttö päättelyssä Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

3.2 Sijaintiluvut. MAB5: Tunnusluvut

3.2 Sijaintiluvut. MAB5: Tunnusluvut MAB5: Tuusluvut 3.2 Sijaitiluvut Sijaitiluvut ovat imesä mukaiset: e etsivät muuttuja tyypillise arvo, jos sellaie o olemassa, tai aiaki luvu, joka lähellä muuttuja arvoja o eite. Sijaitiluvut jaetaa kahtee

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma

Lisätiedot

Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen: Mitä opimme?

Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen: Mitä opimme? TKK (c) Ilkka Melli (004) Tilastolliste aieistoje kuvaamie Tuusluvut Laatueroasteikolliste muuttujie tuusluvut Johdatus tilastotieteesee Tilastolliste aieistoje kuvaamie TKK (c) Ilkka Melli (004) Tilastolliste

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Tilastollinen todennäköisyys

Tilastollinen todennäköisyys Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole

Lisätiedot

Tehtävä 1. Riku Eskelinen DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomenetelmien peruskurssi TILP150 Tulostuspv Sivu 1/6

Tehtävä 1. Riku Eskelinen DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomenetelmien peruskurssi TILP150 Tulostuspv Sivu 1/6 Riku Eskelie DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomeetelmie peruskurssi TILP150 Tulostuspv 05.04.013 Sivu 1/6 Tehtävä 1 Muuttuja MATPIT o luokitteluasteikollie. Muuttuja OPPMIN o järjestysasteikollie.

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä

Lisätiedot

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489

pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489 Perusjoukko ja otos Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Havaitoyksikkö o empiirise mittaukse kohde Perusjoukko o kaikkie havaitoyksiköide muodostama kokoaisuus Otos o perusjoukkoa

Lisätiedot

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla. Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

SELITETTÄVÄ MUUTTUJA SELITTÄVÄ MUUTTUJA. Välimatka- tai suhdelukuasteikko. Laatuero- tai järjestysasteikko. Laatuero- tai järjestysasteikko

SELITETTÄVÄ MUUTTUJA SELITTÄVÄ MUUTTUJA. Välimatka- tai suhdelukuasteikko. Laatuero- tai järjestysasteikko. Laatuero- tai järjestysasteikko Moimuuttujameetelmät Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Mikko Mattila 009 1 Yhde muuttuja meetelmät (uivariate statistics): keskiluvut ja hajotaluvut Moimuuttujameetelmät:

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide

Lisätiedot

Hannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164

Hannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164 86118P JOHDATUS TILASTOTIETEESEEN Harjoituksen 3 ratkaisut, viikko 5, kevät 19 1. a) Havaintomatriisissa on viisi riviä (eli tilastoyksikköä) ja neljä saraketta (eli muuttujaa). Hannu mies LTK 18 Johanna

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

3 Lukujonot matemaattisena mallina

3 Lukujonot matemaattisena mallina 3 Lukujoot matemaattisea mallia 3. Aritmeettie ja geometrie joo 64. a) Lukujoo o aritmeettie joo, joka yleie jäse o a 3 ( ) 4 34 4 4 b) Lukujoo o geometrie joo, joka yleie jäse o c) Lukujoo o geometrie

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke.. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 4.. klo 14-16, paikka päärak aud IV SPSS-harjoitukset: ti.3. klo 11-13 ja to 7.4. klo

Lisätiedot

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa

Lisätiedot

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi

Lisätiedot

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims 75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia Todeäköisyyslasketa I, kesä 207 Helsigi yliopisto/avoi yliopisto Harjoitus 3, ratkaisuehdotuksia. Aikaisemma viiko teemaa. Edessäsi o kaksi laatikkoa A ja B. Laatikossa A o 8 palloa, joista puolet valkoisia.

Lisätiedot

Tilastolliset menetelmät: Johdanto

Tilastolliset menetelmät: Johdanto Johdato Tilastolliset meetelmät: Johdato. Tilastotiede tieteealaa. Tilastolliste aieistoje keräämie ja mittaamie 3. Tilastolliste aieistoje kuvaamie Ilkka Melli Johdato Ilkka Melli Johdato Sisällys. TILASTOTIEDE

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var

Lisätiedot

EX1 EX 2 EX =

EX1 EX 2 EX = HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

Luento 7 Luotettavuus Koherentit järjestelmät

Luento 7 Luotettavuus Koherentit järjestelmät Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus

Lisätiedot

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus KERTAUSHARJOITUKSIA Tilastoje esittämie. a) -9 vuotiaita tyttöjä 377 Koko väestö 9 73 77 Näide tyttöje osuus 3, 0 % 9 73 b) Pojat ja tytöt: 3 377 + 77 = 39 4 39 4 Osuus koko väestöstä, % 9 73 c) Ikäluokka

Lisätiedot

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f 0, ku x < 0 Vastaus: Kertymäfuktio o F( x) = x, ku 0 x 0 0, ku x > 0 Todeäköisyydet ovat molemmat 0. Laudatur MAA ratkaisut kertausharjoituksii Tilastoje esittämie 3. a) Tietty kasvi b) Kukkie lukumäärä

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu 81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje

Lisätiedot

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit 2. Mittaus ja data 2.. Johdato Voidaksemme keksiä tosimaailma relaatioita tarkastelemme sitä kuvaavaa dataa, jote esiksi selvitämme, mitä data perimmiltää o. Data kerätää kuvaamalla mielekiitoaluee oliot

Lisätiedot

1 Eksponenttifunktion määritelmä

1 Eksponenttifunktion määritelmä Ekspoettifuktio määritelmä Selvitimme aikaisemmi tällä kurssilla, millaie potessisarja säilyy derivoiissa muuttumattomaa. Se perusteella määritellää: Määritelmä. Ekspoettifuktio exp : R R määritellää lausekkeella

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

6. Kombinaatio-oppi, todennäköisyys ja tilastot

6. Kombinaatio-oppi, todennäköisyys ja tilastot 6. Kombiaatio-oppi, todeäköisyys ja tilastot 6.1 Satuaisotata takaisipaolla Poimimme 3 alkiota takaisipaolla 1 alkio perusjoukosta. Kuika mota erilaista kolme alkio osajoukkoa voimme saada? Ratkaisu. Vastaus:

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi

Lisätiedot

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n.

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n. POHDIN projekti Neliöide summa Lukujoo : esimmäise jäsee summa kirjoitetaa tavallisesti muotoo S ai i 1. Aritmeettisesta lukujoosta ja geometrisesta lukujoosta muodostetut summat voidaa johtaa varsi helposti.

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k = Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,

Lisätiedot

Kandidaatintutkielman aineistonhankinta ja analyysi

Kandidaatintutkielman aineistonhankinta ja analyysi Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x = TAMMI PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ PARITTOMAT RATKAISUT 7 Tiedosto vai hekilökohtaisee käyttöö. Kaikelaie sisällö kopioiti kielletty. a) g( ) = 5 + 6 Koska g o eljäe astee polyomi, ii

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011 Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

Tilastolliset luottamusvälit

Tilastolliset luottamusvälit Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude

Lisätiedot

Tilastolliset menetelmät: Johdanto

Tilastolliset menetelmät: Johdanto Tilastolliset meetelmät Johdato Tilastolliset meetelmät: Johdato. Tilastotiede tieteealaa. Tilastolliste aieistoje keräämie ja mittaamie 3. Tilastolliste aieistoje kuvaamie TKK @ Ilkka Melli (006) Tilastolliset

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää? Seuraavassa muutamia lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4,

Lisätiedot