Tilastotieteen perusteet

Koko: px
Aloita esitys sivulta:

Download "Tilastotieteen perusteet"

Transkriptio

1 VAASAN YLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso

2

3 SISÄLLYSLUETTELO 1. JOHDANTO Mitä tilastotiede o? Tilastotietee historiaa HAVAINTOAINEISTO JA MITTAAMINEN Peruskäsitteitä Mittaamisesta YKSIULOTTEINEN EMPIIRINEN JAKAUMA Frekvessijakauma peruskäsitteitä ja luokitus Graafie esitys Yksiulotteise jakauma tuusluvut Keskiluvut Hajotaluvut Yksiulotteise jakauma muita tuuslukuja KAKSIULOTTEINEN EMPIIRINEN JAKAUMA Ristiitaulukko Korrelaatiodiagrammi ja korrelaatio Järjestyskorrelaatio Regressio TODENNÄKÖISYYSLASKENTAA Kombiatoriikkaa Todeäköisyyde määrittely Ehdollie todeäköisyys ja riippumattomuus Kokoaistodeäköisyys ja Bayesi kaava TEOREETTISISTA JAKAUMISTA Satuaismuuttujista Keskeisiä diskreettejä jakaumia Keskeisiä jatkuvia jakaumia HAVAINTOAINEISTON HANKINNASTA Johdato Otatatutkimuksesta yleesä Otatameetelmistä Otatajakaumista TILASTOLLISESTA PÄÄTTELYSTÄ Estimoiti Piste-estimoiti Väliestimoiti (luottamusvälit) Hypoteesie testaus Testaukse pääpiirteet Keskiarvotestejä Prosettilukutestejä Riippuvuustutkimuksee liittyviä testejä yhteesopivuustesti... 97

4

5 3 1. JOHDANTO 1.1. Mitä tilastotiede o? Tilasto o empiiristä ilmiötä kuvaava usei taulukkoa esitetty umeerie aieisto. Tilastoiti tuottaa tällaisia eri ilmiöitä kuvaavia aieistoja. Erilaisia empiirisiä ilmiöitä kuvaavissa aieistoissa esiityy samatyyppisiä ogelmia, joide tutkimisessa tilastotieteestä o apua ja muodostetut tilastot ovat tilastollise tutkimukse materiaalia. Professori Leo Törqvisti määritelmä mukaa: "Tilastotiede o tietotuotao tekologiaa, joka avulla voidaa suorittaa kvatitatiiviste tietoje joukkotuotatoa ja havaitoihi perustuvia tieteellisiä ja käytäöllisiä päätöksiä." Tilastotiede o siis empiirisluotoiste tietoje hakia suuittelua keräämistä deskriptiivie eli järjestämistä kuvaileva tilastotiede esittämistä sekä aalysoitia tilastollie päättely eli tulkitaa iferessi *) koskeva tiede. *) Tilastollie päättely o luoteeltaa iduktiivista, jolloi osajoukkoa koskevat tulokset yleistetää koskemaa koko perusjoukkoa. Tilastotiede o s. meetelmätiede, joka tehtävää o kehittää meetelmiä muide tieteide (esim. talous-, luoo- ja yhteiskutatieteide) empiirisiä ilmiöitä kuvaavie tietoje aalysoitia varte. Empiirie ilmiö voi olla sellaie, joho vaikuttavat vai systemaattiset tekijät (determiistie ilmiö) tai sellaie, joho systemaattiste tekijöide lisäksi vaikuttaa myös sattuma (satuaisilmiö). Sattuma käsitteellä tarkoitetaa satuaisilmiö sitä käyttäytymise osuutta, jota ei voida etukätee tarkkaa eakoida. Usei kuiteki sattuma käyttäytymie oudattaa omia lakejaa. Tilastotiedettä käytetää erityisesti satuaisilmiöide tutkimisee. Tilastotietee lisäksi meetelmätieteitä ovat myös matematiikka ja tietotekiikka. Tilastotiede soveltaa meetelmiä kehittäessää matematiika teoriaa, erityisesti todeäköisyyslaskea teoriaa, siksi tilastotiedettä usei pidetääki sovelletu matematiika eräää osa-alueea (matemaattie eli teoreettie tilastotiede). Tilastotietee ja tietotekiika yhteistä aluetta saotaa tilastolliseksi tietojekäsittelyksi.

6 4 Usei tilastolliste meetelmie kehittämisvaiheessa iihi liittyy vaatimus sovellettavuudesta ja käsitys sovellustilateesta. Oki käyyt usei ii, että raja tilastotietee ja soveltavie tieteide välillä o hämärtyyt, jolloi soveltavie tieteide piirissä o raja-aluetta alettu imittää omalla imellä (esim. epidemiologia, biometria, psykometriikka ja ekoometria). Tilastotiedettä voidaa kuiteki soveltaa lähes mihi tahasa tieteesee, koska tilastotietee teoria o yleistä. Esim. Deskriptiivisee eli kuvailevaa tilastotieteesee törmätää päivittäi - osakkeide hiamuutoksissa - työttömyysluvuissa - puolueide kaatusluvuissa - lämpötiloissa yms. Esim. Tilastollista päättelyä käytetää mm. - tulevaisuude eustamisessa - vakuutusyhtiö arvioidessa vakuutukse hitaa - laadutarkkailussa Tilastollisessa aalyysissä tutkittavat ogelmat pelkistyvät usei seuraavalaisiksi kysymyksiksi: - Millaie tilae o keskimääri? - Kuika suuri o prosetuaalie osuus? - Kuika suurta o omiaisuude vaihtelu? - Oko eroa? - Oko samalaisuutta? - Oko muutosta? - Oko riippuvuutta? - Millaista riippuvuus o? - Mite tulevaisuudessa? 1.. Tilastotietee historiaa Laajassa mielessä tilastotiedettä harrastettii systemaattiste tietoje keräykse muodossa jo muiaisessa Kiiassa ja Egyptissä (väestökirjapito). Moderi tilastotietee juuret voidaa ajoittaa 1600-luvulle, jolloi eurooppalaiste yhteiskutie kehittyessä tarvittii luotettavaa tietoa taloude ilmiöistä (= poliittie taloustiede, joka erästä osa-aluetta

7 5 saottii yliopistostatistiikaksi) sekä valtio ja väestö tilasta (= poliittie aritmetiikka). Saa tilasto saksa- ja eglaikieliset vastieet Statistik ja statistics viittaavatki saa alkuperäisee merkityksee: valtio kuvaus. Vuoa 166 julkaistii Eglaissa tilastollise tutkimukse urauurtaja Joh Grauti teos Natural ad Political Observatios o the Bills of Mortality. Merkittävästi tilastotietee sytyy ja kehityksee ovat vaikuttaeet myös uhkapeliogelmat. Uhkapeliharrastuste lisäätymise myötä alettii 1600-luvulla tutkia todeäköisyyslasketaa erityisesti Raskassa. Vielä 1700-luvulla ja se jälkeeki havaitoaieistoja käsiteltii varsi alkeellisi meetelmi (yksikertaisia meetelmiä, lähiä kuvailevaa tilastotiedettä). Aalysoiva tilastotietee rialla kulki siitä erilliseä halliollie tilastoiti. Nämä yhdistyivät jossai määri 1800-luvulla, ku matematiika voimakas kehittymie loi tilastotieteelle selkeä teoreettise pohja luvulla alettii luoo-, yhteiskuta- ja käyttäytymistieteissä kiiostua tilastotietee meetelmistä. Tältä ajalta ovat peräisi esim. Gregor Medeli periöllisyyskokeet. Myös matemaattie tilastotiede alkoi kehittyä voimakkaasti luvu loppupuolella, esimerkiksi korrelaatioteoria ja regressiolai perusteet esitettii v luvu alkupuolella sytyivät moet tilastotietee perusmeetelmistä. Viime vuosikymmeiä tilastotietee teoria ja sovellusalueet ovat laajetueet valtavasti. Tähä o erityisesti vaikuttaut tietojekäsittelymahdollisuuksie kehittymie. Suomekielie saa tilasto otettii käyttöö 1840-luvulla. Ruotsi-Suomi oli esimmäie valtio, jossa alettii sääöllisesti laatia väestötilastoja, esimmäiset tiedot koskivat vuotta Tuolloi Ruotsi-Suome väkiluku oli hekeä. Esimmäie suomekielie tilastokirja Suome Suuriruhtiaa Nykyie Tilasto julkaistii vuoa Vuoa 1865 perustettii Tilastollie toimisto (yk. Tilastokeskus). Vuoa 1905 Karl Willgre julkaisi esimmäise suomalaise tilastotietee oppikirja. Esimmäie tilastotietee professuuri saatii Helsigi yliopistoo vuoa 1945.

8 6. HAVAINTOAINEISTO JA MITTAAMINEN Havaitoaieisto o tilastollise aalyysi perusta, jote o tärkeää, että se o huolella koottu ja esikäsitelty..1. Peruskäsitteitä Tilastollie tutkimus kohdistuu aia joideki tutkimusobjektie muodostamaa joukkoo, joka o tutkimukse perusjoukko eli populaatio. Populaatio rajaamie o tutkimukse esimmäisiä vaiheita. Populaatio alkioita eli tutkimusobjekteja kutsutaa tilastoyksiköiksi, joista käytetää yleesä merkitää a 1, a, a 3, Jos tutkittavaa o kokreettie aieisto, tilastoyksiköt imetää "omalla imellää". Esim. Tutkittavaa o 0 kpl Suome kutia, joista tiedetää veroäyri hita. Tilastoyksikköä o kuta, mutta mikä o populaatio? - em. kutie joukko, jos tutkitaa vai äitä kutia (kokoaistutkimus) - kaikki Suome kuat (otatatutkimus) - tiety lääi kuat (otatatutkimus) - Huom. Tutkittavista tilastoyksiköistä tehtävät johtopäätökset ulottuvat vai määrättyy populaatioo (vrt. superpopulaatio). Tilastoyksikköö liittyviä omiaisuuksia kutsutaa tilastollisiksi muuttujiksi, joita merkitää usei, y, z, tai 1,, 3, Jotta tilastollisia meetelmiä voidaa soveltaa, o tutkittava ilmiö omiaisuudet voitava esittää umeerisesti. Tämä tehdää mittaamalla tilastoyksiköiltä muuttujie arvot eli havaitoarvot. Ku tutkittavilta tilastoyksiköiltä mitataa halutut tutkittavat omiaisuudet, saadaa havaitoaieisto. Havaitoaieisto esitetää usei havaitomatriisia seuraavasti 1 j k a1 a ai a i 1 1 i j1 j ji j k1 k ki k

9 7 Tilastoyksiköitä tässä havaitomatriisissa o kpl (eli vaakarivie lukumäärä). Yhde tilastoyksikö (a i ) eri omiaisuudet esitetää yhdellä vaakarivillä. Tätä vaakariviä saotaa ko. tilastoyksikö havaitovektoriksi eli profiiliksi. Muuttujia havaito-matriisissa o k kpl (eli sarakkeide lukumäärä). Yhdellä sarakkeella esitetää site kaikkie tilastoyksiköide tämä omiaisuus ( j ). Sarake muodostaa site ko. muuttuja jakaumavektori. Esim. SPSS-ohjelma havaitomatriisiesityksessä tilastoyksikö imestä voidaa tehdä muuttuja (esim. kua imi), joka saa arvoksee merkkejä (= kirjaimia). Muut tämä aieisto muuttujat saavat arvoksee lukuja. Yhdellä vaakarivillä o yhde tilastoyksikö eli kua erilaisia omiaisuuksia. Yksi sarake eli pystyrivi esittää yhde omiaisuude eli muuttuja arvoja. (Aieisto peruslähde o Tilastokeskukse Kutafakta-aieisto.).. Mittaamisesta Mittaamisella tarkoitetaa meettelyä (operaatiota, säätöä), jolla tutkittavaa tilastoyksikköö liitetää jotaki se omiaisuutta kuvaava luku eli mittaluku. Ku tilastoyksikö tarkastelualaie omiaisuus mitataa ja saadaa mittaustulos, saotaa tätä tulosta muuttuja arvoksi. Käytetyt mittaluvut ovat tilastollise tutkimukse lähtökohta, joho tutkimukse oistumie perustuu. O huolehdittava siitä, että muuttujalla o korkea validiteetti (asiamukaisuus) eli muuttuja mittaa sitä omiaisuutta, jota se olisi tarkoitus mitata. Esimerkiksi kysymys Kuika mota kertaa syöt viikossa porkkaaraastetta? ei mittaa sitä, pidätkö porkkaaraasteesta vai et. Myös muuttuja reliabiliteeti (pysyvyyde, eisattumavaraisuude) täytyy olla korkea, eli toisistaa riippumattomie samalle tilastoyksikölle tehtyje mittauste tulokset pitäisi olla samat. Tilastolliset muuttujat voivat olla suoraa mitattuja tai teoreettisia muuttujia. Teoreettiste muuttujie (esim. älykkyyde) mittaamisessa käytetää apua idikaattoreita. Älykkyyde idikaattoreita voisivat olla esim. meestymie erilaisissa testeissä, joide tulokset yhdistetää esim. yhdeksi muuttujaksi laskemalla eri testie pistemäärät yhtee.

10 8 Tilastollie muuttuja o jatkuva, jos se voi periaatteessa saada mikä tahasa reaalilukuarvo joltai (järkevältä) väliltä. Vaikka muuttuja olisiki periaatteessa jatkuva, o käytäössä mittaustarkkuus aia äärellie. Jatkuvuude käsite perustuuki ajatuksee, että mittaustarkkuutta voidaa parataa rajatta. Muuttuja o diskreetti eli epäjatkuva, jos se arvoia voivat olla vai jotki erilliset lukuarvot jollaki välillä. Havaitomatriisissa olevat havaitoarvot äyttävät tavallisilta reaaliluvuilta. Näillä arvoilla o kuiteki myös toie sisältö. Ne kuvaavat jotaki omiaisuutta, ja käytetty esitystapa o vai välie ilmiö tutkimisessa. Tavallisia reaalilukuja voidaa laskea yhtee, jakaa keskeää, iistä voidaa ottaa logaritmeja je. Myös havaitoaieistolle tehtävät tilastolliset operaatiot perustuvat tällaisii laskutoimituksii, mutta äitä operaatioita tehtäessä o aia pidettävä mielessä, että saatu tulos o voitava tulkita empiirisesti mielekkäällä tavalla. Tulkia mielekkyys riippuu usei muuttuja mitta-asteikosta. Muuttuja mitta-asteiko tutemie o tärkeää, koska erilaisille muuttujille sopivat vai tietyt tilastolliset tuusluvut ja aalysoitimeetelmät. Mitä korkeampi o mittaustaso, sitä eemmä o käytössä aalyysimeetelmiä. Seuraavassa esitellää mitta-asteikkojako, jossa muuttujat jaetaa eljää ryhmää, jotka esitetää alhaisimmasta korkeimpaa. 1 Nomiaali- eli luokittelu- eli laatueroasteikko Jos tilastoyksiköt aioastaa jaetaa muuttuja perusteella luokkii, mitataa muuttujaa omiaaliasteikolla. Tällöi jokaisesta tilastoyksiköstä a i ja a j voidaa saoa aioastaa, että e ovat joko samalaisia tai erilaisia muuttuja suhtee. Jokaie tilastoyksikkö voi kuulua vai yhtee luokkaa. Nomiaaliasteikollise muuttuja arvoje koodaus voidaa valita vapaasti. Aritmeettiset laskutoimitukset eivät ole sallittuja muuttuja arvoille. Aioastaa lukumäärie laskemie o järkevää. Esim. sukupuoli: mies = 1 aie = ammatti: pappi = 1 lukkari = kattori = 3 Esim. Liisa o pappi ja Leea o kattori. Liisalla ja Leealla o eri ammatit. Liisalla ja Leealla o sama sukupuoli. Ordiaali- eli järjestysasteikko Ordiaaliasteikolla voidaa luokittelu lisäksi luokat asettaa järjestyksee muuttuja arvoje perusteella. Muuttuja arvoje välillä vallitsee joki järjestysrelaatio, joka voidaa ilmaista saoilla "parempi", "vaikeampi", "kauiimpi", Mitää lukua ei vertailuu voida kuitekaa ottaa mukaa. Peruslaskutoimitukset eivät ole sallittuja ordiaaliasteikolla.

11 9 Ordiaaliasteikollise muuttuja arvoje koodaus o muute vapaata, kuha olemassa oleva järjestys tulee yksikäsitteisesti määrätyksi. Esim. arvosaa: tyydyttävä = 1 hyvä = kiitettävä = 3 suhtautumie tiettyy väitteesee: täysi eri mieltä = 1 jokseeki eri mieltä = ei eri mieltä eikä samaa mieltä = 3 jokseeki samaa mieltä = 4 täysi samaa mieltä = 5 sijoitus maastojuoksu piirimestaruuskilpailuissa Esim. Matti sai tetistä arvosaa hyvä ja Liisa sai arvosaa kiitettävä. (Matti ja Liisa saivat eri arvosaa.) Liisa arvosaa o parempi kui Matilla. 3 Itervalli- eli välimatka-asteikko Itervalliasteikolla voidaa luokittelu ja järjestyksee asettamise lisäksi vertailla muuttuja lisäyste suuruutta keskeää lukuje avulla. Kahde tilastoyksikö a i ja a j välistä eroa muuttuja suhtee vastaa muuttuja-arvoje i ja j erotus. Muuttuja-arvoje yhtee- ja väheyslasku o sallittua, ja lieaarie muuos f() = a + b, missä b > 0 säilyttää itervalliasteiko raketee. Asteiko ollapiste o sopimuksevaraie (keiotekoie). Muuttuja voi saada joskus egatiivisiaki arvoja. Esim. lämpötila Celsius- tai Fahreheit-mittarilla mitattua ( Celsius, y Fahreheit; lieaarie muuos y = ) kaleteri mukaa mitattava aika leveys- ja pituusasteet Esim. Vaasa lämpötila o -6 C ja Helsigi + C. (Vaasassa ja Helsigissä o eri lämpötila. Helsigissä o lämpimämpää kui Vaasassa.) Helsigissä 8 C lämpimämpää kui Vaasassa. 4 Suhdeasteikko Jos itervalliasteiko vaatimukset ovat voimassa ja lisäksi o olemassa absoluuttie ollapiste, jossa tarkasteltava omiaisuus "häviää" eli omiaisuude määrä o todella olla, o muuttuja mitta-asteikko suhdeasteikko. Aritmeettise laskutoimitukset ovat sallittuja, ja lieaarie muuos f() = a, missä a > 0 o sallittu. Suhdeasteikolla voidaa tilastoyksiköide muuttuja arvoje vertailussa käyttää suhdelukua.

12 10 Esim. pituus cm paio kg Esim. Matti paiaa 90 kg ja Liisa 45 kg. (Matti ja Liisa ovat eri paioisia. Matti o paiavampi kui Liisa. Matti paiaa 45 kg eemmä kui Liisa.) Mati paio o kaksikertaie Liisa paioo verrattua. Huom. Muuttuja mitta-asteikko ilmoitetaa se toteuttama korkeimma asteiko perusteella Huom. Usei mitta-asteikot jaotellaa vielä kahtee luokkaa: omiaali- tai ordiaaliasteiko muuttujia saotaa kvalitatiivisiksi eli laadullisiksi muuttujiksi. Itervalli- tai suhdeasteiko muuttujia saotaa kvatitatiivisiksi eli määrällisiksi muuttujiksi. Huom. Asteikkotyypi määrittämie ei ole välttämättä helppoa eo. tuusmerkkie avulla. Joissaki tilateissa muuttuja mitta-asteikosta esiityy erilaisia äkemyksiä. Tyypillisesti tällaie muuttuja mittaa mielipidettä. Tarkasti ottae ko. muuttuja o järjestysasteiko muuttuja, mutta joskus se ajatellaa oleva välimatka-asteiko muuttuja. Viimeksi maiittu tulkitatapa johtuu siitä, että aieisto käsittelijä mieltää muuttuja-arvoje erotukse umeerise erotukse mukaiseksi.

13 11 3. YKSIULOTTEINEN EMPIIRINEN JAKAUMA 3.1. Frekvessijakauma peruskäsitteitä ja luokitus Jos tutkittavie tilastoyksiköide lukumäärä o suuri, ei havaitomatriisi aia riitä muuttujie yleispiirteide selvittämiseksi. Muuttuja yleiset omiaisuudet hukkuvat yksityiskohtie joukkoo. Aieistoa o järjestettävä ja tiivistettävä. Havaitomatriisi sisältämää tietoa voidaa tiivistää esimerkiksi muodostamalla muuttuja (luokiteltu, suora, yksiulotteie) frekvessijakauma. Frekvessijakauma muodostamiseksi muuttuja saamat arvot jaetaa erillisii luokkii, merk. E 1, E,, E k, missä k o luokkie lukumäärä. Luokkaa E i kuuluvie : arvoje lukumäärää saotaa luoka E i frekvessiksi, merk. f i. Ku muuttuja luokat ja luokkia vastaavat frekvessit tuetaa, ii silloi tuetaa : frekvessijakauma. Usei absoluuttiste frekvessie sijasta esitetää frekvessit, jotka o suhteutettu havaitoje kokoaismäärää. Näitä suhteutettuja frekvessejä voidaa käyttää esimerkiksi kahde eri havaitoaieisto frekvessijakaumie vertailuu. Lukua p i = f i saotaa luoka E i suhteelliseksi frekvessiksi ja lukua 100p i saotaa prosetuaaliseksi frekvessiksi. Jos muuttuja o epäjatkuva eli diskreetti, o luokkie määrittely yleesä selvää. Luokkia käytetää muuttuja arvoja joko sellaiseaa tai iitä vastaavia koodilukuja. Jos muuttuja luokilla o joki vakiituut esittämisjärjestys tai muuttuja o aiaki järjestysasteikolla mitattu, o luokat esitettävä vastaavassa järjestyksessä. Esim. Vuode 003 alussa Suome kutie lääijakauma oli seuraavalaie: (Aieisto peruslähde o Tilastokeskukse Kutafakta) Lääi f i p i 100p i Etelä-Suome Läsi-Suome Itä-Suome Oulu Lapi Ahveamaa Yhteesä

14 1 Jos luokkia tulee hyvi paljo ja suuri osa frekvesseistä o pieiä, kaattaa luokkia yhdistellä. Tällöi luokat o yhdisteltävä ii, että samaa luokkaa tulevat arvot kuuluvat mahdollisimma loogisesti yhtee. Jos muuttuja o jatkuva-arvoie, o se luokittelu hakalampaa, koska tällaise muuttuja arvot voivat olla mitä tahasa reaalilukuja joltai väliltä, ja kaikki mitatut arvot voivat olla erisuuruisia. Jos muuttujasta halutaa muodostaa tiivis frekvessijakauma, o luokkie oltava välejä, jotka kattavat muuttuja arvot. Jatkuva muuttuja luokittelussa tietoa häviää, koska yt ei eää ilmoiteta muuttuja havaittuja arvoja vaa luokka, joho havaitoarvo kuuluu. Luokitellu aieisto esitystapa o kuiteki usei selvempi kui luokittelemattoma, koska jatkuva-arvoise muuttuja jakauma esittämie esimerkiksi tilastokuvioa perustuu usei luokitteluu. Jatkuva muuttuja luokittelua voidaa hahmottaa seuraavasti: Oletetaa, että luokiteltavia havaitoja o kpl ja e o pyöristetty jolleki mittaustarkkuudelle, merk. d. (Jos mittaustulokset ovat kokoaislukuja, o d = 1, jos mittauksissa o käytetty yhtä desimaalia, ii d = 0.1). 1 Etsitää piei arvo, merk. (1), ja suuri arvo, merk. (). Muuttuja arvoje vaihteluväli muodostaa väli ( (1), () ). Vaihteluväli pituus o w = () - (1). Päätetää, käytetääkö tasavälistä vai epätasavälistä luokitusta. Luokitus o tasavälie, jos kaikki luokat ovat yhtä leveitä. Jos vai voidaa, kaattaa käyttää tasavälistä luokitusta. 3 Valitaa luokkie lukumäärä k, k 3 tai k. (Jos = 15, ii k 5-7.) Yleesä luokkia o 4-10 kpl. 4 Tasavälisessä luokituksessa määritetää arvio luokkaväli pituudelle c site, että c > w. Luokkie rajoje o oltava selkeitä, ja siksi c valitaa usei hiuka k suuremmaksi kui edellie suhde. 5 Muodostetaa luokat site, että e peittävät koko vaihteluväli. Esimmäise luoka pyöristety alaraja pitäisi olla pieempi tai yhtä suuri kui (1). Muut luokat määritellää pyöristettyje luokkarajoje avulla, jotka esitetää samalla mittaustarkkuudella kui muuttujaki o mitattu. 6 Tutkitaa jokaie arvo, ja määrätää luokkie frekvessit. Yksittäie havaito voi kuulua vai yhtee luokkaa. Esim. Tilastokeskukse Kutafakta-aieistossa yhteä omiaisuutea o kuassa v. 00 myytyje asutoje keskihita /m. Asutoje keskihitaa ei ole määritetty 30 kuassa, jote käytettävie havaitoje (eli kutie) kokoaismäärä o 416. Keskihita o määritetty euroia eliömetriä kohde, jote mittaustarkkuus d = 1. Muuttuja o suhdeasteikolla mitattu ja jatkuva. Piei arvo o 336 ja suuri 166. Vaihteluväli pituus o 1830.

15 13 Sopiva luokkie lukumäärä tämä suuruisessa aieistossa o oi 7-9. Tarkastellaa yt valmiiksi luokiteltua aieistoa, jossa luokkie lukumääräksi o valittu k = 8 ja luokkaväli pituudeksi c = 30. Esimmäise luoka pyöristetyksi alarajaksi o valittu luku 330, koska se pieitä arvoa pieempi tasaluku. Toise luoka pyöristetty alaraja o luokkaväli pituude etäisyydellä esimmäise luoka alarajasta. Esimmäise luoka pyöristetty yläraja o mittaustarkkuude verra pieempi kui toise luoka pyöristetty alaraja. Absoluuttiste frekvessie lisäksi jakaumassa o esitetty prosetuaaliset frekvessit. Asutoje keskihita / m f i 100 p i Yhteesä Mittaustarkkuus d äkyy frekvessijakaumataulukossa site, että se o i:e luoka pyöristety alaraja ja sitä edeltävä luoka pyöristety yläraja erotus. Taulukossa äkyvät pyöristetyt luokkarajat ovat luokkie symboleja. Tasavälisessä luokituksessa edeltävä luoka ja seuraava luoka pyöristettyje alarajoje (ja myös ylärajoje) välie etäisyys vastaa luokkaväli pituutta. Peräkkäiste luokkie välie todellie luokkaraja o luoka i pyöristety yläraja ja sitä seuraava luoka pyöristety alaraja välie pyöristysraja. Sitä saotaa edeltävä luoka todelliseksi ylärajaksi ja seuraava luoka todelliseksi alarajaksi. Todellisesta alarajasta käytetää merkitää L i ja todellisesta ylärajasta merkitää U i. Todellisia luokkarajoja käytetää mm. graafisissa esityksissä sekä tuuslukuje laskemisessa. Luokkaväli pituus c i o luoka todellise ylä- ja alaraja erotus eli c i =U i - L i. Tasavälisessä luokituksessa luokkaväli pituus o kaikilla luokilla sama ja tällöi siitä voidaa käyttää merkitää c.

16 14 L U Luoka E i luokkakeskus m i o luoka keskipiste eli m i i i. Koska luokittelussa katoaa tilastoyksiköide tarkat muuttuja-arvot, tulkitaa luokkakeskus usei ko. luoka havaitoje keskiarvoa. Luokkakeskuksia käytetää mm. tilastokuvioissa. Jos muuttuja o epäjatkuva, itervalli- tai suhdeasteikolla mitattu ja jos muuttujalla o paljo erilaisia arvoja, voidaa muuttujaa kohdella kui se olisi jatkuva. Jos muuttuja o mitattu vähitää järjestysasteikolla, voidaa muuttujalle määrittää summafrekvessi eli kumulatiivie frekvessi F i ilmaisee, kuika mota tilastoyksikköä (havaitoa) kuuluu luokkaa E i tai sitä edeltävii luokkii yhteesä eli eli F i i f j j1 F1 f1 F f1 f F1 f F3 f1 f f3 F Fk f1 f fk f3 Fk 1 fk Edellee saadaa suhteellie summafrekvessi P i F i ja prosetuaalie summa- frekvessi 100P i. Esim. Seuraavassa taulukossa o esitetty keskihia frekvessijakauma lisäksi summafrekvessit, prosetuaaliset summafrekvessit, todelliset luokkarajat ja luokkakeskukset. Asutoje keskihita / m f i F i 100 P i L i U i m i Yhteesä 416

17 Graafie esitys Frekvessijakauma voi esittää myös graafisesti. Usei käytetty kuviotyyppi o pylväskuvio. Pylväskuviot muodostuvat joko vaaka- tai pystypylväistä. Pylväide pitaalat (ja tasalevyiste pylväide pituudet) kuvaavat määriä, jote pylvää pituutta osoittava asteiko o lähdettävä luvusta 0. Vaakapylväskuvioita tulisi käyttää silloi, ku kuvataa laadullise muuttuja jakaumaa. Muuttuja luokat esitetää pystyakselilla ja vaaka-akselilla kuvataa frekvessit (absoluuttiset, suhteelliset tai prosetuaaliset). Jos muuttuja o omiaaliasteikolla mitattu, esitetää aieisto ii, että yli pylväs o pisi ja muut pylväät piirretää pituusjärjestyksessä. Pylväide välii jätetää pieet raot. Jos muuttuja o järjestysasteikollie, esitetää pylväät luokkia vastaavassa järjestyksessä. Sektoridiagrammia (ympyräkuvio, piirakkakuvio) käytetää laadullise muuttuja jakauma esittämisessä erityisesti silloi, ku halutaa havaiollistaa joki kokoaisuude jakautumista osii. Jokaise luoka kokoa edustaa sektori pita-ala, joka o suoraa verraollie luoka kokoo. Sektorikuvio sijasta kaattaa käyttää vaakapylväsesitystä erityisesti silloi, jos halutaa esittää, että kahde (tai useamma) melko samakokoise ryhmä välillä o kuiteki eroavuutta havaitomäärässä. Esim. Suome kutie lääijakauma vaakapylväskuvioa Läsi-Suome lääi Etelä-Suome lääi Lääi Itä-Suome lääi Oulu lääi Lapi lääi Ahveamaa kpl

18 16 Esim. Suome kutie tyyppijakauma sektorikuvioa Kaupukimaie 15,% Taajamatyyppie 16,4% Maaseutumaie 68,4% Määrällise epäjatkuva muuttuja jakaumaa voidaa kuvata jaakuviolla, joka o pystypylväskuvio. Jaadiagrammi piirretää ii, että koordiaatistoo piirretää muuttuja arvoje kohdalle kyseiste arvoje frekvessie korkuiset jaat tai pylväät. Esim. Vialliste tuotteide lukumääräjakauma tuote-erissä esitettyä taulukkoa ja jaakuvioa 5 vialliste lkm f i Tuote-erie määrä Vialliste tuotteide määrä Frekvessihistogrammi o pystypylväskuvio, jota käytetää määrällisille jatkuville muuttujille. Ku luokitus o tasavälie, histogrammi muodostuu pylväistä, joide leveys o luokkaväli pituus c, korkeus luoka E i frekvessi f i ja katoje kärkipisteiä vaakaakselilla ovat todelliset luokkarajat. Yleesä kuiteki todelliste luokkarajoje sijasta merkitää vaaka-akselille äkyvii "siistit" luvut, jotka ovat lähellä todellisia luokkarajoja tai luokkakeskuksia. Histogrammissa o pylvää pita-ala tärkeämpi kui korkeus, jote kuvio olisi piirrettävä ii, että luokkie frekvessie suuruus o suoraa verraollie

19 17 pylväide pita-aloihi. Tämä vaatimus toteutuu helposti tasavälise luokitukse yhteydessä, ku piirretää frekvessi korkuisia pylväitä. Jos luokitus o epätasavälie, o pita-alatulkita muistettava! Esim. Asutoje keskihia jakauma frekvessihistogrammia Kutie määrä Asutoje keskihita /m² Yksiulotteie jatkuva määrällise muuttuja frekvessijakauma voidaa esittää myös frekvessimoikulmio avulla. Jokaise luokkakeskukse kohdalle piirretää piste frekvessi (tai suhteellise tai prosetuaalise frekvessi) korkeudelle ja peräkkäiset pisteet yhdistetää toisiisa jaoilla. Frekvessimoikulmio päätepisteet ovat -akselilla s. ollaluokkie (= luokitukse alkuu ja loppuu lisättävie ylimääräiste luokkie) luokkakeskuksissa. Jos ollaluokkia ei voi lisätä, ei frekvessimoikulmiota voi piirtää. Esim. Asutoje keskihia jakauma frekvessimoikulmioa Kutie lukumäärä Asutoje keskihita /m²

20 18 Myös summafrekvessijakauma voidaa esittää kuvioa. Jatkuva määrällise muuttuja summafrekvessijakaumaa kuvataa summakäyrällä. Jokaise luoka todellise yläraja kohdalle piirretää piste summafrekvessi (tai suhteellise tai prosetuaalise summafrekvessi) korkeudelle ja peräkkäiset pisteet yhdistetää toisiisa jaoilla. Summakäyrä lähtee vaaka-akselilta ja ousee :ää asti. Jos summakäyrä muodostetaa prosetuaalisesta summafrekvessijakaumasta, voidaa käyrä avulla selvittää mm. - kuika mota % havaitoarvoista o pieempiä kui luku a - mikä o se muuttuja arvo, jota pieempiä havaitoarvoja o p %. Esim. Asutoje keskihia prosetuaalie summakäyrä 100 Kutie prosetuaalie osuus Asutoje keskihita /m² Diskreeti määrällise muuttuja summafrekvessijakaumaa vastaava summakäyrä o porrasfuktio. Vaaka-akselille merkitää muuttuja arvot ja piirretää käyrä, joka saa arvo kohdalla se frekvessi suuruise hyppäykse ja pysyy arvoje välillä edellise arvo kohdalla saamallaa tasolla. Viivakuviota käytetää ee kaikkea aikasarjoje graafisee esittämisee. Tällöi muuttuja kuvaa yleesä yhde tilastoyksikö yhtä omiaisuutta eri ajakohtia. Viivadiagrammissa vaaka-akselilla kuvataa aika ja pystyakselilla kuvataa muuttuja arvot. Sekä vaaka- että pystyakseli voi katkaista. Esim. Terveyspalvelu yrityste liikevaihto (milj. mk) vuosia vuosi liikevaihto

21 Liikevaihto milj. mk vuosi Jos muuttuja o vähitää järjestysasteiko mittaustasoa, voidaa se havaitoarvoje jakautumie esittää laatikko-viikset - eli bo-plot -kuvioa. Tässä kuviossa ei esitetä luokitteluu perustuvaa jakaumaa, vaa kuviosta ilmeee muuttuja tuuslukuje arvoja. Kuviossa piirretää laatikko, joka pohja o alakvartiili korkeudella ja kasi o yläkvartiili korkeudella. Muuttuja mediaai merkitää laatikkoo poikkiviivalla. Laatiko pohjasta ja kaesta piirretää viikset kummalleki puolella laatikkoa. Viiksie piirtämisessä o useita käytätöjä, viiksie toisia päätepisteiä voivat olla esim. 10 %: ja 90 %: fraktiilit, jolloi kuvaa voidaa vielä eriksee merkitä e havaiot, jotka ovat kauempaa jakauma keskikohdasta kui em. fraktiilit. Määrällise muuttuja jakaumaa voidaa esittää ruko-lehti -kuviolla. Muuttuja-arvoista jätetää esittämättä tietty määrä oikeapuoleisia umeroita. Jäljelle jäävistä muodostetaa esitykse ruko, joka arvot esitetää perättäisiä kokoaislukuia piei luku ylimmällä rivillä ja suuri alimmalla rivillä. Rukoarvoje perää kirjoitetaa lehdet yleesä site, että havaioista pois jätety umero-osuude esimmäiset umerot tulevat oikealle riville suuruusjärjestyksessä. Esim. Seuraavassa o muutama Suome kua verotettavat tulot suuruusjärjestyksessä ( /asukas): 7693, 8381, 8664, 8738, 876, 9090, 9573, 1000, 10879, 11334, 1789 ja Ruko-lehti -kuvio, jossa rugo leveys o 1000 : 7: 6 8: : 05 10: 8 11: 3 1: 7 13: 0

22 Yksiulotteise jakauma tuusluvut Frekvessijakaumie laatimisella yritetää saada muuttuja keskeiset omiaisuudet helpommi hahmotettaviksi. Usei muuttuja havaitoarvoje sisältämä iformaatio halutaa tiivistää vieläki voimakkaammi. Tällöi lasketaa havaioista tilastollisia tuuslukuja. Sijaitia kuvaavia tilastollisia tuuslukuja saotaa keskiluvuiksi. Hajotaluvuilla puolestaa kuvataa havaitoarvoje vaihtelua eli "hajaatumista" jakauma keskikohda ympärille. O olemassa myös muita jakauma muotoa kuvaavia tilastollisia tuuslukuja Keskiluvut Muuttuja arvoje keskimääräistä suuruutta ja jakauma sijaitia muuttuja-akselilla kuvataa keskilukuje avulla. Moodi (Mo) eli tyyppiarvo o se muuttuja arvo tai luokka, joka frekvessi o suuri. Moodi sopii kaikille mitta-asteikoille, mutta se ei ole aia yksikäsitteie. Vähitää itervalliasteikollise muuttuja luokitellussa aieistossa moodi voidaa tulkita moodiluoka luokkakeskukseksi. Esim. Kutafakta-aieisto Lääi-muuttuja moodi o Läsi-Suome lääi, koska kutia o eite Läsi-Suome lääissä. Asutoje keskihia moodiluokka o toie luokka: Moodi voidaa yt tulkita oleva moodiluoka luokkakeskus eli. 675 /m. Esim. Erää tilastotietee kurssi opiskelijoista valitussa 19 hekilö otoksessa olivat opiskelijoide iät suuruusjärjestyksessä: 19, 0, 0, 0, 0, 1, 1, 1, 1, 1,,, 3, 3, 5, 6, 9, 4 ja 46. Iä moodiarvo o 1 vuotta. Mediaai (Md) eli keskusarvo o se havaitoarvo, jota pieempiä ja suurempia havaitoarvoja o yhtä paljo. Mediaaia ei voi laskea omiaaliasteikollisesta muuttujasta. Jos havaiot o asetettu suuruusjärjestyksee ja kyseessä o luokittelemato aieisto, ii Md voidaa määrätä seuraavasti: 1 parito: Md o keskimmäie havaitoarvo (k), missä k = 1 parillie: etsitää kumpiki keskimmäisistä arvoista. Jos muuttuja o ordiaaliasteikolla mitattu, o mediaai kumpiki äistä arvoista. Jos muuttuja o

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit 2. Mittaus ja data 2.. Johdato Voidaksemme keksiä tosimaailma relaatioita tarkastelemme sitä kuvaavaa dataa, jote esiksi selvitämme, mitä data perimmiltää o. Data kerätää kuvaamalla mielekiitoaluee oliot

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus KERTAUSHARJOITUKSIA Tilastoje esittämie. a) -9 vuotiaita tyttöjä 377 Koko väestö 9 73 77 Näide tyttöje osuus 3, 0 % 9 73 b) Pojat ja tytöt: 3 377 + 77 = 39 4 39 4 Osuus koko väestöstä, % 9 73 c) Ikäluokka

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f 0, ku x < 0 Vastaus: Kertymäfuktio o F( x) = x, ku 0 x 0 0, ku x > 0 Todeäköisyydet ovat molemmat 0. Laudatur MAA ratkaisut kertausharjoituksii Tilastoje esittämie 3. a) Tietty kasvi b) Kukkie lukumäärä

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011 Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Jos epäilet, että aineistosi eivät

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Esimerkki 2 (Kaupparatsuongelma eli TSP) 10 Esimerkki 2 (Kaupparatsuogelma eli TSP) Kauppamatkustaja o kierrettävä kaupukia site, että hä lähtee kaupugista 1 ja palaa sie sekä käy jokaisessa muussa kaupugissa täsmällee kerra. Matka kaupugista

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998.

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Kokooma 23.1.2008. Viimeisi perustemuutos o vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Sisällysluettelo

Lisätiedot

3 Mittaamisen taso ja tilaston keskiluvut

3 Mittaamisen taso ja tilaston keskiluvut 3 Mittaamisen taso ja tilaston keskiluvut Tämä tutkimus on sellainen, että (jos nyt jänisten laskua voidaan mittaamiseksi kutsua) mittaamisessa on eroteltavissa neljä erilaista mittaamisen tasoa, mittausasteikkoa.

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

3.6. Geometrisen summan sovelluksia

3.6. Geometrisen summan sovelluksia Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa

Lisätiedot

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2012/MAT814 ISSN 1797-3457 (vekkojulkaisu) ISBN (PDF) 978-951-25-2408-2 TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Vaiheistettu heijastipita valemaalia Joha Ste, Päivi Koivisto, Ato Hujae, Tommi Dufva, VTT,

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

Kompleksiluvut. Johdanto

Kompleksiluvut. Johdanto Kompleksiluvut Johdato Tuomo Pirie tuomo.pirie@tut.fi Aikoje kuluessa o matematiikassa kohdattu tilateita, jolloi käytetyt määrittelyt ja rajoitukset (esimerkiksi käytetyt lukujoukot) eivät ole olleet

Lisätiedot

Sote-alueen muodostamisen tarkemmat kriteerit on todettu väliraportin luvussa 4.1.2. (sivut 18 19).

Sote-alueen muodostamisen tarkemmat kriteerit on todettu väliraportin luvussa 4.1.2. (sivut 18 19). KYSYMYKSET Sosiaali- ja terveydehuoltoalueet (sote-alue) Väliraporti perusteella kua tulee kuulua sote-alueesee, joka järjestää sille sosiaali- ja terveyspalvelut. Sote-alue muodostuu maakutie keskuskaupukie

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä RAKENNUKSEN ULKOVAIPAN ÄÄNENERISTYSTÄ KOSKEVAN ASEMAKAAVAMÄÄRÄYKSEN TOTEUTUMISEN VALVONTA MITTAUKSIN Mikko Kylliäie, Valtteri Hogisto 2 Isiööritoimisto Heikki Helimäki Oy Piikatu 58 A, 3300 Tampere mikko.kylliaie@helimaki.fi

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

tilavuudessa dr dk hetkellä t olevien elektronien

tilavuudessa dr dk hetkellä t olevien elektronien Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää Todeäköisyyslasketa sivuaieopiskelijoille Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 5 1.3 Aksiomaattie todeäköisyys 7 1.4 Ehdollie todeäköisyys 12

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

3.9. Mallintaminen lukujonojen avulla harjoituksia

3.9. Mallintaminen lukujonojen avulla harjoituksia 3.9 Mallitamie lukujooje avulla harjoituksia 3.9. Mallitamie lukujooje avulla harjoituksia Lukujoo määritelmä harjoituksia 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3

Lisätiedot

Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä.

Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä. Tehtävä 1 Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä Ei Hypoteesi ei ole hyvä tutkimushypoteesi, koska se on liian epämääräinen.

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Valvontakortit. Sovelletun Matematiikan Erikoistyö. Pastinen Tommi 23.4.2010

Valvontakortit. Sovelletun Matematiikan Erikoistyö. Pastinen Tommi 23.4.2010 Valvotakortit Sovelletu Matematiika Erikoistyö Pastie Tommi 3.4. Tässä työssä perehdytää valvotakortteihi tilastollisessa laaduvalvoassa perusteoria ja esimerkkitapauste kautta. Sisältö Johdato... 3 Tilastollisesta

Lisätiedot

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja. POHDIN rojekti Jatkuva korko ja e Eksoettifuktioille voidaa johtaa omiaisuus f ( x) f (0) f( x). Riittää ku oletetaa, että f (0) o olemassa. Nyt eksoettifuktioide f( x) 2 x ja gx ( ) 3 x välistä yritää

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta S E L V I T Y S Terveyskeskuste hammaslääkäritilae lokakuussa 2005 ANJA EEROLA, TAUNO SINISALO Hammaslääkäriliitto selvitti julkise ja yksityise sektori hammaslääkärie työvoimatilatee lokakuussa 2005 kahdella

Lisätiedot

1 TILASTOMATEMATIIKKA... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 3 MUUTTUJAT... 6 4 FREKVENSSIJAKAUMA... 8 5 AINEISTON LUOKITTELU...

1 TILASTOMATEMATIIKKA... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 3 MUUTTUJAT... 6 4 FREKVENSSIJAKAUMA... 8 5 AINEISTON LUOKITTELU... SISÄLLYSLUETTELO 1 TILASTOMATEMATIIKKA... 2 1.1 JOHDANTO... 2 1.2 LINKKEJÄ... 2 1.3 LÄHTEET... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 2.1 HAVAINTOAINEISTO... 3 2.2 POPULAATIO... 3 2.3 OTOS... 3 2.4 HAVAINTOAINEISTON

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

Määräys. sähköverkkotoiminnan tunnuslukujen julkaisemisesta. Annettu Helsingissä 2 päivänä joulukuuta 2005

Määräys. sähköverkkotoiminnan tunnuslukujen julkaisemisesta. Annettu Helsingissä 2 päivänä joulukuuta 2005 Dro 1345/01/2005 Määräys sähköverkkotoimia tuuslukuje julkaisemisesta Aettu Helsigissä 2 päivää joulukuuta 2005 Eergiamarkkiavirasto o määräyt 17 päivää maaliskuuta 1995 aetu sähkömarkkialai (386/1995)

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Laudatur 6 Todennäköisyys ja tilastot Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava

Laudatur 6 Todennäköisyys ja tilastot Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava Laudatur 6 Todeäköisyys ja tilastot Tarmo Hautajärvi Jukka Otteli Leea Walli-Jaakkola Opettaja aieisto Helsigissä Kustausosakeyhtiö Otava SISÄLLYS Toimiallisia tehtäviä...3 Ratkaisut kirja tehtävii...4

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt Todeäköisyys ja se laskusääöt Todeäköisyyslasketa: Todeäköisyys ja se laskusääöt 1. Johdato 2. Joukko opi peruskäsitteet 3. Todeäköisyyslaskea peruskäsitteet 4. Todeäköisyyslaskea peruslaskusääöt 5. Klassie

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa. S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

TILASTO- JA TALOUSMATEMATIIKKA s. 1

TILASTO- JA TALOUSMATEMATIIKKA s. 1 TILASTO- JA TALOUSMATEMATIIKKA s. 1 Käsitteitä: Tilastoja voidaan havainnollistaa: o Tilastokuvioilla eli diagrammeilla Tavallisimmin käytettyjä tilastokuvioita ovat pylväsdiagrammit Muodostuu erillisistä

Lisätiedot

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten.

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. Tilastollinen tietojenkäsittely / SPSS Harjoitus 1 VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. 1. Avaa SPSS-ohjelma. Tarkoitus olisi muodostaa tämän sivun

Lisätiedot

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla Metsätietee päivä, 6.0.0 Katobiomassa määrä mallitamie leimikoissa hakkuukoemittauste avulla Heikki Ovaskaie, Itä Suome yliopisto Pirkko Pihlaja, UPM Kymmee Teijo Palader, Itä Suome yliopisto Johdato Suomessa

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

Kun vuoden alussa varastossa oli 100 karaattia ja Antwerpenin ostot oheisen kuvan

Kun vuoden alussa varastossa oli 100 karaattia ja Antwerpenin ostot oheisen kuvan Optimoitimeetelmät Kirjallisuutta: Rardi Roald R.: Optimizatio i Operatios Research, 998 Wisto Waye L.: Operatios Research. Applicatios ad Algorithms, 3rd editio, 994. Matemaattie mallius ja ogelmie ratkaisu

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke 2.2. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 24.2. klo 14-16, paikka?? SPSS-harjoitukset: ti 29.3. klo 11-13 ja to 7.4. klo 15-19

Lisätiedot

Ma8 Todennäköisyys ja tilastot

Ma8 Todennäköisyys ja tilastot Ma8 Todennäköisyys ja tilastot H1 Tilastollisen aineiston kuvaaminen 1.1 Vastaa kuvaajan perusteella kysymyksiin. a) Kuinka paljon tarvitset kuvaajan mukaan unta? b) Paljonko 20-vuotias tarvitsee unta?

Lisätiedot

VA L i n ta ko e 2 0 1 4

VA L i n ta ko e 2 0 1 4 Luva saatuasi merkitse vastauslomakeumerosi eli vastauslomakkee 3 oikeassa yläreuassa oleva umero. Vastauslomakeumero VA L i ta ko e 2 0 1 4 ko g i t i ot i e d e ja psyko l o g i a a i e i s to- ja tehtävävihko

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot