Kvantitatiiviset menetelmät
|
|
- Laura Niemi
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke.. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 4.. klo 14-16, paikka päärak aud IV SPSS-harjoitukset: ti.3. klo ja to 7.4. klo Ryhmä : Mikko Mattila Esimmäie kokootumie to 4.. klo 10-1, U40 sali 13 SPSS-harjoitukset ma klo ja to Ryhmä 3: Mia Tiili Esimmäie kokootumie to 4.. klo 10-1, päärak. sl 16 SPSS-harjoitukset ke klo ja to klo 9-1 (täyä) Ryhmä 4: Haa Wass Esimmäie kokootumie pe 5.. klo 10-1, U37 sh 1 SPSS-harjoitukset klo 9-1 ja pe Mikko Mattila Moimuuttujameetelmät Yhde muuttuja meetelmät (uivariate statistics): keskiluvut ja hajotaluvut Moimuuttujameetelmät: kahde (bivariate) tai useamma (multivariate) muuttuja väliste suhteide tarkastelu Useimmite meetelmissä oletetaa kausaaliasetelma (esim. regressioaalyysi) Aia ei tarvitse tehdä tätä oletusta (esim. korrelaatiokertoimet, ryhmittelyaalyysi) Soveltuva meetelmä riippuu muuttujie mittaustasosta Mikko Mattila 005 Soveltuva meetelmä valita SELITTÄVÄ MUUTTUJA Laatuero- tai järjestysasteikko Välimatka- tai suhdelukuasteikko SELITETTÄVÄ MUUTTUJA Laatuero- tai järjestysasteikko - Ristiitaulukoiti - Log-lieaariset mallit - Logistie regressio - Multiomiaalie regressio Välimatka- tai suhdelukuasteikko -Variassiaalyysi -Regressioaalyysi Korrelaatiokertoimet Korrelaatio kuvastaa kahde muuttuja välise lieaarise riippuvuude astetta Voimakas korrelaatio tarkoittaa sitä, että tiedettäessä toise muuttuja arvo, voidaa toise muuttuja arvo päätellä melko täsmällisesti Soveltuva korrelaatiokertoime valita riippuu muuttujie mittaustasosta Vaihtoehtoia esim.: Pearsoi tulomomettikorrelaatiokerroi, kotigessikerroi, Yule Q, phi, Crameri V, lambda, epävarmuuskerroi, Spearmai rho Mikko Mattila Mikko Mattila Tulomomettikorrelaatiokerroi Pearsoi tulomomettikorrelaatiokerroi o yleisimmi käytetty kerroi Soveltuu kahde vähitää välimatkaasteikollise muuttuja lieaarise riippuvuude tarkasteluu Merkitää r xy Arvo vaihtelee välillä 1 +1 Tulomomettikorrelaatiokerroi Huomioitavia seikkoja: korrelaatiokerroi o symmetrie eli r xy =r yx korrelaatio ei kerro mitää kausaalisuudesta jos muuttujie välillä epälieaarie suhde, korrelaatiokerroi ei välttämättä mittaa sitä yksittäiset poikkeavat havaitoarvot voivat vaikuttaa kertoimee vääristäe tulosta korrelaatiokertoime tilastollise merkitsevyyde arvioiti tärkeää Mikko Mattila Mikko Mattila
2 D1 LEFT-RIGHT PLACEMET D11 AGE EXACT D ICOME HH - FI Correlatios **. Correlatio is sigificat at the 0.01 level (-tailed). D1 LEFT-RIGHT D11 AGE D ICOME PLACEMET EXACT HH - FI ** ** ** -.15** Osittaiskorrelaatiokerroi Osittaiskorrelaatiokerroi kertoo kahde muuttuja riippuvuude ku yhde tai useamma muu muuttuja vaikutus o poistettu (vakioitu) Merkitää r xy.z Esim. jäätelö kulutus ja hukkumiskuolemat korreloivat vahvasti, mutta iide osittaiskorrelaatiokerroi o olla, ku lämpötila o vakioitu Osittaiskorrelaatiokerroita käytetää suhteellise harvoi, koska sama iformaatio saadaa regressioaalyysi avulla kätevämmi Mikko Mattila Mikko Mattila Spearmai järjestyskorrelaatio Periaatteessa tarkoitettu järjestysasteikollisille muuttujille, mutta usei järkevää käyttää myös korkeammalla mittaustasolla Molempie muuttujie havaiot järjestetää suuruusjärjestyksee ja aetaa havaioille uudet arvot ii, että piei saa arvo yksi, toiseksi piei kaksi je. Lasketaa tavallie Pearsoi korrelaatiokerroi järjestysluvuista Spearmai korrelaatiokerroi ei ole yhtä herkkä poikkeamille lieaarisuudesta kui Pearsoi kerroi Ristiitaulukoiti Ristiitaulukoitia käytetää tutkittaessa kahde tai useamma muuttuja jakaumaa ja keskiäistä riippuvuutta Muuttujat mitattu joko luokittelu- tai järjestysasteikolla Usei käytetää myös välimatka- tai suhdeasteiko muuttujia, mutta e o esi luokiteltava Tutkitaa, oko tarkastelu kohteea oleva selitettävä muuttuja jakauma erilaie selittävä muuttuja eri luokissa Mikko Mattila Mikko Mattila : keskusteluaktiivisuus : eroavatko miehet ja aiset toisistaa siiä, kuika usei he keskustelevat politiikasta ystäviesä kassa? Absoluuttise lukumäärät eivät osoita suoraa sukupuolie välisiä eroja o laskettava prosettijakaumat Mies aie Silloi tällöi E koskaa : keskusteluaktiivisuus Taulukko. Aktiivisuus keskustella poliittisista asioita ystävie kassa sukupuole mukaa (%). Mies aie Usei 9 6 Silloi tällöi E koskaa 3 35 () χ =18,4; vapausasteita=; p<0,01 () (501) Mikko Mattila Mikko Mattila 005 1
3 Prosettijakaumie oikea suuta Ristiitaulukkoa tehdessä o tärkeää laskea prosettijakaumat oikeaa suutaa Prosetit lasketaa selittävä muuttuja luokissa Viime kädessä tutkimusogelma ratkaisee suua Ristiitauluko esittämie Tavaomaie ratkaisu: selittävä muuttuja sarakkeille, selitettävä riveille Taulukkoo tulee liittää yhteelasketut tiedot proseteista, koska e helpottavat tulkitaa Tapauste lukumäärät () ilmoitettava Taulukossa ilmoitettava tilastollise testi tulos Mikko Mattila Mikko Mattila Ristiitauluko merkitsevyyde testaus Voidaako otokse tuloste perusteella päätellä tarpeeksi luotettavasti, että havaitut erot pätevät myös perusjoukossa? Testausmeetelmää χ- riippumattomuustesti Perustuu havaittuje ja odotettuje frekvessie erotukselle Ristiitauluko merkitsevyyde testaus ollahypoteesi: ei eroja selitettävä muuttuja eri luokissa Jos p-arvo o riittävä piei, voidaa päätellä, että erot ovat tilastollisesti merkitsevät Huom.: tilastollie merkitsevyys eri asia kui sisällöllisesti tärkeä ero Mikko Mattila Mikko Mattila Ristiitauluko elaboraatio Löydettyä kausaalisuhdetta täsmeetää ja varmeetaa tuomalla aalyysii uusia muuttujia Alle 35 v v. 60 v. täyttäeet M M M Usei Silloi tällöi E koskaa () (183) (184) χ =,8; vapausast.=; p=0,4 (194) (199) χ =7,8; vapausast.=; p=0,0 (96) (118) χ =14,4; vapausast.=; p<0,01 Mies aie E koskaa % % % ollahypoteesi: ei eroja selitettävä muuttuja eri luokissa Tarvitaa tieto odotetuista frekvesseistä Mikko Mattila Mikko Mattila
4 E koskaa % Mies aie % 8 % Odotetut frekvessit saadaa kaavasta: E Oi O. Mikko Mattila ij =. Eij = odotettu frekvessi Oi. = i: rivi kokoaissumma O.j = j: sarakkee kokoaissumma = havaitoje määrä Esim. (*)/975 = j E koskaa % Mies aie % 8 % χ-testisuure saadaa kaavasta: R C ( Oij Eij χ = E ) i= 1 j= 1 Eli: (43-) / + (-) / + (-) / =18,4 Mikko Mattila ji χ-testisuure sai esimerkissä arvo 18,4 Sitä vastaava p-arvo tietämiseksi tarvitaa vielä tieto tauluko vapausasteista (degrees of freedom, d.f.) Se saadaa kaavasta: (rivie määrä 1 )*(sarakkeide määrä 1) Vapausasteet o siis (3-1)*(-1)= Ku tiedetää χ-luku ja vapausasteet, p-arvo voidaa etsiä tilastollisesta χ-jakaumataulukosta Oeksi tätä ei tarvitse tehdä käsi vaa SPSSohjelma laskee kaike automaattisesti Tutkitaa suomalaiste poliittise sijoittumise ja EU-kaatukse suhdetta ristiitaulukoiilla Poliittise sijoittumise alkuperäie skaala (1-10) o uudelleekoodattu seuraavasti: 1-4 = vasemmisto 5-6 = keskusta 7-10 = oikeisto EU-kysymyksessä kysytty o Suome jäseyys EU:ssa mielestäsi 1) Hyvä asia, ) Huoo asia, 3) Ei hyvä eikä huoo asia Mikko Mattila Mikko Mattila 005 Q17 EU MEMBERSHIP * D1 LEFT-RIGHT PLACEMET -RECODED Crosstabulatio Value df (-sided) a a. 0 cells (.0%) have expected cout less tha 5. The miimum expected cout is Mikko Mattila LEFT-RIGHT PLACEMET -RECODE (1-4) Left (5-6) Cetre (7-10) Right Q17 EU MEMBERSH A good thig PLACEMET -RECODE 36.6% 3.4% 5.3% 39.7% PLACEMET -RECODE 5.4% 7.1% 18.4% 3.9% either good or bad PLACEMET -RECODE 38.0% 40.5%.3% 36.4% PLACEMET -RECODE.0%.0%.0%.0% Mikko Mattila
5 Male Female Value df (-sided) a b a. 0 cells (.0%) have expected cout less tha 5. The miimum expected cout is b. 0 cells (.0%) have expected cout less tha 5. The miimum expected cout is 4.1. Seuraavaksi tutkitaa oko poliittise sijoittumise ja EUkaatukse suhde samalaie miehillä ja aisilla eli tehdää ristiitauluko elaboroiti Mikko Mattila Q17 EU MEMBERSHIP * D1 LEFT-RIGHT PLACEMET -RECODED * Crosstabulatio D1 LEFT-RIGHT PLACEMET -RECODED (1-4) Left (5-6) Cetre (7-10) Right Male Q17 EU MEMBERSHIP A good thig PLACEMET -RECODED 4.0% 36.3% 59.1% 45.9% PLACEMET -RECODED 30.4% 3.0% 19.7% 4.0% either good or bad PLACEMET -RECODED 7.7% 40.7% 1.% 30.1% PLACEMET -RECODED.0%.0%.0%.0% Female Q17 EU MEMBERSHIP A good thig PLACEMET -RECODED 30.7% 30.0% 45.% 34.4% PLACEMET -RECODED 19.8%.6% 16.9% 3.9% either good or bad PLACEMET -RECODED 49.5% 40.4% 37.9% 41.7% PLACEMET -RECODED.0%.0%.0%.0% Mikko Mattila Edellise tauluko mukaa vaikuttaisi siltä, että aiset suhtautuvat EU:hu miehiä epäileväisemmi poliittisesta sijoittumisesta riippumatta tehdää tästä oma taulukko Value df (-sided) a a. 0 cells (.0%) have expected cout less tha 5. The miimum expected cout is Q17 EU MEMBERSHIP * Crosstabulatio Q17 EU MEMBERSHA good thig either good or b % withi D10 SE % withi D10 SE % withi D10 SE Female Male % 3.3% 37.3% % 5.1% 4.8% % 4.6% 37.9% % withi D10 SE.0%.0%.0% Mikko Mattila Mikko Mattila Seuraavaksi tutkitaa, pysyykö sukupuolie erot EUkaatuksessa samalaisia ku vakioidaa vastaajie poliittie sijoittumie: D1 LEFT-RIGHT PLACEMET Value df (-sided) (1-4) Left 10.8 a (5-6) Cetre.383 b (7-10) Right c a. 0 cells (.0%) have expected cout less tha 5. The miimum expected cout is b. c. 0 cells (.0%) have expected cout less tha 5. The miimum expected cout is cells (.0%) have expected cout less tha 5. The miimum expected cout is.77. Mikko Mattila 005 Q17 EU MEMBERSHIP * * D1 LEFT-RIGHT PLACEMET -RECODED Crosstabulatio D1 LEFT-RIGHT PLACEMET (1 RECODED - 4) Left (5-6) Cetre (7-10) Right Q17 EU MEMBERSHIP A good thig either good or bad Q17 EU MEMBERSHIP A good thig either good or bad Q17 EU MEMBERSHIP A good thig either good or bad Male Female % 30.7% 36.6% % 19.8% 5.4% % 49.5% 38.0% %.0%.0% % 30.0% 3.4% %.6% 7.1% % 40.4% 40.5% %.0%.0% % 45.% 5.3% % 16.9% 18.4% % 37.9%.3% %.0%.0% Mikko Mattila
SELITETTÄVÄ MUUTTUJA SELITTÄVÄ MUUTTUJA. Välimatka- tai suhdelukuasteikko. Laatuero- tai järjestysasteikko. Laatuero- tai järjestysasteikko
Moimuuttujameetelmät Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Mikko Mattila 009 1 Yhde muuttuja meetelmät (uivariate statistics): keskiluvut ja hajotaluvut Moimuuttujameetelmät:
Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489
Perusjoukko ja otos Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Havaitoyksikkö o empiirise mittaukse kohde Perusjoukko o kaikkie havaitoyksiköide muodostama kokoaisuus Otos o perusjoukkoa
Tehtävä 1. Riku Eskelinen DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomenetelmien peruskurssi TILP150 Tulostuspv Sivu 1/6
Riku Eskelie DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomeetelmie peruskurssi TILP150 Tulostuspv 05.04.013 Sivu 1/6 Tehtävä 1 Muuttuja MATPIT o luokitteluasteikollie. Muuttuja OPPMIN o järjestysasteikollie.
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
RISTIINTAULUKOINTI JA Χ 2 -TESTI
RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
Tunnuslukuja 27 III TUNNUSLUKUJA
Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat
voidaan hylätä, pienempi vai suurempi kuin 1 %?
[TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine
Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:
Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,
TILASTOT: johdantoa ja käsitteitä
TILASTOT: johdatoa ja käsitteitä TOD.NÄK JA TILASTOT, MAA10 Tilastotietee tehtävää o esittää ja tulkita tutkimuskohteesee liittyvää havaitoaieistoa eli tilastoaieistoa. Tutkitaa valittua joukkoa ja se
voidaan hylätä, pienempi vai suurempi kuin 1 %?
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 5 viikko 42 6.10.2017 klo 10:42:20 Ryhmät: ke 08.30 10.00 LS C6 Paajanen ke 10.15 11.45 LS
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
Kvantitatiiviset menetelmät
Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke 2.2. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 24.2. klo 14-16, paikka?? SPSS-harjoitukset: ti 29.3. klo 11-13 ja to 7.4. klo 15-19
n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:
1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:
( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?
Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden
8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
Mat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
Kandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
TUTKIMUSOPAS. SPSS-opas
TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Tilastollie riippuvuus ja korrelaatio TKK (c) Ilkka Melli (2004) 1 Tilastollie riippuvuus ja korrelaatio Tilastollie riippuvuus, korrelaatio ja regressio Kahde muuttuja havaitoaieisto
Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut
Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,
S Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
SPSS ohje. Metropolia Business School/ Pepe Vilpas
1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
χ 2 -yhteensopivuustesti
Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Yhteesopivuude, homogeeisuude ja riippumattomuude testaamie Tilastollie
MTTTP1, luento KERTAUSTA
19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
χ 2 -yhteensopivuustesti
Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Yhteesopivuude, homogeeisuude ja riippumattomuude testaamie Tilastollie
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen
4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on
4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4
Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9
Tilastotieteen perusteet
VAASAN YLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso SISÄLLYSLUETTELO 1. JOHDANTO... 3 1.1. Mitä tilastotiede o?... 3 1.. Tilastotietee historiaa... 4. HAVAINTOAINEISTO JA MITTAAMINEN...
BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 4) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos
BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 4) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy 005
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
Tilastollinen päättömyys, kevät 2017 Harjoitus 6A
Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi
TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET
TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET 16..015 1. a Poliisivoimien suuruuden lisäksi piirikuntien rikostilastoihin vaikuttaa monet muutkin tekijät. Esimerkiksi asukkaiden keskimääräinen
SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi
SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa
Mat Sovellettu todennäköisyyslasku A
TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu
Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Tehtäviä neliöiden ei-negatiivisuudesta
Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?
Tilastollinen tietojenkäsittely / SPSS Harjoitus 4 Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimus, riittää, että tutkit tunnuslukujen arvoja ja teet niiden perusteella päätelmiä.
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen
Tilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
Yhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista
Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua
Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen: Mitä opimme?
TKK (c) Ilkka Melli (004) Tilastolliste aieistoje kuvaamie Tuusluvut Laatueroasteikolliste muuttujie tuusluvut Johdatus tilastotieteesee Tilastolliste aieistoje kuvaamie TKK (c) Ilkka Melli (004) Tilastolliste
811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu
83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi
811312A Tietorakenteet ja algoritmit II Algoritmien analyysi
811312A Tietoraketeet ja algoritmit 2016-2017 II Algoritmie aalyysi Sisältö 1. Algoritmie oikeellisuus 2. Algoritmie suorituskyvy aalyysi 3. Master Theorem 811312A TRA, Algoritmie aalyysi 2 II.1. Algoritmie
EX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)
Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen
T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille 0. Testejä järjestysasteikollisille muuttujille. Testejä laatueroasteikollisille
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen
Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13
= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
3 Lukujonot matemaattisena mallina
3 Lukujoot matemaattisea mallia 3. Aritmeettie ja geometrie joo 64. a) Lukujoo o aritmeettie joo, joka yleie jäse o a 3 ( ) 4 34 4 4 b) Lukujoo o geometrie joo, joka yleie jäse o c) Lukujoo o geometrie
Tilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
Tilastotieteen perusteet
VAASANYLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso SISÄLLYSLUETTELO. JOHDANTO... 3.. Mitä tilastotiede o?... 3.. Tilastotietee historiaa... 4. HAVAINTOAINEISTO JA MITTAAMINEN... 6.. Peruskäsitteitä...
Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot
TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =
1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista
χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Estimointi, Havaittu frekvenssi, Heterogeenisuus,
5. Kahden tunnusluvun erotuksen merkitsevyys
5. Kahden tunnusluvun erotuksen merkitsevyys 85 Hyvin tavallinen tilanne on se, jossa tutkija joutuu päättämään, onko kahden ryhmän välillä todellista eroa. Hän on voinut vaikkapa järjestää kokeen, jossa
Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,
Markov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa
Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!
8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo
Tilastollinen riippuvuus ja korrelaatio
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Tilastollie riippuvuus ja korrelaatio TKK (c) Ilkka Melli (2007) 1 Tilastollie riippuvuus ja korrelaatio >> Tilastollie riippuvuus,
Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi
Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien