Mat Matematiikan erikoistyöt Whitneyn sateenvarjo suihkuavaruudessa

Koko: px
Aloita esitys sivulta:

Download "Mat-1.139 Matematiikan erikoistyöt Whitneyn sateenvarjo suihkuavaruudessa"

Transkriptio

1 Mat-1139 Matematiikan erikoistyöt Witneyn sateenvarjo suikuavaruudessa Kenrick Bingam A, Tf ttp://wwwutfi/ kenny/

2 Sisältö 1 Jodanto 3 Singulaarinen systeemi suikuavaruudessa 3 1 Witneyn sateenvarjo 3 Klassiset ratkaisut 5 3 Ratkaiseminen suikuavaruusmenetelmällä 5 4 Ongelmia 6 41 Tapaus Tapaukset ja Tapaus Tapaukset 4 ja Systeemin jatkaminen ja primääridekompositio 7 31 Jatkaminen 7 3 Primääridekompositio 9 4 Jatkettujen systeemien ratkaiseminen 1 41 Tapaus 1 4 Tapaus Tapaus Yteenveto 16 Merkinnät ja nimitykset 17 Viitteet 18 Liite 1: Axiom-komentojonot 19

3 1 Jodanto Differentiaaligeometrinen menetelmä on eräs tavallisten differentiaaliytälöiden ratkaisumenetelmä Siinä tarkastellaan geometrisesti differentiaaliytälön määräämää pintaa suikuavaruudessa Suikuavaruutta voidaan ajatella :na, jossa koordinaatit ovat differentiaaliytälön vapaa muuttuja, ratkaisu ja sen derivaatat Differentiaaliytälön ratkaisukäyrä kulkee tällä pinnalla Käyrän suunta pinnan kussakin pisteessä määräytyy, kun uomioidaan lisäksi :den derivaattaluonne Ratkaisukäyrää voidaan laskea numeerisesti etenemällä aina pieni askel kerrallaan näin laskettuun suuntaan Jos pinta leikkaa itsensä, saattaa ratkaisukäyrän suunnan laskeminen tuottaa ongelmia: kun eri ledillä kulkevat ratkaisukäyrät leikkaavat toisensa, ratkaisukäyrän kulkusuunta ei ole yksikäsitteinen niiden leikkauspisteessä Jos kuitenkin ratkaisukäyrien korkeamman kertaluvun derivaatat eroavat, voidaan siirtyä korkeamman kertaluvun suikuavaruuteen, jossa ratkaisukäyrät kulkevat erillään, eikä pinta enää leikkaa itseään Korkeamman kertaluvun derivaatoille saadaan riippuvuuksia derivoimalla alkuperäistä differentiaaliytälöä :n suteen, ja poistamalla pinnasta epäoleelliset osat yödyntäen kommutatiivisen algebran ns primääridekompositiota Tässä erikoistyössä tarkastellaan esimerkkinä erästä itsensä leikkaavaa pintaa, ns Witneyn sateenvarjoa, kolmiulotteisessa suikuavaruudessa Koska kolme koordinaattia voidaan ajatella :ksi, :ksi ja :ksi tavalla, saadaan kuusi erilaista tapausta Näistä kolmessa leikkauskodan kautta kulkee useita ratkaisuja Leikkauskota saadaan kaikissa kolmessa tapauksesa kierrettyä siirtymällä neliulotteiseen avaruuteen Differentiaaligeometrinen menetelmä soveltuu myös differentiaaliytälösysteemien ratkaisemiseen, jolloin joudutaan toimimaan väintään viidessä ulottuvuudessa (,,,, ) Tässä erikoistyössä on avainnollisuuden ja yksinkertaisuuden vuoksi rajoituttu tarkastelemaan yden tuntemattoman funktion differentiaaliytälöitä Lukijalle lienee eduksi differentiaaligeometrian ja algebran peruskäsitteiden tuntemus esimerkiksi läteiden [7] ja [8] pojalta Koko ajan liikutaan kuitenkin :ssa ja :ssa, joten ensimmäisen vuoden korkeakouluopinnot matematiikassa antanevat riittävän pojan asian ymmärtämiselle pääpiirteissään, kenties lukuunottamatta primääridekompositio-osuutta Singulaarinen systeemi suikuavaruudessa 1 Witneyn sateenvarjo Witneyn sateenvarjoksi kutsutaan ytälön!# &% (' (1) ratkaisujoukkoa :ssa Se koostuu pinnasta puoliavaruudessa ' (ks kuva 1) sekä sateenvarjon kavasta +' *) ' Pinta on näistä mielenkiintoisempi osa tarkasteltaessa jatkossa -, differentiaaliytälöitä, jotka saadaan ajattelemalla :a suikuavaruutena / Pinnan poikkileikkaukset -tasossa ovat kaksi toisensa leikkaavaa, origon kautta kulkevaa suoraa, 3

4 joiden kulmakertoimet ovat 1# Poikkileikkaukset -tasossa puolestaan ovat paraabeleja ja - tasossa käyriä (3 4 5 x x3 1 4 x Kuva 1: Witneyn sateenvarjon pinta Kyseessä ei ole -monisto, sillä pinta leikkaa itsensä pitkin positiivista -akselia Sitä voidaan kuitenkin tarkastella moniston osajoukkona, jolloin, ja ovat :n lokaaleja koordinaatteja Avaruus voidaan nyt tulkita suikuavaruudeksi /, kun muuttujien, ja ajatellaan olevan differentiaaliytälön vapaa muuttuja, differentiaaliytälön ratkaisu ja sen derivaatta Muuttujat, ja voidaan samaistaa muuttujiin, ja kuudella eri tavalla: Tällöin ytälö (1) määrää differentiaaliytälön (' () jonka ratkaisukäyrä kulkee sateenvarjopinnalla Singulariteetissa eli sillä suoralla, jolla pinta leikkaa itsensä, ratkaisun käyttätymiseltä tai sen laskemiselta voidaan odottaa jotakin erikoista 4

5 ; I T 9 b E 9 _ B 9 ^ B g g E B ) ) : Klassiset ratkaisut Differentiaaliytälölle () saadaan kaikilla eri permutaatioilla klassiset ratkaisut: % ('(< = < 8> < A B % D ('(< 6 1 E < F< ' % ('(< 6 = < % % < A = HG % ('(< 1 < J KMLNLO 1? J < SR ' N% ('(< 16 U< 1 = < 1 = ' N% ('(< 6 1 < J KMLVLW 1? J LX< Q Y>[Z = -R ' 3 Ratkaiseminen suikuavaruusmenetelmällä Differentiaaliytälöä voidaan läteä ratkaisemaan suikuavaruudessa numeerisesti seuraavalla differentiaaligeometrisella menetelmällä [1,, 9] on 1-kodimensioinen tangentti- 9 Pinnan \' tangenttitaso pisteessä ] S^ / avaruuden _ / a` aliavaruus b 9c ëd 'f# g ^ / a` L b 9 g (' missä (3) b 9 i? b? b ^ _kj / l (4) 9 9 on :n differentiaali Koska differentiaaliytälön ratkaisukäyrä kulkee pinnalla (', sen tangenttivektori sijaitsee tässä tasossa Suikuavaruuden rakenteesta ei vielä käy ilmi, että :n pitää olla ratkaisukäyrällä :n derivaatta: m Tämä eto voidaan kirjoittaa kontaktimuodon n&6 b % b _kj / l (5) avulla no g p', mikä sekin määrää 1-kodimensioisen aliavaruuden eli tason _ / a` :ssä 3 Ratkaisukäyrän tangenttivektori sijaitsee myös tässä tasossa Ytälöt b 9 g (no g (' (6) määräävät siis pisteessä ] aliavaruuden, joka määrää ratkaisukäyrän tangenttivektorin suunnan yksikäsitteisesti, jos sen dimensio on 1 eli jos tasot leikkaavat toisensa Näiden aliavaruuksien muodostamaa kimppua kutsutaan systeemin distribuutioksi ja ratkaisukäyrää distribuution integraalimonistoksi Jos merkitään tangenttivektoria normaalikannassa gmqg? g? g sr g ut (7) Funktion differentiaali vastaa vvw :n vektorianalyysin Jacobin matriisia, joten ytälö xzyw{} ~& voidaan kirjoittaa kenties ˆ 3 Huomattakoon, että ytälö Š5Œx 6Žm Š x #ˆ saadaan formaalisti kertomalla ytälö Š a x :llä tutummin merkinnöin #y ƒ 5

6 R d ytälöt (6) voidaan kirjoittaa matriisimuodossa ts(' missä (8) Š % ; ' (9) nolla-avaruutta š t L ts('yf ; Distribuutio vastaa siis kussakin pisteessä matriisin Jos nyt matriisin rangi on eli œž ŸSš, ratkaisukäyrää voidaan läteä seuraamaan etenemällä lyyt askel distribuution suuntaan ja projisoimalla näin saatu piste takaisin monistolle 4 Ongelmia Jos kuitenkin œ ŸSš, distribuutio ei määrää ratkaisukäyrän suuntaa, eikä ratkaisukäyrää voida laskea tällä menetelmällä Tilanne on tällainen esimerkiksi pinnan () leikkaussuoralla 41 Tapaus 1 Koska tapauksessa 1 singulariteetissa FA(' matriisin % ; ' % D % H, joten singulariteetissa ratkaisu- toinen vaakarivi on nollarivi, on distribuution dimensio œž ŸSš käyrän seuraaminen on madotonta % ; ' ' ' ' (1) Jos klassiseen ratkaisuun B sijoitetaan singulariteetti s', saadaan ' Singulariteetin kautta kulkee siis ainoastaan ratkaisu M 4 Tapaukset ja 5 Tapauksessa singulaariset ratkaisut ovat sellaisia, joissa F (' Klassisen ratkaisun ensimmäinen derivaatta on c äb (11) joten kaikki ratkaisut kulkevat singulariteetin kautta Nyt on edellisen lisäksi se ongelma, että korkeudella kulkee nyt kaksi ratkaisua, jotka :n 1 (1) Singulariteetissa joten taas œ ŸSš % ; ' % % D H Š ' ; ' ' ' ' (13) Tapauksessa 5 tilanne on samanlainen: Ensimmäinen derivaatta on 1 = (' 6 (14)

7 ; R kun ', joten kaikki ratkaisut kulkevat singulariteetin kautta Korkeudella kulkee taas kaksi ratkaisua, jotka :n 1 Distribuution dimensio on jälleen, koska % ; ' % % H Š ' ; ' ' ' ' (15) 43 Tapaus 3 Nyt ratkaisut A HG kulkevat kaikki singulariteetin FA(' kautta Lisäksi ; ; kun ', joten kaikki ratkaisukäyrät kulkevat lisäksi korkeudella ; (16) Saman pisteen kautta ei siis kulje nyt ainoastaan kaksi ratkaisua, vaan ääretön määrä ratkaisuja Ratkaisukäyrää ei voida seurata singulariteetissa, koska ja siis œž ŸSš % ; ' % % Y HO ' ; ' ' ' ' (17) 44 Tapaukset 4 ja 6 Tapauksissa 4 ja 6 singulariteetti ei aieuta ongelmia Ytälölle :n eri arvoilla erilaisia eksponenttimuotoisia ratkaisuja, jotka on määritelty :n positiivisilla arvoilla Niistä mitkään eivät kulje singulariteetin MF ' kautta :n arvolla saadaan triviaaliratkaisu A(', joka vastaa sateenvarjon kavaa Tapauksessa 4 ratkaisukäyrä määräytyy matriisin % ; ' % % (18) nolla-avaruudesta Muualla kuin triviaaliratkaisulla mª ', joten ainoastaan triviaaliratkaisulla œ ŸSš Myös tapauksessa 6 matriisin % ; ' % % (19) nolla-avaruus on yksiulotteinen, kun (' ª 3 Systeemin jatkaminen ja primääridekompositio 31 Jatkaminen Systeemin jatkamisella tarkoitetaan alkuperäisen differentiaaliytälön 9 (' () 7

8 g g b n n b ^ ' ^ _ «derivoimista :n suteen, jolloin saadaan uusi ytälö Se saa tapauksissa 1 6 seuraavat muodot: (' (1) % % D (' () % D % (' (3) % % (' (4) D % % (' (5) [ % % A(' (6) % D % (' (7) jatkon differentiaalille saadaan b M+? b? b? b _kj / l / Ytälöt () ja (1) määrittelevät neliulotteisessa avaruudessa kaksiulotteisen pinnan, jolla ratkaisut kulkevat Sen tangentin määräävät nyt kaksi ytälöä Entinen ytälö b 9 g (' muuntuu muotoon b 9 g b 9 b N g l (' (8) / ± missä ±²³ ±^ / on kanoninen projektio Sen lisäksi j b g (' (3) Kontaktimuotojakin on nyt kaksi Entisestä kontaktimuodosta no ^ _ j / l saadaan kanonisella projektiolla 1-muoto j n ^ / l _ j Ytälön j no g (n& b N g ' (31) lisäksi on :n derivaattaominaisuuden = = määrittelevä ytälö g (' missä (9) (3) b % / l _kj (33) on toinen kontaktimuoto Ytälöt (8), (3), (31) ja (3) ovat nyt matriisimuodossa tµ ' (34) missä ja tµ g g I Fgq r? g Š Š % ; ' 7 ' = % ' ; '? g? g Fg ^ / l (35) (36) 8

9 d ] d Ã Ä Ä ^ Ã Ó Ä Ä ` f à ^ Ê Koska nämä ytälöt ovat differentiaaliytälöstä konsistentisti jatkettuja ytälöitä, matriisia vastaavan l lineaarikuvauksen ydin on väintään yksiulotteinen Jos œ ŸSš ;, differentiaaliytälön ratkaisuja voidaan laskea edellä esitetyllä menetelmällä :ssä ei ole monisto, vaan se leikkaa itsensä, joten ratkaisukäyrän seuraaminen on madotonta leikkauskäyrän pisteissä; lisäksi läellä singulariteettia se voi olla numeerisesti vaikeaa Jatketun systeemin kodalla tilanne voi olla samanlainen, jolloin ratkaisukäyrän laskeminen ei onnistu pinnan leikkauspisteissä Ytälön 9 ' määräämä pinta / 3 Primääridekompositio Ytälöiden 9 ' [8] 8 ¹º' määräämää pintaa voidaan tarkastella polynomien 9 ja virittämän ideaalin 9 af inina varieteettina [5] ¾k 8 d 9?*¼ ½L ] ja ¼ muuttujien,, ja polynomeja f (37) V^ / L ] ^ ^ ja À ª Ideaalia sanotaan primääri-ideaaliksi, jos aina kun À Á Primääridekompositioksi kutsutaan renkaan  ideaalin ajotelmaa missä primääri-ideaalit 1 Mikään Ä ª Ç Ä ^ Ã Ä Â toteuttavat seuraavat edot: Ä ei sisällä muiden ideaalien leikkausta, kun È É ª ('6 ], niin Á ^ 8 ^ (38) jollakin ] (39) &Å ÆÆ ÆÅ Ä c Å Å Æ ÆÆYÅ Primääridekompositio on yödyllinen konstruktio, jos rengas   :n ideaalilla on äärellinen määrä virittäjiä: on Noeterin rengas eli kun jokaisella Lause 31 Noeterin renkaan aidolla ideaalilla on yksikäsitteinen primääridekompositio Todistus löytyy läteestä [3] 8 voidaan siis muodostaa primääri- Koska tarkasteltavat ideaalit ovat äärellisesti viritettyjä, ideaalille dekompositio Jättämällä leikkauksen ideaaleista osa pois saadaan laajempi ideaali Ë 8 8 Ä ÄWÌ8ÍmÎÏ Ð ÐÒÑ ÑÒÑ Ð (4) (41) Sen varieteetti on vastaavasti pienempi, koska varieteetin pisteille asetetaan enemmän rajoituksia Sopivalla valinnalla voidaan saada se varieteetti, jolla differentiaaliytälön ratkaisuna mielekäs käyrä kulkee Koska kiinnostuksen koteena on läinnä ideaalin varieteetti, voidaan alkuideaalien sijaan tarkastella niiden radikaali-ideaaleja Ä ] L ]DÕ jollakin Ö f, sillä ^ 9

10 Ê ^ ^ Å ^ ' ^ Lause 3 Jos on ideaalin uø mielival- Todistus Koska selvästi ¾± Olkoon mielivaltainen, jolloin siis ] tainen Tällöin ¼ ^ Õ jollakin Ö radikaali-ideaali, niin varieteetit ¾k ja ¾k l, niin ¾k Ø ¾k, joten riittää osoittaa, että ¾k Ø ¾k ' ¾k kaikille ] Olkoon ¼ ^, joten ¼ l Õ U' ja siis myös ¼ U' ¾k Siten ovat samat Primääridekompositio ja radikaali-ideaalit on laskettu Axiom-ojelmiston [6] avulla Käytetyt komentojonot on esitetty liitteessä 1 4 Jatkettujen systeemien ratkaiseminen 41 Tapaus Tapauksessa jatko on Tällöin singulariteetissa % D % (' (4) % % D ' ' ' ' ' % [ % % % ' % % ; ' ' ' ; ' ' (43) % ' ; ' % ' ; ' H Š[ l joten œ ŸSš, täsmälleen silloin kuin 9 ;, jolloin :n vasemman alakulman / -alimatriisin determinantti on nolla Kuten ytälöistä Ù ' käy ilmi, ratkaisukäyrillä nimenomaan pätee singulariteetissa D ; l, joten š ei määrää ratkaisukäyrän suuntaa singulariteetissa Ratkaisun seuraaminen onnistuu kuitenkin yödynnettäessä primääridekompositiota missä Niitä vastaavat radikaali-ideaalit ovat Huomattakoon, että ideaalin 8 8 &Å (44) 6 [ % Ú? % Ú % Ú %? % Ú? N%? % Ú? % % %? %? % Ú? radikaali-ideaali on %? Ú? N%? % % % 1? N% (45) (46) % (47)

11 9 Ë I ; % ; ; âû â B B B c 9 B ja :n virittäjät saadaan lisäämällä tämän virittäjiin polynomi %? 9 %, ja että tässä, kuten muillakin permutaatioilla, viimeisessä ideaalissa esiintyy alkuperäinen ytälö (', joiden varieteetit ovat systeemin singulari- Jätetään uomiotta mielenkiinnottomat ideaalit teetti ja origo Valitaan siis 8 Merkitään (' saadaan ratkaistua Ë ja :n virittäjiä ytälössä (46) esitetyssä järjestyksessä 9, 9, 9, 9 ja 9eÛ Asettamalla 9 6 FD? % 1 (48) Neliöjuuren merkin eri valinnoilla saatavat pinnat eivät leikkaa toisiaan, sillä kun ³ ', ³ÝÜ Kun nämä :n ja :n lausekkeet sijoitetaan ytälöiin 9 ', 9 ' 9ÞÛ ja ', ne toteutuvat identtisesti Täten :n informaatio sisältyy jo polynomeiin 9 9 ja siinä mielessä, että ¾k ¾k l ¾kl 9 l (49) Tämä on numeeristen laskujen kannalta mukavaa, koska distribuutio voidaan nyt laskea neliömatriisin nolla-avaruudesta 7 Š 78 Š 7 Š 7 Š Š 7 7 = 78 = 78 7 = 7 78 = 7 Š 7 = % ; ' ' = % ' ; ' Lausekkeista (48) nädään, että -akseli ei leikkaa pintaa ¾k A D % ; % % ;? % ; ' ' % ' ; (5) Tämä sopii yteen klassisen ratkaisun (51) kanssa sikäli, että ainoa ytälöt uùußà' toteuttava ratkaisu :n arvolla, jonka toinen derivaatta läestyy ääretöntä, kun ³ ' = (5) Kuvassa on piirrettynä kolme tapauksen ratkaisukäyrää, joiden alkupisteet ja niitä vastaavat klassisen ratkaisun arvot ovat: á á á % % % ; > % ;Y; % > ä ;Y; % ä Näistä kaksi ensimmäistä leikkaa toisensa singulariteetissa korkeudella > Kolmas läpäisee singulariteetin korkeudella >lå çæ Laskut on tety Matematica-ojelmistolla käyttäen läteessä [] esiteltyä ojelmaa Kuvassa 3 on piirretty -tasoon pisteestä % ; askelta, toleranssi,1) sekä tarkka ratkaisu A % ä 11 ; ;Y; lätien numeerisesti laskettu ratkaisu (1 (53)

12 4 x y y Kuva : Ratkaisuja tapauksessa Kuva 3: Tarkka (out viiva) ja numeerisesti laskettu ratkaisu (paksu viiva) tapauksessa 1

13 â % % ' % Å Å B è 4 Tapaus 3 Tapauksen 3 kaikki klassiset ratkaisut kulkevat / :ssä pisteen A ' ; kautta, minkä takia ratkaisukäyrän suunnan laskeminen tuossa pisteessä ei voi onnistua Systeemin jatkaminen auttaa, sillä toinen derivaatta riippuu sillä (54) (55) arvosta Jatketun systeemin distribuutio on singulariteetissa silti kaksiulotteinen, % '? % % % ; ' ' % ' ; ' HO jonka / -alimatriisin determinantti % (', onan 6 ; ' ' ' ' % ' ' % ; ' ' % ' ; ' kaikilla ratkaisuilla (56) Eteenpäin päästään käyttämällä primääridekompositiota 8 &Å (57) missä 6 % %? ; %? % %? %? Ú %?????? %? %? % Niitä vastaavat radikaali-ideaalit ovat % ;? %? Näistä ylätään taas mielenkiinnottomina muut kuin % Ú? %? (58) (59), jonka virittäjiä merkitään ytälössä (59) esi- 9 tetyssä järjestyksessä 9, ja 9 Eto 6 ; 9 singulariteetissa saadaan tällöin sijoittamalla :n lausekkeeseen FA(', jolloin saadaan ; % (' < ('ßéˆ ; ja uomaamalla, että jos (', saadaan pelkästään triviaaliratkaisu Mê(' Varieteetti ¾± 9 saadaan nyt käyttämällä pelkästään ytälöitä M' 9 ja voidaan ratkaista % ; 1 A öì ; 13 ë' : Jos (6) ë' ª, niistä (61)

14 Ë Û % Û ; Û % Û Û â % 9 ä ' ja 9 sijoitettaessa nämä ytälö ' toteutuu identtisesti Lausekkeissa esiintyvät ¾k 1 - ja ì -merkit eivät nytkään ole osoitus siitä, että pinta leikkaisi itsensä, sillä koska ; í' ª, aarat eivät ydy missään Jos taas = = ', voidaan ratkaista suoraan 9 (' < ('#é ; (' < F mitkä toteuttavat identtisesti ytälön 9 neliömatriisin (6) (63) î' Ratkaisun tangentti voidaan siis laskea singulariteetissa % I? % ' % % 5 ' % ' ' % ; ' ' % ; ' ' (64) % ' ; ' % ' ; ' Y HO nolla-avaruudesta, sillä Ë :n vasemman alakulman / -osamatriisin determinantti on % 6 % ' ª, sillä ratkaisukäyrällä ; -1 y 1 3 y x 1 Kuva 4: Ratkaisuja tapauksessa 3 Kuvassa 4 näkyy kolme ratkaisukäyrää, jotka leikkaavat toisensa pisteessä alkupisteet ja vastaavat klassisen ratkaisun (54) á á á % % % Û (' ; % ä arvot ovat: ' ; Niiden Ratkaisukäyrät on laskettu ja piirretty nytkin []-läteen ojelman avulla 14

15 Ë % % Å Å ' è 43 Tapaus 5 Tapauksessa 5 matriisin % ' ' ' ' '? % % ' % % ; ' ' ' ; ' ' % ' ; ' % ' ; ' H Š 9 nolla-avarus on singulariteetissa kaksiulotteinen, sillä samoin kuin tapauksessa nädään ytälöistä ï(', että AF Primääridekompositioksi saadaan nyt missä % % % % Niitä vastaavat radikaali-ideaalit ovat 8 % % % % % Ë Jätetään jälleen 9 uomiotta muut kuin järjestyksessä 9,, 9 ja 9 9 Ytälöistä 9 AF %? 9 jotka toteuttavat ytälöt 9 (' Å % % (65) (66) % % % % N% % (67) (68) ja merkitään sen virittäjiä ytälössä (68) esiintyvässä (' voidaan nyt ratkaista suoraan 6F Ratkaisukäyrän tangentti määräytyy singulariteetissa siis neliömatriisin % (69) % % ; % ; % ' % ; ' %? ' % ; ' % ' % ; ' ' % ; ' ' (7) % ' ; ' % ' ; ' Š nolla-avaruudesta, joka on yksiulotteinen paitsi, kun (' Jos º', seuraa ytälöstä 9 Ẍº', että µð' Tämä tilanne vastaa vain ytä yksittäistä klassista ratkaisua: arvon täytyy olla, jolloin M ñ çæ Tällöin mistään ideaalin polynomista ei saada etoa - eikä -komponentille, joten ratkaisukäyrän seuraaminen ei onnistu Systeemin jatkaminen uudelleen saattaisi tällöin tuottaa tuloksia Kuvassa 5 on piirrettynä kaksi tapauksen 5 ratkaisukäyrää, joiden alkupisteet ja niitä vastaavat klassisen ratkaisun A (71) arvot ovat: 15

16 I Û % y y x - Kuva 5: Ratkaisuja tapauksessa 5 á á % % çæ % I ; % ; Ratkaisukäyrät leikkaavat toisensa singulariteetissa korkeudella 1 Huomattakoon jälkimmäisen ratkaisun kodalla mielenkiintoinen kulkeminen sateenvarjon ledeltä toiselle laakson A(' kautta 5 Yteenveto Systeemin jatkaminen ja primääridekomposition soveltaminen väärien komponenttien poistamiseen osoittautui Witneyn sateenvarjon kodalla toimivaksi menetelmäksi singulariteetin poistamiseen / Tapauksessa 5 jäi yksittäinen ratkaisu, jonka laskeminen ei onnistunut ratkaisu kulki singulariteetin kautta / :ssäkään alkuperäisen systeemin singulariteettikodassa Tämä tilanne muistuttaa tapauksen 1 tilannetta, jossa vain yksi :ssä Systeemin jatkaminen saattaisi auttaa molemmissa tapauksissa, mutta sitä ei kokeiltu Menetelmä vaatii jonkin verran käsityötä sen analysoinnissa, mitkä primääridekomposition antamista ideaaleista jätetään uomiotta, kun alutaan poistaa varieteetin epäoleelliset komponentit Jotta menetelmästä saataisiin elppokäyttöinen algoritmi, tämä askel pitäisi saada automatisoitua Tällöin olisi myös syytä selvittää teoreettisesti, onko tällainen ylipäätään aina madollista 16

17 ò Merkinnät š _ b 7 ô ô ¾ _ ô ô f ô r Vastaa 7ó Moniston ô lokaalin koordinaatin õ suuntainen kantavektori tangenttiavaruudessa _ õ Moniston ô koordinaattifunktion õ differentiaali eli _ j œ Ÿ / _ j / :n 7 7ó :lle duaalinen kantavektori Vektoriavaruuden ¾ dimensio Tavallisten reaalisten differentiaaliytälöiden ensimmäisen kertaluvun suikuavaruus Tavallisten reaalisten differentiaaliytälöiden d toisen kertaluvun suikuavaruus Luonnollisten ; lukujen joukko Matriisin nolla-avaruus Kanoninen projektio Reaalilukujen joukko Moniston ô tangenttiavaruus :n duaali eli moniston ô tangenttiavaruuden lineaaristen funktionaalien lineaariavaruus Nimitykset Distribuutio Distribution 3 Integraalimonisto Integral manifold 3 Jatkaminen, jatko Prolongation 31 Kontaktimuoto ontact form, 31 Noeterin rengas Noeterian ring 3 Primääridekompositio Primary decomposition 3 Suikuavaruus Jet space 1 Varieteetti Variety 3 17

18 ö Viitteet [1] Teijo Arponen, Jukka Tuomela, On te Numerical Solution of Involutive Ordinary Differential Equations: Numerical Results, Researc Report A37, Institute of Matematics, Helsinki University of Tecnology, 1996 [] Teijo Arponen, Differentiaalialgebrallisten ytälöiden numeerinen laskenta, diplomityö Teknillisen korkeakoulun teknillisen matematiikan ja fysiikan osastolla, 1996 [3] Tomas Becker, Volker Weispfenning, Gröbner Bases: A omputational Approac to ommutative Algebra, Springer-Verlag, 1993 [4] William M Bootby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Second Edition, Academic Press, 1986 [5] David ox, Jon Little, Donal O Sea, Ideals, Varieties, Algoritms, Springer-Verlag, 199 [6] Ricard D Jenks, Robert S Sutor, Axiom: Te Scienti c omputation System, Springer-Verlag, 199 [7] Klaus Jänic, Vektoranalysis, Auage, Springer-Verlag, 1993 [8] W Keit Nicolson, Introduction to Abstract Algebra, PWS-Kent, 1993 [9] Jukka Tuomela, On te Numerical Solution of Involutive Ordinary Differential Equations, Researc Report A383, Institute of Matematics, Helsinki University of Tecnology,

19 Liite 1 Axiom-komentojonot Primääridekomposition laskemiseen on käytetty seuraavia axiom-komentojonoja: Tapaus dp:=odpol(up(x,fra INT)); y:=makevariable( y)dp; p1:dp:=y*y1**-x^; -- tapaus )read djaprdec Tapaus 3 dp:=odpol(up(x,fra INT)); y:=makevariable( y)dp; p1:dp:=y1*x**-y**; -- tapaus 3 )read djaprdec Tapaus 5 dp:=odpol(up(x,fra INT)); y:=makevariable( y)dp; p1:dp:=y*x**-y1**; -- tapaus 5 )read djaprdec Näissä talletetaan Orderly DifferentialPolynomial -tyyppiseen muuttujaan p1 käsiteltävä 9 polynomi / ³ Vapaata muuttujaa merkitään x:llä ja ratkaisua y:lla Ratkaisun derivaattoja ja merkitään y1:llä ja y:lla Lopuksi kutsutaan jäljempänä esitettävää djaprdec-komentojonoa Yteinen osuus: djaprdec p:=d(p1); pz1:=(eval(p1,[y1=z1,y=z]) :: DMP([z,z1,z,x],FRA INT)); pz:=(eval(p,[y1=z1,y=z,y=z]) :: DMP([z,z1,z,x],FRA INT)); idp:=ideal([pz1,pz]); radical(idp) dec:=primarydecomp(idp); #dec for i in 1#dec repeat output deci for i in 1#dec repeat output radical(deci) Yteisessä osuudessa derivoidaan ensin p1:llä merkitty polynomi 9 Näin saatava jatko talletetaan nimelle p 19

20 Seuraavaksi p1 ja p muunnetaan Distributed Multivariate Polynomial -tyyppisiksi ja tallennetaan nimille pz1 ja pz, koska primääridekompositio on määritelty axiomissa vain tämäntyyppisten olioiden virittämille ideaaleille Näissä polynomeissa merkitään :ää edelleen x:llä, mutta :tä ja sen derivaattoja ja merkitään z:lla, z1:llä ja z:lla Polynomien pz1 ja pz virittämä ideaali tallennetaan muuttujaan idp ja sen radikaali-ideaali lasketaan mielenkiinnon vuoksi Seuraavaksi lasketaan idp:n primääridekompositio ja se tallennetaan muuttujaan dec Lopuksi tulostetaan primääridekomposition ideaalit sekä niiden radikaali-ideaalit

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Riemannin pintojen visualisoinnista

Riemannin pintojen visualisoinnista Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Taso. Hannu Lehto. Lahden Lyseon lukio

Taso. Hannu Lehto. Lahden Lyseon lukio Taso Hannu Lehto Lahden Lyseon lukio Taso avaruudessa Piste P 0 ja tason normaalivektori n määräävät tason. n=a i+b j+c k P 0 (x 0,y 0,z 0 ) Hannu Lehto 17. syyskuuta 2010 Lahden Lyseon lukio 2 / 7 Taso

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Laudatur 7. Opettajan aineisto. Derivaatta MAA 7. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava

Laudatur 7. Opettajan aineisto. Derivaatta MAA 7. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava Laudatur 7 Derivaatta MAA 7 Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava SISÄLLYS Ratkaisut kirjan tehtäviin... Kokeita...57 Otavan asiakaspalvelu

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

7. PINTA-ALAFUNKTIO. A(x) a x b

7. PINTA-ALAFUNKTIO. A(x) a x b 7. PINTA-ALAFUNKTIO Edellä on käsitelty annetun funktion integraalifunktion määrittämiseen liittyviä asioita kurssille asetettuja vaatimuksia jonkin verran ylittäenkin. Jodantoosassa muistanet mainitun,

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC Laudatur 5 MAA5 ratkaisut kertausharjoituksiin Peruskäsitteitä 8. CA CB + BA BC AB b a a b DA DB + BA ( BC) + ( AB) b a a b Vastaus: CA a b, DA a b 8. DC DA + AC BA + AC BA BC AC ( BC AC ) + AC AC CB Vastaus:

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

5. OSITTAISINTEGROINTI

5. OSITTAISINTEGROINTI 5 OSITTAISINTEGROINTI Kahden funktion f ja g tulo derivoidaan kuten muistetaan seuraavasti: D (fg) f g + f Kun tämä yhtälö integroidaan puolittain, niin saadaan fg f ()g()d + f ()()d Yhtälö saattaa erota

Lisätiedot

Kompleksianalyysi viikko 3

Kompleksianalyysi viikko 3 Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f

Lisätiedot

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5...

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5... Calkinin-Wiln jono Funktio f : X Y on bijektio, jos sillä on käänteisfunktio f : Y X. Joukko X on äärellinen, jos se on thjä tai jos on olemassa bijektio f : X {,,,..., n}. Joukko X on numeroituva, jos

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3] Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Matriisialgebra harjoitukset, syksy 2015

Matriisialgebra harjoitukset, syksy 2015 Matriisialgebra harjoitukset, syksy 25 MATRIISIALGEBRA, s. 25, Ratkaisuja/ M.Hamina 2. Virittääkö vektorijoukko S vektoriavaruuden V seuraavissa tapauksissa. a V = R 3 ja S = {(, 4,3,(,3,,(3, 5,,(,2, 2}.

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

6.1 Lineaarinen optimointi

6.1 Lineaarinen optimointi 6.1 Lineaarinen optimointi Suora a + b + c = 0 jakaa -tason kahteen puolitasoon. Tason jokainen piste, joka on suoralla, toteuttaa suoran htälön ja kääntäen. Jos siis tason mielivaltaisen pisteen koordinaatit

Lisätiedot

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ 58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot