Mekaniikka 1 Lukion fysiikan kertausta

Koko: px
Aloita esitys sivulta:

Download "Mekaniikka 1 Lukion fysiikan kertausta"

Transkriptio

1 Mekaniikka 1 Lukion fysiikan kertausta Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, loistavia tehtäviä, loistavaa filosofiaa LAske!

2 Sisältö Alustavia lähtökohtia mekaniikkaan... 3 Liikkeen kuvaaminen, vektorit ja voimat tehtävä kevät 86 yo-koe tehtävä kevät 89 yo-koe tehtävä kevät 89 yo-koe tehtävä syksy 89 yo-koe tehtävä kevät 96 yo-koe tehtävä kevät 2007 yo-koe tehtävä kevät 98 yo koe... 6 Newtonin lait... 7 Tehtävä tehtävä S87 yo-koe (Newtonin kolmas laki ja kitkavoima) tehtävä kevät 2000 yo-koe (perustehtävä voimista ja Newtonin toisen lain soveltamisesta) tehtävä syksy 99 yo-koe (Liike-energia, työ, teho ja hetkellinen teho) tehtävä kevät 2007 yo-koe tehtävä syksy 99 yo-koe (Kertaa laajasti suoraviivaista kinematiikkaa) Tehtävä, vektorit ja koordinaatisto tehtävä syksy 2001 yo-koe... Virhe. Kirjanmerkkiä ei ole määritetty. 11. tehtävä syksy 99 yo-koe (kaasun tilanyhtälö, voima ja paine, voiman momentti) tehtävä kevät 99 yo-koe (Kiihtyvyys ympyräradalla, vektorit) tehtävä syksy 99 yo-koe (ympyräliike, energiaperiaate ja Newtonin II laki) tehtävä kevät 99 yo-koe (pyörimisliikkeen peruslaki, voiman momentti, energiaperiaate)... 14

3 Alustavia lähtökohtia mekaniikkaan Liikkeen kuvaaminen, vektorit ja voimat Kertaavia nopeasti ratkaistavia -mutta tutkimusten mukaan ongelmia aiheuttavia- tehtäviä 1. Milloin kappaleilla A ja B on sama nopeus? 2. Missä pisteessä (A, B vai C) kappaleella on suurin nopeus? Entä pienin? Milloin liike on kiihtyvää? 3. Lenkkeilijä juoksee viereisin käyrän mukaisesti, vastaa seuraaviin kysymyksiin a. Milloin liike on kiihtyvää? b. Milloin liike on hidastuvaa? c. Milloin nopeus on suurin? d. Milloin kappale pysähtyy? e. Milloin kappale liikkuu tasaista nopeutta? f. Milloin kappale vaihtaa suuntaansa? g. Milloin kappale on takaisin lähtöpisteessään? 4. Piirrä viereistä käyrää vastaava funktio V(t) ja a(t)

4 5. Hahmottele alla olevasta kuvaajasta funktion x(t) kuvaaja sekä funktion a(t) kuvaaja. 6. Hahmottele alla olevasta tilanteesta kuvaajat v(t) ja a(t) 7. Alla olevassa kuvassa pallo päästetään levosta liikkeelle. Kuinka korkealle pallo kiipeää vastakkaisella seinämällä? 1. tehtävä kevät 86 yo-koe Kappale voi liikkua suoraviivaisesti. Oheiset kuvaajat esittävät kappaleen paikkaa s, nopeutta v, kiihtyvyyttä a ja kappaleeseen vaikuttavaa kokonaisvoimaa F ajan funktiona. Mikä on kappaleen liiketila eri tapauksissa? Perustele

5 1. tehtävä kevät 89 yo-koe Oheiset kuvaajat esittävät kappaleen paikkaa, nopeutta ja kiihtyvyyttä ajan funktiona maan suhteen levossa olevassa koordinaatistossa. Mitkä kuvaajista voivat liittyä alla mainittuihin tapauksiin: a) pysäköity auto b) liukuportailla seisova henkilö c) asemalle saapuva juna, joka jarruttaa tasaisesti ja pysähtyy d) pysäkiltä tasaisesti kiihdyttäen lähtevä raitiovaunu e) laskuvarjon varassa putoava henkilö f) vakioteholla kiihdyttävä auto? Kuhunkin kohtaan voi liittyä kaksi tai useampi kuvaaja. Vastaukseksi riittää kuvaajan numero. 1. tehtävä kevät 89 yo-koe Mitkä seuraavista paikan, nopeuden ja kiihtyvyyden kuvaajista voivat esittää a) tornista putoavan kappaleen liikettä, b) lattialla pomppivan pallon liikettä, c) jousen varassa pystysuunnassa heilahtelevan kappaleen liikettä? Liikettä tarkasteltaessa positiivinen suunta on valittu alaspäin. 1. tehtävä syksy 89 yo-koe Oheinen kuvio esittää suoraviivaisesti liikkuvan kappaleen nopeuden kuvaajaa. a) Määritä ja piirrä kappaleen paikka ajan funktiona. b) Mihin tavalliseen liikkeeseen kuvaaja voi liittyä?

6 1. tehtävä kevät 96 yo-koe a) Mitkä seuraavista paikan, nopeuden ja kiihtyvyyden kuvaajista voivat esittää pystysuoraan ylöspäin heitetyn kappaleen liikettä ja mitkä eivät? b) Piirrä ja nimeä alleviivattuihin kappaleisiin vaikuttavat voimat: 1) kivi, joka putoaa vedessä kohti järven pohjaa, 2) henkilö, joka pysyy vakiokulmanopeudella pyörivän karusellisylinterin seinämällä, vaikka sylinterin pohja on laskettu alas. Kiinnitä huomiota voimien keskinäiseen suuruuteen. 1. tehtävä kevät 2007 yo-koe Kuvassa on joitakin paikan s, nopeuden v ja kiihtyvyyden a kuvaajia. Perustele, mitkä kuvaajista voivat esittää seuraavia liikkeitä: a) vakionopeudella etenevä polkupyöräilijä b) pysäkille tasaisesti jarruttava raitiovaunu c) suoraan alaspäin putoava tennispallo. 10. tehtävä kevät 98 yo koe Kolme samanlaista herkkäliikkeistä vaunua liikkuu kuvion mukaisia teitä pitkin saman matkan pisteisiin A mennessä. Vaunut lähetetään liikkeelle samanaikaisesti samalta korkeudelta y ilman alkunopeutta. Perustele, a) millä vaunulla on pisteessä A suurin nopeus, b) millä vaunulla on pisteessä A suurin kiihtyvyys ja c) mikä vaunu ohittaa ensimmäisenä pisteen A.

7 Mekaniikan I peruslaki Newtonin lait eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy levossa, jos siihen ei vaikuta ulkoisia voimia. Laki koskee vapaita kappaleita, jotka eivät ole vuorovaikutuksessa muiden kappaleiden kanssa Mekaniikan II peruslaki eli dynamiikan peruslaki (myös Newtonin II laki) Kappaleeseen vaikuttava kokonaisvoima F antaa kappaleelle kiihtyvyyden a. Mitä suurempi on kappaleeseen kohdistuva voima, sitä suuremman kiihtyvyyden se kappaleelle aiheuttaa. Kappaleeseen vaikuttava kokonaisvoima F antaa m-massaiselle kappaleelle kiihtyvyyden a siten, että F = ma F = dp dt eli voima on myös liikemäärän muutos! Mekaniikan III peruslaki eli voiman ja vastavoiman laki (myös Newtonin III laki) Newtonin kolmas laki sanoo, että Jos kappaleeseen vaikuttaa jokin voima, niin samanaikaisesti kappaleen täytyy vaikuttaa toiseen kappaleeseen yhtä suurella, mutta suunnaltaan vastakkaisella voimalla. Esimerkiksi omena aiheuttaa pöytään voiman johtuen Maan vetovoimasta, mutta myös pöytä aiheuttaa omenaan yhtä suuren mutta vastakkaissuuntaisen voiman. Omena siis pysyy paikallaan. On tärkeä huomata, että voima ja vastavoima vaikuttavat aina eri kappaleisiin. Kaikilla voimilla on vastavoimat. Maa vetää omenaa puoleensa ja omena vetää maata puoleensa. Mekaniikan III peruslaista seuraa, että kappaleiden vuorovaikutuksissa niiden yhteenlaskettu liikemäärä säilyy. Tehtävä Omena on pöydällä. Piirrä tilanteesta kuva ja erittele kaikki tilanteessa esiintyvät voimat ja niiden aiheuttajat. Ohje: Piirrä kolme erillistä kuvaa 1 omena, 2 pöytä, 3 maa ja tarkastele voimia.

8 1. tehtävä S87 yo-koe (Newtonin kolmas laki ja kitkavoima) Määrittele ja selitä sopivien kuvioiden avulla käsitteet a) voima ja vastavoima ja b) lepokitkavoima. a) voima ja vastavoima Newtonin III lain mukaan voima on aina vuorovaikutus kahden kappaleen välillä. Kun kappale A vaikuttaa kappaleeseen B, vaikuttaa kappale B kappaleesen A yhtä suurella, mutta vastakkaissuuntaisella voimalla. Voima ja vastavoima siis vaikuttavat eri kappaleisiin. Kappaleen A vapaakappalekuvassa on se voima, jolla B vaikuttaa A:han. Kappaleen B vapaakappalekuvassa on voima, jolla A vaikuttaa B:hen. Esimerkkinä köydenveto. Vasemmanpuoleinen henkilö vetää köyttä voimalla -F ja köysi vetää henkilöä voimalla F. Jotta hän ei menisi köyden mukana pitää maan työntää takaisin kitkavoimalla F. Kitka ei ole vastavoima köysivoimalle, vaan kitkavoiman vastavoima on voima, jolla mies työntää maata eteenpäin. Painovoima (G) ja jalkoihin kohdistuva tukivoima estävät vetäjän kaatumisen. Nämä voimat eivät ole vastavoimia. Maan vetavoiman vastavoima on se gravitaatiovoima, jolla henkilö vetää maata puoleensa. Se voima kohdistuu maahan, eikä piirretä tähän. Tukivoima, jolla maa kannattaa henkilöä, on lähinnä sähköisiä voimia ja sen vastavoima, on se voima, jolla jalka painaa maata. Voiman ja vastavoiman pitää olla samantyyppisiä voimia esimerkiksi kumpikin ovat gravitaatiovoimia ja vastavoimat kohdistuvat aina eri kappaleisiin. b) lepokitkavoima. Kun vedämme tai työnnämme kappaletta, lepokitkavoima estää kappaleen liikkumisen. Kun lisäämme voimaa riittävästi, jossakin vaiheessa kappale lähtee liikkeelle. Kitkavoima kasvaa ulkoisen voiman kasvaessa. Sitä kitkaa, joka kappaleella on juuri ennen sen liikkeelle lähtöä, kutsutaan täysin kehittyneeksi lepokitkaksi tai lepokitkavoimaksi. 3. tehtävä kevät 2000 yo-koe (perustehtävä voimista ja Newtonin toisen lain soveltamisesta) Veturin (massa 84 tonnia) ja kolmen vaunun (kunkin massa 24 tonnia) muodostama juna liikkuu suoralla vaakasuoralla radalla. Junan nopeus kasvaa 7,0 sekunnissa tasaisesti nollasta arvoon 16 km/h. Määritä veturiin kohdistuvat voimat ja junan kiihdyttämiseen vaadittava energia. Liikevastuksia ei oteta huomioon. 1. Tärkein juttu tässä on piirtää voimakuvio oikein. Muista että kiihdyttävä voima on kitkavoima. 2. Tehtävänä on tarkastella veturiin kohdistuvia voimia, joten vaunujen aiheuttamat voimat on otettava huomioon. 3. Kun saat liikeyhtälöt (NII) oikein, niin tehtävän ratkaisu on helppo!

9 4. tehtävä syksy 99 yo-koe (Liike-energia, työ, teho ja hetkellinen teho) Pyöräilijä lisää vauhtiaan vakioteholla. a) Kuinka suuri on tämä teho, jos pyörän nopeus kasvaa arvosta 18 km/h arvoon 23 km/h 1,2 sekunnissa? b) Missä rajoissa pyörän kiihtyvyys tällöin vaihtelee? Pyöräilijän ja polkupyörän yhteinen massa on 78 kg. 1. Muista, että kun voima tekee työtä energia muuttuu. 2. Tärkeä huomata: Kun teho pysyy vakiona, niin kiihdyttävä voima F muuttuu, jolloin kiihtyvyys a ei ole vakio! 3. Lausu siis kiihtyvyys a käyttäen hetkellisen tehon kaavaa P = Fv. 4. Hetkellinen teho on energian muutos ΔE pienellä aikavälillä Δt, josta saadaan, että hetkellinen teho on P = Fv (katso alla olevat esimerkit lisätiedoksi). Esimerkki energian derivoinnista tarkemmin sanoen hetkellinen teho P on energian derivaatta muuttujan t suhteen: P = de dt = Fv Jos energia on vakio, ei työtä tehdä, jolloin teho on tietysti nolla (vakion derivaattana). Derivoidaan esimerkin vuoksi liike-energian E k lauseke: P = de k dt = d 1 2 mv2 dt = 1 2 m d dt v2 = 1 2 m d dt at 2 = 1 2 ma2 d dt t2 = ma 2 t = mav = Fv Derivoidaan vielä työn lauseke W = Fs ajan t suhteen: P = dw dt = dfs ds = F dt dt = Fv P.S Hauskaa ja hyödyllistä ajanvietettä on derivoida fysiikan kaavoja. Matematiikka antaa työkalun, miksi emme sitä käyttäisi! 2. tehtävä kevät 2007 yo-koe Kulmin lentomäen lähtöpuomi on asetettu 66 m:n korkeudelle hyppyrin nokasta. Hyppääjä lähtee levosta liukumaan pitkin vauhtimäkeä ja saavuttaa hyppyrin nokalla nopeuden 101 km/h. Kuinka suuren työn liikevastusvoimat tekevät liu un aikana? Hyppääjän ja varusteiden yhteinen massa on 71 kg

10 10. tehtävä syksy 99 yo-koe (Kertaa laajasti suoraviivaista kinematiikkaa) Torninosturilla nostetaan rakennuselementtiä siten, että elementin nopeus kasvaa tasaisesti. Tarkastele elementin a) paikkaa, b) liikemäärää, c) kiihtyvyyttä ja d) potentiaalienergiaa sekä e) nostovaijerin jännitysvoimaa ja f) jännitysvoiman tehoa ajan funktiona. Minkä suureiden kuvaajat ovat nousevia suoria? 1. Piirrä voimakuvio! 2. Jos nopeus v kasvaa tasaisesti, niin kiihtyvyys on vakio, jolloin kinematiikan peruskaavat v = v 0 + at ja S = v 0 t at2 ovat käyttökelpoisia. 3. Jännitysvoiman ratkaisemisessa pääset soveltamaan Newtonin toista lakia. 4. Jännitys voiman tehon ratkaisemisessa kannattaa käyttää hekellisen tehon kaavaa (ks. edellinen tehtävä). Tehtävä, vektorit ja koordinaatisto a) Kelkka liukuu kitkatonta mäkeä alas. Piirrä tilanteessa vaikuttavat voimat ja tee Newtonin toisen lain mukaiset yhtälöt voimista koordinaatistossa, jossa positiivisen x-akselin suunta on rinteen suuntainen ja alaspäin. b) Ratkaise tämä sama tehtävä koordinaatistossa, jossa koordinaatisto on pystyssä, eli tavanomaisesti. Origo on kelkan massakeskipisteessä. Muista vektorin ilmoittamiseen tarvitaan aina vähentään kaksi lukua (voima, nopeus, matka, paikka, liikemäärä, kiihtyvyys jne.) Skalaarille riittää yksi ainoa luku, eli ainoastaan suuruus (lämpötila, tiheys jne.) Vektoreiden havainnollinen yhteenlasku simulaatio! Painovoima G on vektori, joten oikea tapa ilmoittaa se on käyttää kahta lukua. G = (G x, G y ) Vektorin pituus on sen suuruus. Vektorin G suuruutta eli sen itseisarvoa merkitään G = mg α Jos suuruus tiedetään, vektorin komponentit saadaan yleensä sinillä ja kosinilla. Jos komponentit tunnetaan, saadaan suuruus Pythagoraksella. Vektoritehtävissä PIIRRÄ AINA KUVA! G = mg α

11 11. tehtävä syksy 99 yo-koe (kaasun tilanyhtälö, voima ja paine, voiman momentti) Pakastekaapin avaaminen on tunnetusti vaikeaa muutaman sekunnin kuluttua siitä, kun ovi on pakasteiden oton jälkeen suljettu. a) Kaapin sisältämän ilman lämpötila on sulkemishetkellä -2 ºC. Se laskee nopeasti arvoon -10 ºC. Kuinka suurella voimalla oven kahvasta pitäisi tällöin vetää, jotta ovi aukeaisi? Oven leveys on 0,5 m ja korkeus 1,0 m sekä kahvan etäisyys oven saranoidusta reunasta on 0,45 m. b) Miksi oven avaaminen on oleellisesti helpompaa muutaman minuutin kuluttua? Tehtävän annosta saa ensimmäisen vihjeen. Oven avaaminen on tavanomaista vaikeampaa, eli vaatii normaalia suuremman voiman. Mistä tämä voisi johtua? Voit mallintaa tehtävää kertauksen vuoksi PhET:n kaasu simulaatiolla! Gas_Properties Muistetaan, että suljetussa astiassa olevan kaasun lämpötilan lasku pienentää painetta p astiassa, kun taas astian lämmittäminen suurentaa painetta, jos tilavuus V ja ainemäärä pysyvät vakiona. Jos paine jääkaapin sisällä on huoneen painetta pienempi, vaati oven avaaminen voiman, joka on laskettava annettujen arvojen pohjalta. Lisäksi on muistettava ottaa huomioon voimien vaikutus pisteet. Paine-eron aiheuttama voima kohdistuu oveen tasaisesti, joten sen voidaan ajatella kohdistuvaksi oven keskikohtaan (vipuvarsi on oven leveys/2). Kahva on tietyn matkan päässä oven saranoista, joka täytyy ottaa huomioon tasapainoehtoa kirjoitettaessa. Kertaa siis, jos tarpeen: 1. Kaasun tilanyhtälö 2. paine ja voima 3. Tasapainoehto 4. Voiman momentti 1. Pumppaa astiaan kaasua ja aseta tilavuus vakioksi. 2. Kirjoita alkulämpötila T 1 ja paine p 0 ylös. 3. Jäähdytä astiaa ja katso mitä paineelle tapahtuu. Ota loppulämpötila T 2 sekä paine lopussa p ylös. Tehtävässä paineen muutos p = p 0 p pitää laskea. Voit siis testata samalla kuinka hyvin simulaatio mallintaa todellisuutta. Piirrä aina ensin tarkka ja tarpeeksi iso kuva!

12 6. tehtävä kevät 99 yo-koe (Kiihtyvyys ympyräradalla, vektorit) Henkilöauto kiihdyttää nopeuttaan kallistamattomassa liikenneympyrässä siten, että auton nopeus kasvaa tasaisesti arvosta 25 km/h arvoon 40 km/h 2,8 sekunnissa. Auton ja siinä olevien matkustajien yhteismassa on 1300 kg ja liikenneympyrän säde 29 m. Määritä autoon kohdistuvan kokonaisvoiman suuruus ja suunta auton liikesuuntaan nähden hetkellä, jolloin auton nopeus on 35 km/h. Minkä ulkoisten voimien summa kysytty kokonaisvoima on? Alla olevilla vihjeillä pääset alkuun. Kertaa vektoreiden yhteenlasku! F = ma a = a tan + a norm Tulkitse ensin seuraavat kuvat! Pyöritä leppäkerttuja karusellissa ja saa tuntumaa vektoreihin ja pyörivän liikkeen fysiikkaan! s.php?sim=ladybug_revolution Aseta kulmakiihtyvyys α ja seuraa kokonaiskiihtyvyysvektorin käyttäytymistä!

13 6. tehtävä syksy 99 yo-koe (ympyräliike, energiaperiaate ja Newtonin II laki) Metallipallon jonka massa on 120 g, riippuu 85 cm:n pituisen langan päässä. Palloa isketään vaakasuoraan, jolloin se heilahtaa. Heilahduskulman θ saavuttaessa arvon 125º pallo alkaa poiketa ympyräradalta. Kuinka suuri oli pallon lähtönopeus? 1. Piirrä kuva ja merkitse siihen palloon vaikuttavat voimat iskun jälkeen 2. Mikä on ympyräradalla pitävä voima, entä tämän voiman vastavoima (NII)? 3. Tarkastele rajatapausta pallon ympyräradan lopussa ja mieti palloon vaikuttavia voimia tässä pisteessä. 4. Kirjoita voimista yhtälö ja ratkaise nopeus v ympyräradan lopussa. 5. Pallon mekaaninen energia säilyy kun kitkat oletetaan häviävän pieniksi. Kirjoita energiaperiaatteen mukainen yhtälö ja ratkaise siitä alkunopeus v 0

14 10. tehtävä kevät 99 yo-koe (pyörimisliikkeen peruslaki, voiman momentti, energiaperiaate) Pystysuoran tangon alapäässä on lähes kitkaton sarananivel. Tasapaksun tangon pituus on 3,4 m. Tangon annetaan kaatua. a) Kuinka suurella nopeudella tangon yläpää osuu vaakasuoraan alustaan? b) Kuinka suuri on tangon kulmakiihtyvyys välittömästi ennen alustaan osumista? 1. Missä on tangon massakeskipiste? 2. Mikä on tangon pontiaalienergia pystyasennossa? 3. Mikä on pyörimisliikkeessä olevan tangon energia? 4. Kuinka kehänopeus v lasketaan, jos tiedetään kulmanopeus ω? 5. Massakeskipiste putoaa alas tangon kaatuessa, jolloin tangon potentiaalienergia muuttuu tangon pyörimisenergiaksi. 6. Kun tanko kaatuu, maan vetovoima aiheuttaa vääntömomentin tankoon. Maanvetovoima vääntää tankoa massakeskipisteen kohdalta. 7. Mikä on maanvetovoiman aiheuttama momentti juuri kun tanko osuu maahan? Pyörimisliikkeen peruslaki, eli laki F = ma pyörivälle massalle on M = Jα, missä M on vääntävän voiman F momentti, J = kappaleen hitausmomentti, jonka saa taulukkokirjasta ja α on kulmakiihtyvyys yksikkönä [1/s 2 ]. 3. tehtävä syksy 2001 yo-koe Hiihtäjä (kokonaismassa 72 kg) liukuu vakionopeudella jyrkän rinteen jälkeistä loivaa myötälettä, jonka kaltevuuskulma on 8,0. Suksen pohjan ja ladun välinen liukukitkakerroin on 0,12. Hiihtäjään vaikuttava ilmanvastus riippuu nopeudesta oheisen kuvion mukaisesti. Kuinka suuri on hiihtäjän nopeus?

15 K2007 nro 10 Ilmakiväärin luodin nopeuden mittaamiseksi tasapaksu puusauva ripustettiin yläpäästään kuvan mukaisesti siten, että se pääsi heilahtamaan kiinteän akselin A ympäri. Puusauvan pituus oli 30 cm ja massa 420 g. Luoti (m = 0,511 g) ammuttiin siten, että se osui vaakasuoralla, akselia vastaan kohtisuoralla nopeudella sauvan alapäähän upoten siihen. Kuinka suuri oli luodin nopeus, kun sauva heilahti törmäyksen jälkeen 25 astetta pystysuoraan suuntaan nähden? Mekaaninen energia ei säily, koska luoti tekee työtä uppoutuessaan puuhun. Liikemäärän säilymislakia ei voi soveltaa, koska sauva on kiinnitetty pisteeseen A. Pyörimismäärä L sen sijaan säilyy, koska ulkoisilla voimilla ei ole momenttia pisteen A suhteen! m 1 = luodin massa 0, 511 g m 2 = sauvan massa 420 g l = sauvan pituus 0, 3 m θ = 25 J A1 = hitausmomentti enen osumaa (luoti) J A2 = hitausmomentti osuman jälkeen ω 1 = luodin kulmanopeus A: n suhteen = v l ω = systeemin kulmanopeus osuman jälkeen Tarkastele systeemin pyörimisliikemäärää ennen ja jälkeen osuman. L ennen = J A1 ω 1 = m 1 l 2 ω 1 = m 1 l 2 v l = m 1lv L jälkeen = J A2 ω, missä J A2 = 1 3 m 2l 2 + m 1 l 2 = 1 3 m 2 + m 1 l 2 m 1 lv = J A2 ω ω = m 1lv J A2 Sauva siis lähtee heilahtamaan kulmanopeudella ω luodin osuman jälkeen. Mekaaninen energia ei säily törmäyksessä, mutta kun sauva on lähtenyt liikkeelle, voidaan energiaperiaatetta soveltaa, koska akselissa ei ole kitkamomenttia. Luodin nopeudeksi pitäisi tulla noin 250 m/s

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4 Kertauskysymyksiä KPL1 Suureita ja mittauksia 1. Suure on kappaleen ominaisuus, joka voidaan jollain tavalla mitata 2. Mittayksiköksi, tai lyhyemmin yksiköksi 3. Si-järjestelmä on kansainvälinen mittayksikköjärjestelmä

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Työ ja kineettinen energia

Työ ja kineettinen energia Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Miltä työn tekeminen tuntuu

Miltä työn tekeminen tuntuu Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu

Lisätiedot

Luento 9: Pyörimisliikkeen dynamiikkaa

Luento 9: Pyörimisliikkeen dynamiikkaa Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Voimat mekanismeissa. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista)

Voimat mekanismeissa. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) 1 Voimat mekanismeissa Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) 12.2.2016 Sisältö Staattiset voimat Staattinen tasapainotila Vapaakappalekuva Tasapainoyhtälöt Kitkavoimat Hitausvoimat Hitausvoimien

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

Luento 11: Potentiaalienergia

Luento 11: Potentiaalienergia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee

Lisätiedot

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Voimakuvioita kirja Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Kirja lattialla Kirja, jota painetaan kepillä Kirja, jota painetaan seinään Kirja,

Lisätiedot

6 Monen kappaleen vuorovaikutukset (Many-body interactions)

6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6.1 Newtonin III laki Voimme laskea kappaleen liiketilan Newtonin II lain avulla, jos tunnemme kaikki kappaleeseen vaikuttavat voimat. Jos kappaleita

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu 1. Tasainen liike Kappale liikkuu vakionopeudella niin, että suunta ei muutu matka nopeus aika aika Nopeuden laskeminen Yhtälö kirjoitettuna suureilla ja niiden tunnuksilla: Yksiköt alinna nopeus = matka

Lisätiedot

Luento 8: Liikemäärä ja impulssi

Luento 8: Liikemäärä ja impulssi Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

BIOMEKANIIKKAA VALMENNUKSEEN

BIOMEKANIIKKAA VALMENNUKSEEN BIOMEKANIIKKAA VALMENNUKSEEN Kuortane 5.10.2013 Suomen Urheiluliiton 3. tason valmentajakoulutus Tapani Keränen KIHU www.kihu.fi Biomekaniikka? Biomekaniikka tarkastelee eliöiden liikkumista. Biomekaniikan

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot