Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011"

Transkriptio

1 Kuvioita, taulukoita ja tunnuslukuja Aki Taanila

2 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2

3 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää katsojalle?) Kuviolla tulee olla kohderyhmä (kenelle kuvio on tarkoitettu?) Kokeile eri vaihtoehtoja ja valitse tarkoitukseen ja kohderyhmälle parhaiten sopiva esitystapa Kuvion tulee olla selkeä ja helposti ymmärrettävä Johdata katsojan huomio esitettävään asiaan, eikä kuvion tehosteisiin 3

4 Kuviossa huomioitavia asioita 2 Esitä tiedot peittelemättä ja rehellisesti Otsikoi akselit ja esitä käytetyt yksiköt selkeästi Ilmoita tiedon lähde, jos tieto on peräisin ulkopuolisesta lähteestä Lisää tarvittaessa kuvioon huomautuksia korostaaksesi epätavallisten tai poikkeavien arvojen syitä Yhdistä kuvio luontevasti sitä edeltävään sanalliseen selitykseen, jossa kerrot mihin asioihin katsojan pitää kuviossa kiinnittää huomioita 4

5 Pylväskuvio Pylväillä voidaan kuvata mm. lukumääriä, prosenttiosuuksia, rahamääriä ja keskiarvoja Suosi vaakapylväitä, kun esität eri pylväissä kategorisen muuttujan eri luokkia Suosi pystypylväitä, kun esität eri pylväissä määrällisen muuttujan eri luokkia 5

6 miljoonaa euroa Pylväskuvion rakenne Turku Tampere Helsinki 6

7 Lukumääriä pylväskuviona Ylempi korkeakoulu 2 Korkeakoulu 22 Toinen aste 30 Peruskoulu Henkilöä Työntekijöiden koulutus (n=81) 7

8 Keskiarvoja pylväskuviona Työtovereihin 4,06 Työympäristöön 3,22 Työtehtäviin 3,20 Johtoon 3,06 Palkkaan 2,11 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 5,00 Keskiarvo (1=Erittäin tyytymätön, 5=Erittäin tyytyväinen) Tyytyväisyys työn eri osa-alueisiin (n=81-82) 8

9 Työntekijöitä Histogrammi (ryhmitelty määrällinen muuttuja) Palkka euroa Työntekijöiden palkkajakauma (n=82) 9

10 100 % pinottu pylväskuvio Erittäin tyytymätön Tyytymätön Neutraali Tyytyväinen Erittäin tyytyväinen Palkkaan Johtoon Työtehtäviin Työympäristöön Työtovereihin 0 % 20 % 40 % 60 % 80 % 100 % Prosenttia vastaajista Tyytyväisyys työn eri osa-alueisiin (n= 81-82) 10

11 Viivakuvio Viivakuvio sopii aikasarjan esittämiseen Aikasarjoja esitettäessä viivakuvion vaaka-akselilla on aika Arvoakseli voidaan aloittaa muualtakin kuin nollakohdasta, jos halutaan kuvata vaihtelua itsessään Arvoakselia ei saa katkaista, jos halutaan tarkastella vaihtelun osuutta kokonaismäärästä 11

12 Miljoonaa euroa Viivakuvion rakenne Vuosi Turku Tampere Helsinki 12

13 henkilöauto mrd km joukkoliikenne mrd km Viivakuvio (kaksi arvoakselia) Henkilöauto Joukkoliikenne Vuosi 14 13, ,5 12 Kotimaanliikenteen henkilökilometrit henkilöautolla ja joukkoliikenteessä vuosina (Lähde: Tilastokeskus) 13

14 Liikevaihto (milj. euroa) Hajontakuvio 70,0 65,0 60,0 55,0 50,0 45,0 40,0 35,0 30,0 25,0 20,0 60,0 70,0 80,0 90,0 100,0 110,0 120,0 130,0 Markkinointikustannukset ( euroa) Hajontakuvio on havainnollinen väline kahden määrällisen muuttujan välisen riippuvuuden tarkasteluun 14

15 Piirakkakuvio Kuvaa kokonaisuuden jakaantumista osiin; muuhun tarkoitukseen piirakkaa ei tule käyttää Kaikkien kokonaisuuden osien oltava mukana Piirakka ei ole suositeltavaa, jos siivuja on enemmän kuin 6 15

16 Piirakkakuvio esim. Turku 7 % Tampere 19 % Helsinki 74 % Myynnin suhteellinen osuus eri toimipisteissä 16

17 Taulukointi Yhteenvetotaulukko Luokittelu Ristiintaulukointi 17

18 Yhteenvetotaulukko Koulutus Lukumäärä % Summa % Peruskoulu 27 33,3 33,3 Toinen aste 30 37,0 70,4 Korkeakoulu 22 27,2 97,5 Ylempi korkeakoulu 2 2,5 100,0 Yhteensä ,0 18

19 Ryhmittely Yleensä määrälliset muuttujat täytyy ryhmitellä ennen taulukointia Tällaisia muuttujia ovat esim. palkka, liikevaihto, polttoaineen kulutus, henkilön paino,... 19

20 Ryhmiteltävä aineisto 52,0 64,7 60,3 55,9 56,2 56,4 68,2 62,1 58,9 59,4 59,8 54,5 64,9 60,6 61,0 61,7 56,8 69,4 62,7 63,6 64,0 60,2 55,8 66,2 67,0 67,9 62,0 57,6 55,9 56,4 54,4 64,8 60,5 59,4 59,5 56,7 68,9 62,6 60,8 61,4 60,0 55,7 65,7 63,1 63,8 61,8 57,2 77,1 66,8 67,1 Ohessa otos desibelimittauksia asuntoalueella sijaitsevassa risteyksessä Jos havainnot halutaan taulukoida, niin tarvitaan ryhmittelyä 20

21 Ryhmittelyn suorittaminen Etsi pienin ja suurin (52,0 ja 77,1) Päätä ryhmien lukumäärä (6) Laske ryhmäväli siten, että ryhmät peittävät hieman enemmän kuin pienimmän ja suurimman välisen matkan (5) Valitse ensimmäisen ryhmän alaraja (50) 21

22 Ryhmitelty yhteenvetotaulukko Desibeliä Lukumäärä % Summa % 50,0-54, ,0-59, ,0-64, ,0-69, ,0-74, ,0-79,

23 Huomioita ryhmittelystä Esitä ryhmien rajat havaintojen tarkkuudella Esitä ryhmien rajat siten, ettei ole epäselvää mihin ryhmäänn mikin arvo kuuluu Tasaväliset ryhmät, jos mahdollista (esim. palkkoja ei useinkaan voi ryhmitellä tasavälisesti) Vältä avoimia ryhmiä (iän kohdalla joudutaan käyttämään usein avointa ryhmää esim. 65+) Enemmän ryhmiä Tarkempaa tietoa Vähemmän ryhmiä Helppolukuisempi taulukko 23

24 Ristiintaulukointi Soveltuu riippuvuuksien tarkasteluun ja ryhmien vertailuun Ryhmäkohtaisia lukumääriä ja/tai prosentteja Prosenttien vertailu helpompaa kuin lukumäärien vertailu Sukupuoli Tyytyväisyys johtoon Mies n=63 Nainen n=19 Yhteensä n=82 Tyytymätön 34,9 % 5,3 % 28,0 % Neutraali 36,5 % 36,8 % 36,6 % Tyytyväinen 28,6 % 57,9 % 35,4 % Yhteensä 100,0 % 100,0 % 100,0 % 24

25 Tunnuslukuja Moodi Keskiarvo ja keskihajonta Mediaani Neljännekset ja muut prosenttipisteet Geometrinen keskiarvo Korrelaatiokerroin 25

26 Miksi tunnuslukuja lasketaan? Tunnuslukuja lasketaan, jotta muodostuisi todellista vastaava mielikuva tarkasteltavasta asiasta. x Reaalimaailma 26

27 Keskipalkka? pääjohtajan mielestä keskipalkka on yli 5900 (keskiarvo)... ulkopuolisen mielestä keskipalkka on 2500 (mediaani)... työntekijöiden mielestä keskipalkka on 1500 (moodi)

28 Muuttujan mitta-asteikko ja tunnusluvut Kategorisille muuttujille moodi Asteikolla mitatuille muuttujille keskiarvo, keskihajonta (vähintään 5-portainen asteikko, joka voidaan olettaa tasaväliseksi) Asteikolla mitatuille sopii joissain tapauksissa moodi Määrällisille muuttujille keskiarvo ja keskihajonta Määrällisille muuttujille viiden luvun yhteenveto: pienin, alaneljännes, mediaani, yläneljännes, suurin Määrällisille muuttujille voidaan lisäksi laskea muita prosenttipisteitä 28

29 Moodi Moodi eli tyyppiarvo on useimmin esiintyvä havaintoarvo Sopii kategorisille muuttujille Esim. Lehden tyypillinen lukija on akateemisesti koulutettu vuotias mies 29

30 Keskiarvo Keskiarvo: havaintojen summa jaettuna havaintojen lukumäärällä Keskiarvon kohdalta keinulauta saadaan tasapainoon Keskiarvo on herkkä erityisen suurille ja pienille arvoille Keskiarvon yhteydessä käytetään keskihajontaa vaihtelun mittaamiseen 30

31 Keskihajonta Keskiarvon yhteydessä vaihtelun mittarina käytetään keskihajontaa Keskihajonta on havaintojen keskimääräinen poikkeama keskiarvosta 31

32 Keskihajonnan laskeminen Lasketaan yksittäisen havainnon poikkeama keskiarvosta ja korotetaan poikkeama toiseen potenssiin 2 ( x i x) Lasketaan kaikkiin havaintoihin liittyvien poikkeamien toisten potenssien summa ( x x) 2 i Jaetaan otoskoolla, jolloin saadaan poikkeamien toisten potenssien keskiarvo (kutsutaan varianssiksi). Kumotaan lopuksi toinen potenssi neliöjuurella 2 ( x i n x) 32

33 Perusjoukon keskihajonta Kun arvioidaan otoksen avulla perusjoukon keskihajontaa, tehdään vielä tekninen korjaus korvaamalla luku n luvulla n-1 Voidaan osoittaa, että näin saadaan parempi arvio 33

34 Volatiliteetti Keskihajontaa käytetään yleisesti arvopaperin kokonaisriskin mittarina Tässä yhteydessä keskihajontaa kutsutaan volatiliteetiksi Prosentuaalisista päivätuotoista laskettu volatiliteetti muunnetaan vuositasolle kertomalla se kaupantekopäivien (250) neliöjuurella 34

35 Volatiliteetteja Osake Volatiliteetti 12 kk ( ) SanomaWSOY 20 % UPM-Kymmene 24 % Nokia 28 % Tietoenator 36 % Perlos 45 % Biotie Therapies 77 % 35

36 Mediaani Jos havainnot laitetaan suuruusjärjestykseen, niin mediaani on keskimmäinen havainto tai kahden keskimmäisen keskiarvo Puolet havainnoista mediaania pienempiä, puolet mediaania suurempia Mediaani ei ole herkkä erityisen suurille tai pienille arvoille mediaani 36

37 Neljännekset eli kvartiilit Jos havainnot laitetaan järjestykseen, niin alaneljänneksen (alakvartiili) alapuolelle jää 25% ja yläneljänneksen (yläkvartiili) alapuolelle jää 75% havainnoista 50% 25% 25% alaneljännes yläneljännes 37

38 Prosenttipisteet eli Fraktiilit alaneljännes on 25% prosenttipiste Mediaani on 50% prosenttipiste yläneljännes on 75% prosenttipiste Vastaavalla tavalla voidaan muodostaa muitakin prosenttipisteitä (esim. 5%, 95%) Prosenttipisteet sopivat havainnollisuutensa vuoksi hyvin jakauman kuvailuun (esim. asuntojen neliömetrihinnat, työntekijäryhmän palkat, osakkeen päivätuotot jne.) 38

39 Prosenttipisteitä Kerrostaloyksiöiden neliöhintojen (euroa) prosenttipisteitä vuonna 2007 Prosenttipiste Helsinki (N=250) Tampere (N=250) Pienin % % Mediaani % % Suurin

40 Geometrinen keskiarvo Peräkkäisiä muutoksia kuvaaville prosenttiluvuille käytetään geometrista keskiarvoa Geometrinen keskiarvo kuvaa keskimääräistä muutosvauhtia Geometrinen keskiarvo on n:s juuri muutoskertoimien tulosta 40

41 Geometrinen keskiarvo esim. Jos peräkkäiset hinnan muutokset ovat 1,5%; 2,3%; -1,2% ja 10,0%, niin muutoskertoimet ovat 1,015; 1,023; 0,988 ja 1,100 Geometrinen keskiarvo: 4 1,015 1,023 0,988 1,100 Tämä keskiarvo kuvailee keskimääräistä hinnan muutosta Neljä peräkkäistä 3,07% suuruista hinnan muutosta johtaa samaan lopputulokseen kuin alkuperäiset hinnanmuutokset 1,

42 Pearsonin korrelaatiokerroin Pearsonin korrelaatiokerroin mittaa lineaarista eli suoraviivaista riippuvuutta. 42

43 Korrelaatiokertoimen arvot Täydellinen negatiivinen korrelaatio Ei korrelaatiota Täydellinen positiivinen korrelaatio

44 Pearsonin korrelaatiokertoimia 44

45 Korrelaatiokertoimen arvon karkea tulkinta r < 0,3 muuttujien välillä ei ole juurikaan lineaarista riippuvuutta 0,3 < r < 0,7 muuttujien välillä on jonkin verran lineaarista riippuvuutta r > 0,7 muuttujien välillä on selvä lineaarinen riippuvuus. 45

46 Muita tunnuslukuja vaihteluväli (väli suurimmasta pienimpään) varianssi (keskihajonnan toinen potenssi) variaatiokerroin (keskihajonta/keskiarvo) mittaa suhteellista vaihtelua; variaatiokertoimen avulla voidaan vertailla eri asteikoilla mitattujen muuttujien vaihtelua 46

47 Tiekartta Tarkoitus Kategorinen Muuttujan mitta-asteikko Määrällinen Yhteenveto muuttujan arvoista Yhteenvetotaulukko Pylväskuvio Piirakkakuvio Moodi Ryhmitelty yhteenvetotaulukko Histogrammi Keskiarvo*, keskihajonta* 5 luvun yhteenveto Ryhmien vertailu Ristiintaulukointi Keskiarvojen ja keskihajontojen vertailu* Muiden tunnuslukujen vertailu Kahden muuttujan välinen riippuvuus Ristiintaulukointi Pylväskuvio 100 % pinotut pylväät Hajontakuvio Aikasarjakuvio Korrelaatiokerroin* Mielipideasteikoille sopii kategoristen muuttujien menetelmät. Jos mielipideasteikko on vähintään 5-portainen ja voidaan olettaa tasaväliseksi, niin tähdellä* merkityt määrällisten muuttujien menetelmät ovat harkinnanarvoisia. 47

Määrällisen aineiston esittämistapoja. Aki Taanila

Määrällisen aineiston esittämistapoja. Aki Taanila Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla

Lisätiedot

Määrällisen aineiston esittämistapoja. Aki Taanila

Määrällisen aineiston esittämistapoja. Aki Taanila Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi

Lisätiedot

AINEISTON ESITTÄMINEN JA KUVAILU 5. luku

AINEISTON ESITTÄMINEN JA KUVAILU 5. luku Aki Taanila AINEISTON ESITTÄMINEN JA KUVAILU 5. luku Koko materiaali löytyy osoitteesta http://www.haaga-helia.fi/~taaak 16.6.2010 5 GRAAFINEN ESITTÄMINEN Noudata numerotiedon graafisessa esittämisessä

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

Aki Taanila AINEISTON ESITTÄMINEN JA KUVAILU

Aki Taanila AINEISTON ESITTÄMINEN JA KUVAILU Aki Taanila AINEISTON ESITTÄMINEN JA KUVAILU 13.10.2010 SISÄLLYS 0 JOHDANTO... 1 1 ORIENTAATIO... 2 1.1 Kriittinen ajattelu... 3 2 AINEISTON TALLENTAMINEN... 4 3 AINEISTON KÄSITTELY... 6 3.1 Taulukko,

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

Aki Taanila AINEISTON ESITTÄMINEN JA KUVAILU

Aki Taanila AINEISTON ESITTÄMINEN JA KUVAILU Aki Taanila AINEISTON ESITTÄMINEN JA KUVAILU 25.11.2014 SISÄLLYS 0 JOHDANTO... 1 1 ORIENTAATIO... 2 1.1 Kriittinen ajattelu... 3 2 AINEISTON TALLENTAMINEN... 4 3 AINEISTON KÄSITTELY... 6 3.1 Taulukko,

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

Teema 5: Ristiintaulukointi

Teema 5: Ristiintaulukointi Teema 5: Ristiintaulukointi Kahden (tai useamman) muuttujan ristiintaulukointi: aineiston analysoinnin ja tulosten esittämisen perusmenetelmä usein samat tiedot esitetään sekä taulukkona että kuvana mahdollisen

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää? Seuraavassa muutamia lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4,

Lisätiedot

Järvi 1 Valkjärvi. Järvi 2 Sysijärvi

Järvi 1 Valkjärvi. Järvi 2 Sysijärvi Tilastotiedettä Tilastotieteessä kerätään tietoja yksittäisistä asioista, ominaisuuksista tai tapahtumista. Näin saatua tietoa käsitellään tilastotieteen menetelmin ja saatuja tuloksia voidaan käyttää

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Jos epäilet, että aineistosi eivät

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina. [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro

Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro Lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19,

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Tilastomenetelmien lopputyö

Tilastomenetelmien lopputyö Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien

Lisätiedot

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Esimerkki 1: auringonkukan kasvun kuvailu

Esimerkki 1: auringonkukan kasvun kuvailu GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin

Lisätiedot

Tilastollisten aineistojen kuvaaminen

Tilastollisten aineistojen kuvaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

2. Aineiston kuvailua

2. Aineiston kuvailua 2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi

Lisätiedot

Matin alkuvuoden budjetti

Matin alkuvuoden budjetti 1 TILASTOJEN TULKINTAA 1. euroa Matin alkuvuoden budjetti 600 500 400 300 200 100 0 tammikuu helmikuu maaliskuu huhtikuu a) Milloin Matti on kuluttanut eniten rahaa ostoksiin? Arvioi, kuinka paljon vaatteisiin

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

TILASTO- JA TALOUSMATEMATIIKKA s. 1

TILASTO- JA TALOUSMATEMATIIKKA s. 1 TILASTO- JA TALOUSMATEMATIIKKA s. 1 Käsitteitä: Tilastoja voidaan havainnollistaa: o Tilastokuvioilla eli diagrammeilla Tavallisimmin käytettyjä tilastokuvioita ovat pylväsdiagrammit Muodostuu erillisistä

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,

Lisätiedot

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Aki Taanila AIKASARJOJEN ESITTÄMINEN

Aki Taanila AIKASARJOJEN ESITTÄMINEN Aki Taanila AIKASARJOJEN ESITTÄMINEN 4.12.2012 Viivakaavio Excelissä voit toteuttaa viivakaavion kaaviolajilla Line (Viiva). Viivakaavio onnistuu varmimmin, jos taulukon ensimmäisessä sarakkeessa ovat

Lisätiedot

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4 TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 19.5.2016 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 VIRHEMARGINAALI JA LUOTTAMUSVÄLI... 5 2.1 Keskiarvon virhemarginaali ja

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

SPSS-perusteet. Sisältö

SPSS-perusteet. Sisältö SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn

Lisätiedot

Tutkimusmenetelmät I Määrällisen tutkimuksen osuus (2.5 op) "kynä-paperi"-harjoitukset/til

Tutkimusmenetelmät I Määrällisen tutkimuksen osuus (2.5 op) kynä-paperi-harjoitukset/til Tutkimusmenetelmät I Määrällisen tutkimuksen osuus (2.5 op) "kynä-paperi"-harjoitukset/til 1. Tutkija halusi selvittää, kuinka moni Etelä-Suomen läänin ja Lapin läänin peruskoulun opettajista käyttää säännöllisesti

Lisätiedot

11. Jäsenistön ansiotaso

11. Jäsenistön ansiotaso 24 Kuvio 19. 11. Jäsenistön ansiotaso Tutkimuksessa selvitettiin jäsenistön palkkaukseen liittyviä asioita. Vastaajilta kysyttiin heidän kokonaiskuukausiansioitaan (kuukausibruttotulot). Vastaajia pyydettiin

Lisätiedot

Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10

Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen

Lisätiedot

ISÄNNÖINTIYRITYSTEN TALOUSBAROMETRI 2015

ISÄNNÖINTIYRITYSTEN TALOUSBAROMETRI 2015 ISÄNNÖINTIYRITYSTEN TALOUSBAROMETRI 2015 TOTEUTUS Isännöintiyritysten Talousbarometri toteutettiin toukokesäkuussa 2015 Vastaajia yhteensä 206 (vuonna 2014: 176) Isännöintiyritysten johtoa Omistajia ja

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla

Lisätiedot

Itä-Suomen seudulliset liikkumistutkimukset Itä-Suomen liikkumistutkimus 2015

Itä-Suomen seudulliset liikkumistutkimukset Itä-Suomen liikkumistutkimus 2015 Itä-Suomen seudulliset liikkumistutkimukset 2015 Itä-Suomen liikkumistutkimus 2015 30.12.2015 2 Kalvosarjan sisältö Tutkimuksen taustatietoja Liikkumisen erityispiirteitä maakunnat ja Itä-Suomi seudut

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 21.5.2014 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 5 2.1 Keskiarvon luottamusväli... 5 2.2

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

HSL Työsuhdematkaliput Asiakas- ja potentiaalitutkimus Kesäkuu - elokuu 2011

HSL Työsuhdematkaliput Asiakas- ja potentiaalitutkimus Kesäkuu - elokuu 2011 HSL Työsuhdematkaliput Asiakas- ja potentiaalitutkimus Kesäkuu - elokuu 20 SFS-ISO 20252:2008 sertifioitu HSL Työsuhdematkaliput Asiakas- ja potentiaalitutkimus kesä-elokuussa 20 Tutkimuksen tarkoituksena

Lisätiedot

Harjoittele tulkintoja

Harjoittele tulkintoja Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista

Lisätiedot

Mediaani. Keskihajonta

Mediaani. Keskihajonta Ohjeita neljänsien mikroharjoitusten (vk 7) tekemiseksi omatoimisesti: 1. Käynnistä Tixel-ohjelma työpöydän kuvakkeella, paina Enable Content, avaa ADD-INS, valitse Tixel8- valikosta Avaa havaintomatriisi,

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Yrityskyselyn toteutus

Yrityskyselyn toteutus Yrityskyselyn toteutus Kyselyn perusjoukon muodosti 6480 EK:n jäsenyritystä (kokonaismäärä on n. 16 000), jotka edustavat kaikkia jäsenliittoja ja työllistävät 738792 työntekijää ja toimihenkilöä. Perusjoukon

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten.

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. Tilastollinen tietojenkäsittely / SPSS Harjoitus 1 VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. 1. Avaa SPSS-ohjelma. Tarkoitus olisi muodostaa tämän sivun

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Ohjeita tilastollisen tutkimuksen toteuttamiseksi opintojaksolla. TILTP1 (http://www.uta.fi/~strale/tiltp1.html) SPSS for Windows -ohjelmiston avulla

Ohjeita tilastollisen tutkimuksen toteuttamiseksi opintojaksolla. TILTP1 (http://www.uta.fi/~strale/tiltp1.html) SPSS for Windows -ohjelmiston avulla Ohjeita tilastollisen tutkimuksen toteuttamiseksi opintojaksolla TILTP1 (http://www.uta.fi/~strale/tiltp1.html) SPSS for Windows -ohjelmiston avulla Raija Leppälä (raija.leppala@uta.fi) ALUKSI Tämä opas

Lisätiedot

Anna tutki: Naisen asema työelämässä

Anna tutki: Naisen asema työelämässä Anna tutki: Naisen asema työelämässä 2 Tutkimuksen tausta ja toteutus Tavoitteena selvittää naisten asemaa työelämässä Tutkimuksen teettäjä Yhtyneet Kuvalehdet Oy / Anna-lehti, toteutus Iro Research Oy

Lisätiedot

Tilastojen esitystavat. Oma nimi

Tilastojen esitystavat. Oma nimi Tilastojen esitystavat Oma nimi Raportti INS1LL057 13.9.2010 Sisällys 1 Tilastojen esitystavat... 1 1.1 Taulukko... 1 1.2 Tilastografiikka... 4 1.3 Tilastojen laatu... 9 1.3.1 Tiedon on oltava käyttökelpoista

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot