1 Rajoittamaton optimointi
|
|
- Anna-Leena Laine
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y R; f (y) f (x ) Funktiolla on minimi pisteessä x jos kaikille y R; Lokaali optimi f (y) f (x ) f llä on lokaali maksimi pisteessä x jos on olemassa " > siten, että kaikille y B " (x ) (siis kun d (y; x ) < ") pätee f (y) f (x ) lokaali minimi määritellään samoin. Miten tiedämme, onko f llä minimi maksimi tai jotain muuta pisteessä x? Miten löytää lokaalit minimit ja maksimit? Oletetaan, että f on derivoituva. Tiedämme jo, että mikäli f llä on maksimi (tai minimi) pisteessä x ; tällöin Df (x ) = f (x ) = Oletetaan siis toisin päin, että f (x ) = Ajatus Jos f (x ) lla on maksimi x x < x ja vähenevä, kun x > x ssa, tällöin f on kasvava, kun Mikäli kasvavalla funktiolla on derivaatta, se on positiivinen. Mikäli vähenevällä funktiolla on derivaatta, se on negatiivinen. Toisin sanoen on x n funktiona vähenevä. pätee.maksimissa f (x ) Siis mikäli f (x ) lla on derivaatta, sille Df (x )
2 Toisin sanoen päädymme tarkastelemaan derivaatan derivaattaa. Merkitsemme f (x ) = lim h! f (x + h) f (x ) h ja kutsumme tätä funktion f toiseksi derivaataksi pisteessä x Kolmas derivaatta on toisen derivaatan derivaatta, neljäs jne määritellään samoin. Jos funktiolla on k s derivaatta pisteessä, sanomme että se on k kertaa di erentioituva pisteessä x Merkitään k s derivaatta f [k] (x ) lla. Miten tulkita toinen derivaatta?. Taylorin Teoreema Tarkastellaan funktiota f R! R; ja oletetaan, että funktio on k kertaa di erentioituva pisteessä x Tällöin f (x + h) = f (x )+f (x ) h+ f (x ) h ++ k! f [k] (x )+ (k + )! f [k+] (x) h k+ ; jollekin pisteelle x siten, että x < x < x + h Lokaalia analyysiä varten (siis analyysiä, jossa h on mielivaltaisen pieni) meidän tulee tarkastella ensimmäistä nollasta poikkeavaa termiä tässä sarjakehitelmässä. Muut termit ovat siihen verrattuna häviävän pieniä, kun h on pieni. Taylorin teoreeman avulla voimme luokitella kaikki pisteet, joissa f (x ) = tyhjentävästi. Jos ensimmäinen l; jolle f [l] (x ) 6= ; on pariton, funktiolla f ei ole ääriarvoa pisteessä x. Jos ensimmäinen l; jolle f [l] (x ) 6= ; on parillinen ja f [l] (x ) <, funktiolla f on lokaali maksimi pisteessä x 3. Jos ensimmäinen l; jolle f [l] (x ) 6= ; on parillinen ja f [l] (x ) >, funktiolla f on lokaali minimi pisteessä x
3 . Kvadraattiset funktiot Kvadraattiset reaalimuuttujan funktiot saavat muodon f (x) = ax + bx + c Taylorin sarjakehitelmä pisteen x ympäristössä antaa f (x + h) = f (x ) + (ax + b) h + ah Pisteessä x = b a ; funktion derivaatta on nolla. Funktiolla on minimi pisteessä x ; jos a > ja maksimi jos a < Siirrytään useamman muuttujan polynomifunktioihin, jotka ovat toista astetta. Vakiotermi, c R Ensimmäisen asteen (lineaarinen) termi b x; missä Toisen asteen termi Voidaanko ilmaista matriisin avulla? b = (b ; b ; ; b n ) ; x = (x ; x ; ; x n ) b x = b > x = n i=b i x i a x + a x x + + a n x x n +a x x + + a n x x n +a n x n x + + a nn x n x Ax = x > Ax = B (x ; x ; ; x n ) x. x n C A Koska x i x j = x j x i ; kirjoitetaan A symmetrisessä muodossa. Miltä näyttää (x ; x ; x x x x 3 A? 3
4 Kertomalla jälkimmäinen tulo auki saadaan (x ; x ; x 3 x + 3x + x 3 3x + x + x 3 A x + x + x 3 = x + 3x x + x x 3 + 3x x +x + x x 3 + x x 3 + x x 3 + x 3 = x + x + x 3 + 6x x + 4x x 3 + x x 3 Esimerkki Kvadraattinen funktio, kun x = (x ; x ) f (x) = 6 + 7x + 3x + x + 5x x + 4x = 5 c = 6; b = (7; 3) ; A = Kvadraattisen funktion ääriarvot Missä pisteessä bx on kvadraattisella funktiolla i on matriisin A rivi i rf (bx) =? = b i + a ii bx i + j6=i (a ij + a ji ) bx j = b i + a i bx; a i Koska saadaan Saadaan siis rf (bx) @x n rf (bx) = b + Abx C A ; rf (bx) =, bx = A b Luonnollisesti taas vaaditaan, että A on olemassa eli siis Alla on nollasta poikkeava determinantti. 4
5 .4 Esimerkkejä derivaatan nollakohdan etsimisestä Pienimmän neliösumman menetelmä Tarkastellaan tilastollista aineistoa, jossa meillä on N paria havaintoja (y ; x ) ; ; (y N ; x N ) Ajatellaan, että y riippuu x stä lineaarisen mallin mukaan. y i = x i + " i " i on riippumaton virhetermi, jonka oletamme jakautuneen identtisesti kaikille i on tuntematon parametri, joka pitää tilastoaineistosta päätellä. Etsitään siten, että havaintoaineistosta laskettu virhetermien neliösumma N i= (y i x i ) minimoituu. min f () = N i= (y i x i ) Lasketaan Df () ja tarkastellaan pistettä ; b jolle pätee Df b = Derivoimalla saadaan Df b = N i= x i y i xi b Siis Df b = jos b = N i= x iy i N i= x i Laajennetaan seuraavaksi mallia siten, että otetaan mukaan vakiotermi y i = + x i + " i Tällöin neliösumma n ja n funktiona saadaan f (; ) = N i= (y i x i ) Etsitään b; b siten, b; b; b =
6 Saadaan N i= N i= y i b b x i x i y i b b x i = ; = Siis ensimmäisestä saadaan Huomataan lisäksi b = N i= y i Sijoittamalla jälkimmäiseen b N i= x i = y x b N N i=x y i b x b i = b = N i= (x i x) (y i y) Cov (y; x) N i= (x i x) = V ar (x) Yleisemmin voidaan analysoida aineistoa (y ; x ; x ; ; x K ) ; (y N ; x N ; ; x KN ) mallilla y = x + K x K ". y n. = eli matriisimuodossa Neliösumma.. + x N K x KN y = X + " f () = " " = (y X) > (y X). " N = y y (X) > y y > X + > X > X = y y y > X + > X > X Käytetään edellä laskettua kaavaa kvadraattisen funktion gradientille rf b = X > y + X > X b Siis jos rf b = b = X > X X > y 6
7 .5 Onko ääriarvo minimi vai maksimi vai jotain muuta? Miten voidaan päätellä, onko kvadraattisella funktiolla minimi vai maksimi pisteessä bx Merkitään funktion f toista derivaattaa pisteessä bx symbolilla D f (bx) Kuvitellaan, että Taylorin kehitelmä pätee myös monen muuttujan funktioille. Tällöin voisi päteä f (bx + h) = f (bx) + rf (bx) h + h D f (bx) h Tarkastellaan gradienttia pisteen bx funktiona. Tällöin rf (bx) R n! R n ; ja gradientin derivaatta on siis nn matriisin kuvaama lineaarinen funktio. Määritellään siis D f (bx) = D (rf (bx)) @x n@x n C A Kutsumme tätä toisten derivaattojen matriisia funktion f Hessin matriisiksi. Nyt Taylorin teoreema kertoo siis, että pisteille bx; jossa rf (bx) = ; pätee f (bx + h) f (bx) = h D f (bx) h Onko funktiolla minimi, maksimi vai ei kumpaakaan pisteessä bx riippuu siis siitä, onko h D f (bx) h R kaikille h 7
8 Kvadraattiset muodot ja matriisin de niittisyys Kvadraattinen muoto on homogeeninen toisen asteen polynomi siis polynomi, jonka kaikki termit ovat toista astetta. Ne voidaan aina kirjoittaa muotoon jollekin symmetriselle matriisille A. x Ax Kvadraattinen muoto on positiivisesti de niitti jos kaikille x 6= ; x Ax > Kvadraattinen muoto on positiivisesti semide niitti jos kaikille x; x Ax Kvadraattinen muoto on negatiivisesti de niitti jos kaikille x 6= ; xax < Kvadraattinen muoto on negatiivisesti semide niitti jos kaikille x; xax Muussa tapauksessa sanomme, että kvadraattinen muoto on inde niitti. Taylorin teoreeman perusteella kvadraattisten muotojen de niittisyydellä on selkeä yhtymäkohta funktion lokaalien ääriarvojen laatuun. Olkoon rf (bx) = Tällöin D f (bx) positiivisesti de niitti implikoi, että bx on lokaali minimi. D f (bx) negatiivisesti de niitti impllikoi, että bx on lokaali maksimi. Milloin on A positiivisesti de niitti? Helppo tapaus Jos A on lävistäjämatriisi, on se positiivisesti de niitti jos ja vain jos kaikki sen lävistäjäalkiot ovat positiivisia. Yleisemminkin kaikkien lävistäjäalkioiden tulee olla positiivisia positiivisesti de niitissä matriisissa. Toinen helppo tapaus A on matriisi a b A = ; b c eli kvadraattinen muoto on ax + bx x + cx 8
9 Tulkitaan tämä ensiksi toisen asteen funktiona x lle. Jos c > ; tällä funktiolla on minimi pisteessä x = bx c Sijoitetaan kvadraattiseen muotoon ax b x c + b x c = a b c x Tämä on positiivinen jos a b c > eli ac > b Toisin sanoen kvadraattinen muoto on positiivisesti de niitti jos i) a > ja ii) det A > Negatiivistä de niittisyyttä varten lähdetään liikkeelle siitä, että a; c < Ratkaistaan maksimaalinen x kullekin x n arvolle sijoitetaan ja vaaditaan, että ax b x c x = bx c ; + b x c = a b c x < Siis a < b c eli eli ac > b det A > Kvadraattisten muotojen luokitus yleisesti Tarkastellaan matriisin A johtavia pääminoreja a a M = det a ; M = det ; a a M 3 = a a a 3 a a a 3 A ; a 3 a 3 a 33 9
10 Kvadraattinen muoto x Ax on positiivisesti de niitti jos M i > kaikille i Kvadraattinen muoto x Ax on negatiivisesti de niitti jos M i ( ) i > kaikille i Toisin sanoen M i on negatiivinen parittomille i ja positiivinen parillisille i Semide niittisyys Määritellään kaikille i < i < < i n a ii a ii a ii n A n fi = ;i ;;i ng C A Positiivinen semide niittisyys a ini a ini a ini n M n fi ;i ;;i ng = det A n fi ;i ;;i ng Mfi n kaikille n ja kaikille fi ;i ;;i ng ; i ; ; i n g kaikille n ja kaikille fi ; i ; ; i n g Negatiivinen semide niittisyys Mfi n parittomille n ja kaikille fi ;i ;;i ng ; i ; ; i n g; M n fi ;i ;;i ng parillisille n ja kaikille fi ; i ; ; i n g. De niittisyys lineaarisilla rajoitteilla Neliömuodon x Ax de niittisyyttä voidaan tarkastella myös lineaaristen rajoitteiden vallitessa. Vaaditaan siis, että b x = Olkoon x edelleen jokin sarakevektori.rajoite bx = rajaa siis vektoreita, joita tarkastelemme.
11 Kysyään, onko A de niitti matriisi näihin suuntiin. Miksi tämä on tärkeä kysymys taloustieteessä? Miten määrätään de niittisyys? Tarkastellaan matriisia H = ja oletetaan, että b 6= b b n b a a n. b n a n a nn C A ; A on positiivisesti de niitti suuntiin fx jb x = g jos kaikki matriisin H johtavat pääminorit ensimmäistä lukuunottamatta ovat negatiivisia. A on negatiivisesti de niitti suuntiin fx jb x = g jos kaikki matriisin H johtavat pääminorit ensimmäistä lukuunottamatta vaihtelevat etumerkiltään. Esimerkkejä. Tarkastellaan matriisin A A de niittisyyttä. (a) M = det (a ) = (b) M = det = 3 (c) M 3 = A = ( ) 3+3 det ( ) 3+ det = = 3 Päätellään siis että A ei ole de niitti. +( ) 3+ det +. Tarkastellaan matriisia A A Matriisi on inde niitti. Miksi?
12 3. Tarkastellaan matriisin A 4 4 A de niittisyyttä. (a) M = ; M = ; M 3 = (b) M f;g = 6; M f;3g = ; M f;3g = Päätellään siis jo tässä vaiheessa, että A on inde niitti. 4. Tarkastellaan funktiota f (x ; x ; x 3 ) = x x 3 + x x 3 Pisteen (x ; x ; x 3 ) = (; ; ) ympäristössä.gradientti x + x 3 rf (x ; x ; x 3 ) 3x A x lasketaan Hessin matriisi rf (; ; ) = D f (x ; x ; x 3 A 6x A lasketaan pisteessä (; ; ) D f (; ; ) Tämä matriisi on inde niitti koska M = > ja Mf;3g = det A = 5. Muodostetaan gradientti rf (x ; x ) = f (x ; x ) = x + ;x = x x
13 Muodostetaan Hessin matriisi derivoimalla gradientti! Saadaan D f (x ; x ) = D f (x ; x ) f(x @ f(x @ f(x @ f(x ( ) x ( ) x D f (x ; x ) on siis negatiivisesti de niitti kun x i 6= ja < < 6. Tarkastellaan funktiota f (x ; x ) = (x + x ) Muodostetaan funktiolle gradientti! rf (x ; x ) ;x = (x + x ) x (x + x ) x Muodostetaan Hessin matriisi derivoimalla gradientti D f (x ; x ) = Tulosäännöllä f(x @ f(x @ f(x @ f(x @ f (x ; x ) = ( ) + x ) + (x + x ) x f (x ; x ) + x ) x x f (x ; x ) = ( ) + x ) + (x + x ) x Keräämällä yhteiset termit ja sieventämällä saadaan D f (x ; x ) = = (x + x f(x @ f(x @ f(x @ f(x ( ) x x ( ) x x!! ( ) x x ( ) x x! 3
14 Determinanttia laskettaessa voidaan erottaa yhteinen tekijä det D f (x ; x ) = (x + x ) x x (( ) ( ) ( ) ( )) = Matriisi D f (x ; x ) on siis negatiivisesti semide niitti jos < ja positiivisesti semide niitti jos > 7. Tarkastellaan matriisin de niittisyyttä rajoitteella A = 5 5 x + x = Muodostetaan reunustettu 5 5 ja tarkastellaan sen kahta viimeistä johtavaa pääminoria. (a) det = (b) det@ 5 A = ( ) + 5 det + ( ) + det ( ) 3+ det = 6(kehitetty. sarakkeen suhteen) 5 Päättelemme siis, että A = on negatiivisesti de niitti rajoitteella x + x = 5 5 A. De niittisyys ja komparatiivinen statiikka. Tarkastellaan funktion f (y; x) rajoittamatonta optimointia. Valitaan y endogeeniseksi muuttujaksi ja käsitellään x eksogeenisena. Kirjoitetaan maksimaalisen y n etsimisen ongelma seuraavasti max f (y; x) y + 4
15 Ensimmäisen kertaluvun ehto (by; bx) Toisen kertaluvun riittävä ehto lokaalille optimille saadaan Taylorin säännöstä f (by + dy; bx) f (by; (by; bx) dy (by; bx) (dy) + f (by; bx) < tällöin f llä on lokaali maksimi pisteessä (by; bx) Huomatkaa, että tällöin myös (by; on nollasta poikkeava derivaatta endogeenisen muuttujan suhteen pisteessä (by; bx) ja voimme soveltaa implisiittifunktiolausetta optimaalisen y n valinnan määräämiseen eksogeenisen muuttujan funktiona. (y (x) ; x) kaikille x pisteen bx ympäristössä, saamme f (by; bx) dy f dx = dy dx f(by;bx) < toisen kertaluvun ehdon nojalla, saamme tuloksen, jonk mukaan dy dx on saman merkkinen Esimerkki Optimaalinen monopolituotanto. Olkoon x monopolistin tuottama määrä. P (q) = b (q) on käänteishintafunktio markkinalle, cq monopolistin kustannusfunktio. Yrityksen maksimointiongelma max (q; ; c) = q ( b (q)) cq q 5
16 Ensimmäisen kertaluvun ehto Toisen kertaluvun ehto D (q; ; c) = b (q) qb (q) cq = D (q) < Kuinka muuttu optimaalinen tuotos parametrien tai c muuttuessa? Edellisen tuloksen mukaan endogeenisen muuttujan muutoksen etumerkki (q; ; ja (q; ; 6
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
Lisätiedot1 Komparatiivinen statiikka ja implisiittifunktiolause
Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
Lisätiedotf(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotTalousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta
Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.
4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa
LisätiedotMatematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Lisätiedot12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
LisätiedotTalousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Lisätiedot. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 2015 / ORMS1010 Matemaattinen Analyysi 7. harjoitus, viikko 17 R1 ma 16 18 D115 (20.4.) R2 ke 12 14 B209 (22.4.) 1. Määritä funktiolle f (x) 1 + 0,1x Taylorin sarja kehityskeskuksena
Lisätiedotmin x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
LisätiedotLuku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
LisätiedotOptimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
Lisätiedot1 Useamman muuttujan di erentiaalilaskenta
Taloustieteen matemaattiset menetelmät 207 materiaali 3 Useamman muuttujan di erentiaalilaskenta. Lineaariset funktiot Funktio f R n! R m on lineaarinen jos. Kaikille 2 R ja kaikille x 2 R n pätee 2. Kaikille
Lisätiedotw + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotMatematiikan tukikurssi: kurssikerta 10
Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen
LisätiedotTaloustieteen matemaattiset menetelmät - pikakertausta ja toimintaohjeita Kurssin 1. osa
Taloustieteen matemaattiset menetelmät - pikakertausta ja toimintaohjeita Kurssin 1. osa Topi Hokkanen July 10, 2017 Esitiedoiksi oletetaan tuntemus vektoreista ja matriiseista (siis se, minkälaatuisia
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
LisätiedotVEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
LisätiedotMatriisit ja optimointi kauppatieteilijöille
Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa
Lisätiedot1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100
HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat
Lisätiedot1 Rajoitettu optimointi I
Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause
Lisätiedotläheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotMatematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
LisätiedotPiiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
Lisätiedotx 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua
Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö
LisätiedotRatkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
LisätiedotKustannusten minimointi, kustannusfunktiot
Kustannusten minimointi, kustannusfunktiot Luvut 20 ja 21 Marita Laukkanen November 3, 2016 Marita Laukkanen Kustannusten minimointi, kustannusfunktiot November 3, 2016 1 / 17 Kustannusten minimointiongelma
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotJuuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) E Nouseva suora. b) A 5. asteen polynomifunktio, pariton funktio Laskettu piste f() = 5 =, joten piste (, ) on kuvaajalla. c) D Paraabelin mallinen, alaspäin aukeava. Laskettu piste f() =
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja
LisätiedotVektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
LisätiedotSivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi
Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla
LisätiedotAiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.
Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,
LisätiedotTehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.
JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla
LisätiedotNäihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,
TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko
LisätiedotRatkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotRollen lause polynomeille
Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................
LisätiedotHarjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
LisätiedotKohdeyleisö: toisen vuoden teekkari
Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
LisätiedotSARJAT JA DIFFERENTIAALIYHTÄLÖT
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotTaloustieteen mat.menetelmät 2017 materiaali 1
Taloustieteen mat.menetelmät 2017 materiaali 1 1 Taloustiede tutkii niukkojen resurssien kohdentamista kilpaileviin tarkoituksiin mikä on hyvä tapa kohdentaa? miten arvioida tuloksia? mitä niukkuus tarkoittaa?
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
LisätiedotRatkaisuehdotus 2. kurssikoe
Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotMATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
LisätiedotDIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotVastepintamenetelmä. Vilkkumaa / Kuusinen 1
Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotRatkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
Lisätiedot