Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4
|
|
- Juho-Matti Kinnunen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kertauskysymyksiä KPL1 Suureita ja mittauksia 1. Suure on kappaleen ominaisuus, joka voidaan jollain tavalla mitata 2. Mittayksiköksi, tai lyhyemmin yksiköksi 3. Si-järjestelmä on kansainvälinen mittayksikköjärjestelmä 4. SI-järjestelmä helpottaa kansainvälistä yhteistyötä kun suureet mitataan samoissa yksiköissä ja kaikki tietävät mistä on puhe 5. Pituus, massa, aika, sähkövirta, lämpötila, ainemäärä ja valovoima 6. Näin voidaan helpommin käsitellä suuria ja pieniä lukuja kun ei tarvitse kirjoittaa lukuja esim muodossa 0, m. 7. a2, b4, c1, d5, e6, f3 8. a) 10 C =283K b) 30 C =303K c) -15 C=258K 9. a) 274 K=1 C b) 350K=77 C c) 0K=-273 C KPL2 Vuorovaikutus ja voima 1. Vuorovaikutus voi muuttaa kappaleen liikettä, sen suuntaa ja nopeutta. Vuorovaikutus voi muuttaa myös kappaleen muotoa. 2. Kosketusvuorovaikutus, etävuorovaikutus, jatkuva vuorovaikutus, hetkellinen vuorovaikutus 3. a) Esimerkeiksi kosketusvuorovaikutuksesta sopivat kaikki tilanteet, joissa kappaleet koskettavat toisiaan: toisiinsa törmäävät biljardipallot törmäyshetkellä, tuolilla istuva henkilö on kosketusvuorovaikutuksessa istuimen ja selkänojan kanssa, Trampoliini + pomppiva lapsi, maila+pallo b) Esimerkiksi putoavan pallon ja Maan välillä on etävuorovaikutus, lyhyen etäisyyden päässä toisistaan olevien magneettien tai sähköisesti varattujen sauvojen välillä on etävuorovaikutus. 4. Voiman tunnus on F ja yksikkö 1N (newton) 5. Tukivoima, reaktiovoima, kitkavoima, painovoima Maan vetovoima vetää kappaleita puoleensa. 7. Maan vetovoima vetää Kuuta puoleensa. Kuu ei kuitenkaan tipu kohti maata, vaan joutuu ympyräliikkeeseen 8. Pinnan kappaleeseen kohdistama tukivoima. 9. Kappaleen painolla tarkoitetaan voimaa, jolla Maa vetää kappaletta puoleensa. Paino (tai painovoima) riippuu kappaleen sijainnista esim. Kuussa paino pienempi kuin Maassa. Paino on siis voima ja sen yksikkö on newton. Kappaleen massa on kappaleen ominaisuus, joka on kaikkialla sama eikä siis riipu kappaleen sijainnista. Massan yksikkö on kg. Kappaleen massasta johtuen, suuremman massan omaavat kappaleet kuitenkin lähtevät hitaammin liikkeelle, myös avaruudessa. Tätä ominaisuutta kutsutaan myös hitaudeksi. 10. Maassa kappaleen liikettä hidastaa kitkavoima, avaruudessa kappaleeseen ei vaikuta mitään voimia, jolloin se jatkaa liikettä tasaisella nopeudella
2 11. Koska Maan vetovoima on suurempi kuin Kuun, kappale putoaa Maassa nopeampaa kuin Kuussa. Sekä Maassa, että Kuussa kappale joutuu kiihtyvään liikkeeseen, sillä molemmissa kappaleeseen kohdistuu vetovoima kohti pintaa. 12. Kappaleeseen vaikuttaa painovoima alaspäin ja samansuuruinen pinnan tukivoima ylöspäin. Näin ollen voimat kumoavat toisensa, eikä kappale liiku. 13. Jos kitkaa ei olisi, olisi käveleminen hankalaa (vertaa: jäällä on hankalampi kävellä kuin hiekkatiellä, jossa kitka on suurempi). Talvella ajaminen on helpompaa tiellä joka on hiekotettu suuremman kitkan takia. Kitka hidastaa kappaleiden liikettä ja kuluttaa pintoja. 14. Esitä voimanuolten avulla voimat, jotka vaikuttavat a. pöydällä olevaan omenaan b. pöydällä liukuvaan kirjaan c. putoavaan höyheneen liukukitka = kitka
3 15. a. Taitoluistelijaan ja maalivahtiin vaikuttaa saman suuruiset, mutta eri suuntaiset voimat (voiman ja vastavoiman laki) b. Koska taitoluistelijan massa on pienempi, on myös taitoluistelijalla pienempi hitaus. Suurikokoinen maalivahti, jolla on suurempi hitaus, lähtee hitaammin liikkeelle kuin kevyt luistelija. 16. Mitkä seuraavista väittämistä ovat oikein (O) ja mitkä väärin (V)? Korjaa väärät väitteet. a. Väärin. Maan ja Kuun välinen vuorovaikutus on esimerkki etävuorovaikutuksesta. b. Väärin. Gravitaatiovuorovaikutusta esiintyy kaikkien kappaleiden välillä. c. Väärin. Voiman yksikkö on newton, N. d. Oikein e. Oikein f. Väärin. Kun ihmisen massa on 65 kg, hänen painonsa Maassa on 650 N. g. Oikein h. Väärin. Lepokitkan maksimiarvo on suurempi kuin liukukitka. i. Väärin. Kappale on helpompi pitää liikkeessä kuin saada liikkeelle. 17. Täydennä taulukko Kappaleen massa, m Kappaleen paino, G 57 kg 570N 3,4kg 34 N 150 g 1,5N
4 KPL3. Liike 20g 0,2 N 1. Tasaisessa liikkeessä kappaleen nopeus ei muutu 2. Nopeuden tunnus on v ja yksikkö m/s tai km/h. 3. Kappale etenee jokaisen sekunnin aikana 5m eteenpäin. Eli 1s jälkeen kappale on kulkenut lähtöpaikasta 5m, 2s jälkeen kappale on 10m päässä, 3s jälkeen kappale on 15m päässä Kuvaaja on suora viiva. 5. Kun suora nousee jyrkemmin, on nopeus suurempi. Kappale etenee tällöin samassa ajassa pidemmän matkan. Esim. kuvassa 2s aikana mopo on edennyt 30m, polkypyörä 20m ja jalankulkija alle 10m. Miten nopeus saadaan laskettua? 6. Autolla on suurempi massa eli suurempi hitaus, jolloin törmäyksessä auto ei käytännössä liiku ollenkaan ja vaikka kohdistuvat voimat ovatkin yhtä suuret, ei vaikutukset autoon ole läheskään yhtä traagiset, mitä hyttyseen. 7. Kappaleen hitaus kuvaa sitä, kuinka helppo kappaleen liikettä on muuttaa. Suurempi hitaus -> vaikeampi saada liikkeelle tai pysäyttää. Suurempi massaisilla kappaleilla on suurempi hitaus. 8. Newtonin ensimmäinen laki (jatkavuuden laki): Jos kappaleeseen ei vaikuta mitään ulkoista voimaa, kappale jatkaa tasaista, suoraviivaista liikettä tai pysyy levossa. Esim. avaruudessa liikkeelle työnnetty pallo jatkaa kulkuaan tasaisella nopeudella. Pöydällä oleva kappale ei liiku, sillä siihen vaikuttavat voimat (painovoima ja pinnan tukivoima) kumoavat toisensa. Kun auto jarruttaa, nytkähdät eteenpäin, sillä pyrit jatkamaan liikettäsi, samasta syystä kolarissa tavarat pyrkivät jatkamaan liikettä eteenpäin kohti kuljettajaa. Newtonin toinen laki (dynamiikan peruslaki): Jos kappaleeseen vaikuttaa voima F, kappale saa kiihtyvyyden a, siten että F=ma Esim: Putoaviin kappaleisiin vaikuttaa painovoima. Näin ollen putoavat kappaleet ovat kiihtyvässä liikkeessä. Jos polkupyörällä haluaa kiihdyttää, on poljettava kovempaa, eli käytettävä lisättävä eteenpäin viemää voimaa.
5 Newtonin kolmas laki (voiman ja vastavoiman laki): Kaksi vuorovaikutuksessa olevaa kappaletta kohdistavat toisiinsa saman suuruiset, mutta vastakkaissuuntaiset voimat Esim: Voimalla on aina vastavoima. Kun työnnät laatikkoa, kohdistat laatikkoon yhtä suuren voiman kuin mitä laatikko kohdistaa käteesi. Törmäyksessä kappaleet kohdistavat toisiinsa saman suuruisen voiman (hyttynen-auton ikkuna). 9. Jos kappaleeseen ei vaikuta voimia tai voimat kumoavat toisensa, kappale pysyy paikoillaan tai jatkaa matkaa tasaisella nopeudella. Esim. avaruudessa kappale jää leijumaan paikoilleen tai jatkaa matkaa ikuisesti eteenpäin. 10. Jos kappaleeseen vaikuttaa jokin voima, kappaleen liike on kiihtyvää. Esim putoaviin kappaleisiin vaikuttaa painovoima, jolloin putoavien kappaleiden liike on kiihtyvää. 11. Tasaisesti kiihtyvää. 12. Kiihtyvässä liikkeessä kappaleen nopeus muuttuu. 13. Kiihtyvyyden tunnus on a (putoamiskiihtyvyyden g) ja yksikkö m/s Kappaleen nopeus kasvaa jokaisen sekunnin aikana 2 m/s. Eli yhden sekunnin jälkeen kappaleen nopeus on 2m/s, kahden sekunnin jälkeen 4m/s, kolmen sekunnin jälkeen 6m/s 15. Kappaleilla on sama kiihtyvyys, putoamiskiihtyvyys, joka aiheutuu kappaleeseen vaikuttavasta painovoimasta. 16. Ilmanvastus hidastaa kappaleen liikettä, eli pienentää kappaleen nopeutta. 17. Putoamiskiihtyvyydessä tarkoitetaan putoavien kappaleiden saamaa kiihtyvyyttä. Sen suuruus Maassa on noin 10m/s Rutistettuun paperiin ei kohdistu niin suurta ilmanvastusta kuin sileään paperiin 19. 1) Koska ilmanvastus eli liikettä hidastava voima on pienempi kuin hyppääjää alaspäin vetävä ilmanvastus, hyppääjän tippuu alaspäin kiihtyvällä nopeudella 2) Kun ilmanvastus ja paino ovat yhtä suuria, hyppääjään kohdistuvat voimat kumoavat toisensa ja hyppääjä liikkuu alaspäin tasaisella nopeudella. 20. Millaista oheisissa kuvaajissa esitetty liike on? Ensimmäinen kuva vasemmalta: Kappale liikkuu ensin poispäin lähtöpaikasta tasaisella nopeudella. Sitten se kääntyy takaisin kohti lähtöpaikkaa ja liikkuu takaisin lähtöpaikkaan tasaisella, mutta alkua hitaammalla, nopeudella. Toinen kuva: Kappale liikkuu tasaisella nopeudella. Kolmas kuva: Kappale liikkuu tasaisella nopeudella. 21. Matti Virtanen tutki suurella ilmatyynyradalla ilmatyynyradan vaunun nopeutta peräkkäisinä ajanhetkinä. Hän sai seuraavat tulokset.
6 aika, t (s) nopeus, v (cm/s) a) b) Vaunun liike oli tasaisesti kiihtyvää, koska kappaleen nopeus kasvaa tasaisesti (kuvaaja suora viiva). 22. Tuloksia voidaan verrata vain kun yksikkö on sama. Muutetaan siis nopeudet ensin samaan yksikköön: Sinivalaan nopeus: 37 = = 10,28. tai Virtahevon nopeus: 8,4 = 3,6 8,4 = 30,24. Vastaus: Sinivalaan nopeus on suurempi. 23. Matka s = 100 m Aika t = 9,58 s Vastaus: Keskinopeus oli 10,4.
7 24. Mitkä seuraavista väittämistä ovat oikein (O) ja mitkä väärin (V)? Korjaa väärät väitteet. a. Oikein b. Väärin. Kiihtyvyys lasketaan nopeuden muutoksen ja muutoksen käytetyn ajan suhteena. c. Oikein d. Väärin. Tasaisen liikkeen kuvaaja nopeus matka-koordinaatistossa on vaakasuora viiva. e. Väärin. Tasaisen liikkeen kuvaaja kiihtyvyys aika-koordinaatistossa on vaakasuora viiva, joka kulkee aika-akselin päällä. f. Oikein g. Väärin. Avaruudessa kaukana planeetoista kappaleen liike jatkuu tasaisena, koska mikään planeetta ei vedä sitä puoleensa. h. Oikein i. Väärin. Kappaleen keskinopeus lasketaan kuljetun matkan ja kuluneen ajan suhteena. 25. a) 2, b) 6, c) 5, d) 3 KPL4 Tiheys 1. Tiheys kuvaa sitä, kuinka paljon ainetta eli massaa mahtuu tiettyyn tilavuuteen. 2. Tiheyden tunnus on ρ ja yksikkö kg/dm 3 tai g/cm 3 3. Kelluvien kappaleiden tiheys on pienempi kuin veden tiheys 1kg/dm 3. Jos esine uppoaa, on esineen tiheys suurempi kuin veden tiheys. 4. Jos kappaleen tiheys on sama kuin veden tiheys, kappale leijuu vedessä. Kappale on siis upoksissa, muttei pohjassa. 5. Ihmisen tiheys on melkein sama kuin veden tiheys eli ihminen melkein kelluu. Kuolleenmeren suolaveden tiheys on suurempi kuin ihmisen tiheys, jolloin ihminen kelluu suolaveden pinnalla.
8 6. Kappaleen tiheys saadaan laskettua kun kappaleen massa jaetaan kappaleen tiheydellä. 7. Kaikki kuvan särmiöt ovat samankokoisia. a. Hopeasärmiön tiheys on suurin. b. Hopeasärmiön massa on suurin. (koska tiheys on suurin) c. Alumiinisärmiön massa on pienin. (koska tiheys on pienin) 8. Korkkisärmiö ja a) Kuparisärmiö ja c) Kappale kelluu nesteessä, jos sen tiheys on nesteen tiheyttä pienempi. Korkin tiheys on veden tiheyttä pienempi ja siksi korkkisärmiö kelluu. Kun kappaleen tiheys on nesteen tiheyttä suurempi, kappale uppoaa nesteeseen. Kuparin tiheys on veden tiheyttä suurempi, joten siksi kuparisärmiö on uponneena astian pohjalla. 9. Simo mittasi viiden samasta metallista valmistetun kappaleen massat ja tilavuudet. Taulukossa on esitetty hänen mittaustuloksensa. Tilavuus, V (cm 3 ) Massa, m (g)
9 a) Sijoita mittauspisteet tilavuus-massa-koordinaatistoon. b) Simon oletus pitää paikkansa neljän tilavuudeltaan suurimman kappaleen osalta, sillä niihin liittyvät mittauspisteet osuvat tilavuus-massa-koordinaatistossa samalle suoralle. Tilavuudeltaan pienin kappale on selkeästi eri materiaalia kuin muut. c) Lasketaan kappaleille tiheydet. Tilavuudeltaan pienin kappale: Massa m = 47 g Tilavuus V = 6 cm 3
10 ρ = Muut kappaleet: Voidaan laskea minkä tahansa mittaustuloksen perusteella. Esimerkiksi: Massa m = 22 g Tilavuus V = 8 cm 3 ρ = Vastaus: Tilavuudeltaan pienin kappale voi olla rautaa tai terästä ja muut kappaleet voivat olla alumiinia. 10. Maitolitran massa m = 1 kg Maitolitran tilavuus V = 1 l = 1 dm 3 ρ = Vastaus: Maidon tiheys on 1 kg/dm Kaalin massa m = 3,0 kg Kaalin tilavuus V = 2,5 dm 3 ρ = Vastaus: Kaalin tiheys on 1,2 kg/dm Kuvan kaikilla kolmella särmiöllä on sama tilavuus, V = 2,0 dm 3. a) Tiheys määritetään kappaleen massan ja tilavuuden suhteena. Koska nyt kaikilla särmiöillä on sama tilavuus, niin suurin tiheys on sillä kappaleella, jonka massa on suurin. Eli särmiö C on tiheintä. b) Särmiön massa m = 5,4 kg Särmiön tilavuus V = 2,0 dm 3
11 Vastaus: Särmiö C voi olla alumiinia, koska se kokeellisesti määritetty tiheyden arvo on lähellä alumiinin tiheyden kirjallisuusarvoa. 13. Koska puupalikan tiheys on pienempi kuin paloöljyn, puupalikka ei uppoa vaan kelluu. 14. Suolaisen veden tiheys on suurempi kuin ihmisen tiheys.
Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
LisätiedotKpl 2: Vuorovaikutus ja voima
Kpl 2: Vuorovaikutus ja voima Jos kaksi eri kappaletta vaikuttavat toisiinsa jollain tavalla, niiden välillä on vuorovaikutus Kahden kappaleen välinen vuorovaikutus saa aikaan kaksi vastakkaista voimaa,
LisätiedotFysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)
Dynamiikka Liike ja sen muutosten selittäminen Miksi esineet liikkuvat? Physics Miksi paikallaan oleva 1 esine lähtee liikkeelle? Miksi liikkuva esine hidastaa ja pysähtyy? Dynamiikka käsittelee liiketilan
LisätiedotFYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka
FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka Oppilaan nimi: Pisteet: / 77 p. Päiväys: Koealue: kpl 13-18, s. 91-130 1. SUUREET. Täydennä taulukon tiedot. suure suureen tunnus suureen yksikkö matka aika
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä
LisätiedotVUOROVAIKUTUS JA VOIMA
VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä
Lisätiedotg-kentät ja voimat Haarto & Karhunen
g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle
LisätiedotNEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI
NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy
LisätiedotFysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto
Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure
LisätiedotVedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen
4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka
LisätiedotFysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka
LisätiedotFYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
Lisätiedotv = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p
2. Pyöräilijä lähti Pietarsaaresta kohti Kokkolaa, jonne on matkaa 33 km. Hän asetti tavoitteeksi ajaa edestakaisen matkan keskinopeudella 24 km/h. Vastatuulen takia hän joutui käyttämään menomatkaan aikaa
LisätiedotMassa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14
Massa ja paino Pohdi Miten pallon heittäminen poikkeaa kuulan heittämisestä? Auto lähtee liikkeelle rajusti kiihdyttäen. Mitä tapahtuu peilistä roikkuvalle koristeelle? Pohdi Miten pallon heittäminen poikkeaa
LisätiedotTEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A
TEHTÄVIEN RATKAISUT 8-1. Jousivaa an lukema suolavedessä on pienempi kuin puhtaassa vedessä, koska suolaveden tiheys on suurempi kuin puhtaan veden ja siksi noste suolavedessä on suurempi kuin puhtaassa
LisätiedotFysiikan perusteet ja pedagogiikka (kertaus)
Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-
Lisätiedot1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu
1. Tasainen liike Kappale liikkuu vakionopeudella niin, että suunta ei muutu matka nopeus aika aika Nopeuden laskeminen Yhtälö kirjoitettuna suureilla ja niiden tunnuksilla: Yksiköt alinna nopeus = matka
LisätiedotPietarsaaren lukio Vesa Maanselkä
Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,
LisätiedotLUKION FYSIIKKAKILPAILU PERUSSARJA
PERUSSARJA Vastaa huolellisesti ja siististi! Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoite, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-
Lisätiedoton hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis
Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotKitka ja Newtonin lakien sovellukset
Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka
LisätiedotFYSIIKAN HARJOITUSTEHTÄVIÄ
FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on
LisätiedotMEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta
MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
LisätiedotHavainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!
Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin
LisätiedotHARJOITUS 4 1. (E 5.29):
HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa
LisätiedotHarjoitellaan voimakuvion piirtämistä
Harjoitellaan voimakuvion piirtämistä Milloin ja miksi voimakuvio piirretään? Voimakuvio on keskeinen osa mekaniikan tehtävän ratkaisua, sillä sen avulla hahmotetaan tilanne, esitetään kappaleeseen kohdistuvat
LisätiedotMekaniikkan jatkokurssi
Mekaniikkan jatkokurssi Tapio Hansson 16. joulukuuta 2018 Mekaniikan jatkokurssi Tämä materiaali on suunnattu lukion koulukohtaisen syventävän mekaniikan kurssin materiaaliksi. Kurssilla kerrataan lukion
LisätiedotMuunnokset ja mittayksiköt
Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?
LisätiedotAUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,
AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan
LisätiedotVuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä
Vuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä 1. a) Piirrä laskuvarjohyppääjälle ja kelluvalle korkille vuorovaikutuskaaviot, jossa on myös vuorovaikutustyyppi
Lisätiedotyyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk
I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima
LisätiedotFysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)
1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
LisätiedotPiirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan
Voimakuvioita kirja Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Kirja lattialla Kirja, jota painetaan kepillä Kirja, jota painetaan seinään Kirja,
LisätiedotFysiikka 1 Luku 2. Työn tarkoitus Työssä tutustutaan mittaamiseen, mittaustarkkuuteen ja mittausvirheen laskemiseen.
Fysiikka 1 Luku 2 Työkortit 1. Ajan mittaus Työn tarkoitus Työssä tutustutaan mittaamiseen, mittaustarkkuuteen ja mittausvirheen laskemiseen. ajanottolaite Työn suoritus 1. Käynnistä kello, kun opettaja
LisätiedotFYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!
FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää
Lisätiedot2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki
Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen
Lisätiedot2.3 Voiman jakaminen komponentteihin
Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.
LisätiedotMagneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.
Lisätiedota) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
Lisätiedot= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N
t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
Lisätiedot:37:37 1/50 luentokalvot_05_combined.pdf (#38)
'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37
LisätiedotPERUSSARJA. a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.
PERUSSARJA Vastaa huolellisesti ja siististi! Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoite, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-
Lisätiedota) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.
AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
LisätiedotLuento 7: Voima ja Liikemäärä
Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta
LisätiedotTKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.
1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista
LisätiedotRTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa
RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset
LisätiedotMassakeskipiste Kosketusvoimat
Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotRATKAISUT: 19. Magneettikenttä
Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee
LisätiedotSTATIIKKA. TF00BN89 5op
STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit
LisätiedotRAK Statiikka 4 op
RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
LisätiedotKALTEVA TASO. 1. Työn tavoitteet. 2. Teoria
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.
LisätiedotLuento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä
Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait
Lisätiedot5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =
TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan
LisätiedotLuku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.
Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen
Lisätiedotellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.
KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa
LisätiedotSMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET
SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.
LisätiedotLaskun vaiheet ja matemaattiset mallit
Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta
LisätiedotTKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.
1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on
LisätiedotSähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
LisätiedotTEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg
TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.
LisätiedotDifferentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
LisätiedotGravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike
Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotOn määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).
TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima
LisätiedotLuento 5: Voima ja Liikemäärä
Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton
Lisätiedot4.1 Vuorovaikutuksen käsite mekaniikan perustana
91 4 NEWTONIN KOLMS LKI Dynamiikan perusprobleema on kappaleen liikkeen ennustaminen siihen kohdistuvien vuorovaikutusten perusteella. Tämä on mahdollista, jos pystytään määrittämään kuhunkin vuorovaikutukseen
LisätiedotTyö 5: Putoamiskiihtyvyys
Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista
LisätiedotLuku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
Lisätiedot2.11 Väliaineen vastus
Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa
LisätiedotEnergia, energian säilyminen ja energiaperiaate
E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman
LisätiedotFysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka
Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi
LisätiedotKinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike
Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin
LisätiedotMekaniikka 1 Lukion fysiikan kertausta
Mekaniikka 1 Lukion fysiikan kertausta 21.7.2009 Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, loistavia tehtäviä, loistavaa filosofiaa LAske! Sisältö Alustavia lähtökohtia mekaniikkaan...
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
Lisätiedot1.4 Suhteellinen liike
Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan
Lisätiedot766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4
766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä
Lisätiedot2.5 Liikeyhtälö F 3 F 1 F 2
Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä
LisätiedotVoiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken
Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
LisätiedotDifferentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotELEC-A3110 Mekaniikka (5 op)
Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat
LisätiedotLiikemäärä ja voima 1
Liikemäärä ja voima 1 Tällä luennolla tavoitteena Kinematiikan ongelma ja sen ratkaisu: Miten radan ja nopeuden saa selville, jos kappaleen kiihtyvyys tunnetaan? Analyyttinen ratkaisu Liikemäärän, voiman
Lisätiedot