Hieman joukko-oppia. A X(A a A b A a b).

Koko: px
Aloita esitys sivulta:

Download "Hieman joukko-oppia. A X(A a A b A a b)."

Transkriptio

1 Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei aivan, naivia : joukkojen muodostamisaksioomeja en käsittele juuri lainkaan, vaan oletan esimerkiksi seuraavat periaatteet tunnetuiksi: jos x on joukko ja φ(s) joukko-opin kaava, niin {s x : φ(s)} on joukko ja jos θ(s, t) on sellainen joukko-opin kaava, joka määrittelee kuvauksen joukolla x (eli y x!z θ(y, z)), niin {z : y x θ(y, z)} on joukko. Samoin oletan esimerkiksi, että on voimassa x y z(z y z x) (tämä potenssijoukkoaksiooma liittää joukkoon x sen potenssijoukon P(x) = {z : z x}). Olkoon X joukko ja < (tiukka) järjestysrelaatio joukolla X; merkitsemme symbolilla vastaavaa ( väljää ) järjestysrelaatiota id X <. Sanomme, että < on joukon X hyvinjärjestys ja että pari (X, <) on hyvinjärjestetty joukko, mikäli seuraava ehto toteutuu: A X(A a A b A a b). Ehdon toteuttava alkio a on joukon A pienin alkio (järjestyksen < suhteen) ja voimme siis lausua hyvinjärjestyksen ehdon seuraavasti: jokaisessa X:n epätyhjässä osajoukossa on pienin alkio. Intuitiivisesti on selvää, että X:n järjestys < on hyvinjärjestys joss ei ole olemassa sellaista X:n alkioiden jonoa (x 0, x 1,...), että x n+1 < x n jokaisella n. Tyyppiesimerkki hyvinjärjestetystä joukosta on (N, <), missä < on luonnollisten lukujen joukon N tavallinen suuruusjärjestys. Pannaan merkille, että aina kun (X, <) on hyvinjärjestetty joukko ja Y X, niin järjestyksen < rajoittuma joukkoon Y (eli Y :n relaatio < Y 2 ) on Y :n hyvinjärjestys; seuraavassa merkitsemme järjestyksen < rajoittumaa usein samalla symbolilla <. Järjestetyn joukon (X, <) (aito) alkusegmentti on sellainen joukon X (aito) osajoukko S, että kaikilla x, y X, jos x < y ja y S, niin x S. 1 Lemma Olkoon S hyvinjärjestetyn joukon (X, <) aito alkusegmentti. Tällöin on olemassa sellainen y X, että S = {z X : z < y}. Todistus. Olkoon y X:n epätyhjän osajoukon X S pienin alkio. Tällöin {z X : z < y} S. Toisaalta S {z X : z < y}, sillä muussa tapauksessa jollain s S olisi voimassa y s ja tällöin alkusegmentin määritelmän nojalla pätisi y S, joka on ristiriidassa sen kanssa, että y X S. 1

2 Edellinen tulos ei päde kaikille järjestetyille joukoille: joukko L = {q Q : q < 2} on rationaalilukujen järjestetyn joukon (Q, <) aito alkusegmentti, mutta millään r Q ei ole voimassa L = {q Q : q < r}. Mainitsin yllä, että pari (N, <) on tyypillinen esimerkki hyvinjärjestetystä joukosta. Nyt määriteltävät ordinaalit ovat vielä tyypillisempiä esimerkkejä ja itse asiassa jokainen hyvinjärjestetty joukko voidaan esittää ordinaalina (seuraavassa emme kuitenkaan konstruoi tällaista esitystä muille hyvinjärjestetyille joukoille kuin (N, <):lle). Määritelmä Joukko α on ordinaali jos seuraavat kaksi ehtoa toteutuvat: x α x α; relaatio on joukon α hyvinjärjestys. Tässä määritelmässä pyrimme suurimpaan mahdolliseen ekonomisuuteen käyttämällä valmiiksi määriteltyä kuulumisrelaatiota hyvinjärjestyksen esittämiseen. Kun seuraavassa puhumme ordinaalista hyvinjärjestettynä joukkona, tarkoitamme aina relaatiolla varustettua joukkoa, vaikka jätämmekin tämän relaation yleensä merkitsemättä. Valitettavasti ordinaalien tapauksessa maksimaalinen ekonomisuus ei johda kovin luonnolliseen esitykseen. Kuten seuraavassa näemme, ordinaaleille ero joukkojen, alkioiden ja osajoukkojen välillä on hyvin häilyvä ja tästä johtuen määritelmän ordinaaleista on vaikea saada intuitiivista kuvaa. Tämä ei kuitenkaan ole tärkeää: ordinaalit ovat vain käteviä koodeja hyvinjärjestetyille joukoille. Luettelemme nyt eräitä ordinaalien alkeisominaisuuksia. Ensimmäinen tuloksemme osoittaa, että ordinaaleja voidaan karakterisoida sellaisina hyvinjärjestettyinä joukkoina, joissa aidot alkusegmentit yhtyvät alkioihin. 2 Lemma Joukko S on ordinaalin α aito alkusegmentti joss S = β jollain β α. Todistus. Välttämättömyys. Oletamme, että S on aito alkusegmentti. Lemman 1 nojalla on olemassa sellainen β α, että S = {γ α : γ β}. Koska α on ordinaali ja β α, jokaisella γ β on voimassa γ α. Täten S = {γ : γ β} = β. Riittävyys. Olkoon β α:n alkio. Tällöin β α; tämä sisältyminen on aito, koska muuten olisi voimassa α = β α, mikä olisi ristiriidassa sen kanssa, että on tiukka järjestys joukossa α. Osajoukko β on alkusegmentti, sillä jos δ γ β, niin γ α ja edelleen δ α; joukon α järjestyksen transitiivisuuden nojalla on nyt voimassa δ β. 3 Lemma Ordinaalin jokainen alkio on ordinaali. 2

3 Todistus. Olkoon α ordinaali ja β α. Tällöin β α, joten relaatio joukossa β saadaan rajoittamalla sama relaatio joukosta α; näinollen (β, ) on hyvinjärjestetty joukko. Lisäksi jokaisella γ β on voimassa γ β, sillä ν γ α ν α ja joukon α alkioille ν, γ, β pätee ν γ β ν β, koska on joukon α järjestys. 4 Lemma Ordinaaleille α ja β toteutuu täsmälleen yksi ehdoista α β, β α tai α = β. Todistus. Merkitään γ = α β. Tällöin on voimassa γ = {δ α : δ β} ja tästä seuraa, että γ on α:n alkusegmentti. Samoin γ on β:n alkusegmentti. Lemman 2 nojalla on voimassa γ = α tai γ α ja γ = β tai γ β. Pannaan merkille, ettei voi olla voimassa sekä γ α että γ β, koska tällöin olisi voimassa γ α β eli γ γ, mikä on mahdotonta, koska γ α ja on joukon α tiukka järjestys. Toisaalta näemme helposti, että jos jompikumpi ehdoista γ = α tai γ = β toteutuu, niin tällöin joku ehdoista α β, β α tai α = β toteutuu. Pannaan lopuksi merkille, että lemman kolme ehtoa ovat keskenään toisensa poissulkevia. Jos α = β, niin kumpikaan ehdoista α β tai β α ei voi toteutua, koska tällöin olisi voimassa α α, mikä on mahdotonta kuten juuri todettiin. Toisaalta ei voi olla voimassa sekä α β että β α, sillä tällöin olisi α β α ja tässä tilanteessa olisi voimassa β α, jolloin saisimme taas johtopäätöksen α α. Edellinen lemma sekä ordinaalin määritelmä osoittavat, että relaatio määrittelee järjestyksen ordinaalien välille. Merkitsemme tätä järjestystä tavallisella tiukan järjestyksen symbolilla <. Siis ordinaaleille α ja β pätee: α < β α β. Pannaan merkille, että vastaava väljä järjestys voidaan esittää sisältymisrelaation avulla: α β α β. Seuraavaksi näytämme miten luonnolliset luvut voidaan (epäluonnollisesti!) esittää ordinaaleina. Tyhjä joukko toteuttaa ordinaalin määritelmän triviaalisti ja täten on ordinaali. Jokaiselle ordinaalille α on voimassa α eli α. Täten tyhjä joukko on pienin ordinaali ja sitä merkitään tavallisesti symbolilla 0. Seuraavan tuloksen avulla voimme muodostaa uusia ordinaaleja. 5 Lemma Olkoon α ordinaali. Tällöin joukko α {α} on ordinaali. Jos β on ordinaali ja α < β, niin α {α} β. Todistus. Jos β α {α}, niin joko β α tai β = α; molemmissa tapauksissa β α α {α}. Koska relaatio on joukon α tiukka järjestys, se on myös joukon α {α} 3

4 tiukka järjestys: tässä järjestyksessä on α suurimpana alkiona. Näemme myös suoraan, että koska on joukon α hyvinjärjestys, se on myös joukon α {α} hyvinjärjestys. Olkoon ordinaalille β voimassa α < β eli α β. Tällöin α β ja täten on voimassa α {α} β eli α {α} β. Ordinaalia α {α} kutsutaan ordinaalin α seuraajaksi ja sitä merkitään α + 1:llä. Nyt saamme samaistuksen luonnollisten lukujen ja tiettyjen ordinaalien välille merkitsemällä tavalliseen tapaan = 1, = 2, = 3 jne. Saamme siis esitykset 0 =, 1 = { }, 2 = {, { }}, 3 = {, { }, {, { }}} jne. Selvästikin ordinaalien välinen järjestys antaa näille luonnollisille luvuille niiden tavallisen suuruusjärjestyksen. Merkitsemme On = {x : x on ordinaali}; kyseessä on luokka, muttei joukko. 6 Lemma On ei ole joukko. Todistus. Helposti nähdään, että jos On olisi joukko, niin se olisi ordinaali, jolloin On On, mikä ei voi päteä ordinaalille. 7 Lemma Olkoon A On epätyhjä joukko. Tällöin A on joukon A pienin alkio ja A = sup A. Todistus. Koska B = {α + 1 : α A} on joukko, edellisen lemman tuloksesta seuraa, että on olemassa sellainen ordinaali γ, että γ / B. Jokaisella α A on voimassa γ / α+1 ja täten Lemman 4 nojalla pätee, että α γ. Siis A γ. Tästä seuraa, että joukossa A on pienin alkio δ. Jokaisella α A on voimassa δ α eli δ α; täten δ A. Koska δ A, on voimassa A δ. Näin ollen on voimassa δ = A. Koska A on ordinaalin γ osajoukko, on voimassa A γ. Helposti näemme, että A on γ:n alkusegmentti; täten A on Lemman 2 nojalla ordinaali. Jokaisella α A on voimassa α A eli α A; täten A on A:n yläraja. Jos σ on jokin muu yläraja, niin jokaisella α A on voimassa α σ eli α σ ja tästä seuraa, että on voimassa A σ eli A σ; näin ollen A on pienin yläraja. Seuraava tuloksen antama todistusmenetelmä tunnetaan transfiniittisen induktion periaatteena ja sillä on keskeinen merkitys joukko-opissa ja joukko-opin sovelluksissa. Lause Olkoon P sellainen ordinaaleja koskeva väite, että jokaisella α On on voimassa Tällöin P(α) pätee jokaisella α On. (( β < α)p(β)) P(α). 4

5 Todistus. Tehdään vastaväite: luokka A = {α On : P(α)} on epätyhjä. Olkoon γ A. Joukossa A = {α A : α γ} on pienin alkio δ. Nyt on voimassa P(β) jokaisella β < δ ja tästä seuraa lauseen oletuksen nojalla, että on voimassa P(δ), mutta tämä on ristiriidassa sen kanssa, että δ A A. Transfiniittista induktiota käytetään usein heikommassa muodossa, joka saadaan edellisestä kun oletetaan, että väite P(α) on määritelty ordinaaleille α < α 0 ja ehdon α On kaksi esiintymää on korvattu ehdolla α < α 0. Transfiniittisen induktion avulla voimme todistaa seuraavan tuloksen, jonka antama menetelmä joukkojen määrittelemiseksi tunnetaan transfiniittisena rekursiona. Merkitsemme V:llä kaikkien joukkojen luokkaa {x : x = x}; Lemman 6 tuloksesta seuraa, että V ei ole joukko. Lause Jokaisella F : V V on olemassa yksi ja vain yksi sellainen G : On V, että jokaiselle α On on voimassa G(α) = F(G α). Todistus. Yksikäsitteisyys. Oletamme, että G, H : On V toteuttavat ehdot G(α) = F(G α) ja H(α) = F(H α) jokaisella α On. Jos nyt α on sellainen ordinaali, että G(β) = H(β) jokaisella β < α, niin tällöin pätee, että G α = H α ja edelleen, että G(α) = H(α). Edellisestä seuraa transfiniittisella induktiolla, että G = H. Olemassaolo. Merkitsemme A = {α On : on olemassa sellainen g : α V, että g(β) = F(g β) jokaisella β < α}. Osoitamme, että A = On. Tehdään vastaväite: A On. Tällöin A on luokan On aito alkusegmentti ja täten on olemassa sellainen ordinaali α, että A = α. Kuten yllä yksikäsitteisyystodistuksessa, näemme että jokaisella β A on olemassa täsmälleen yksi sellainen g β : β V, että g β (γ) = F(g β γ) jokaisella γ < β. Kun asetamme g = β<α g β, niin g osoittaa, että α A. Siis α α, mikä on mahdotonta. Olemme osoittaneet, että A = On ja voimme nyt asettaa G = α On g α. Transfiniittisen rekursion avulla voimme helposti osoittaa, että jokainen joukko voidaan hyvinjärjestää esittämällä se jonkun ordinaalin bijektiivisenä kuvana. Rekursion lisäksi tarvitsemme kuitenkin erästä joukkojen olemassaoloaksioomaa, joka poikkeaa muista joukko-opin aksiomeista niin paljon, että sen käyttöön kiinnitetään erityistä huomiota. Seuraavassa käytämme kuitenkin tätä aksioomaa ja sen seurauksia ilman eri mainintaa. 5

6 Valinta-aksiooma: Jos a on joukko keskenään erillisiä epätyhjiä joukkoja, niin on olemassa sellainen joukko d, että joukossa x d on täsmälleen yksi alkio jokaisella x a. Ekvivalentti muotoilu valinta-aksioomalle: Jos a on epätyhjien joukkojen muodostama joukko, niin on olemassa sellainen kuvaus f : a a, että f(x) x jokaisella x a. Hyvinjärjestyslause: Olkoon x joukko. Tällöin on olemassa α On ja bijektio α x. Todistus. Merkitsemme y = {z : z x ja z }. Valinta-aksiooman nojalla on olemassa sellainen kuvaus ϕ : y x, että ϕ(z) z jokaisella z y; asetamme lisäksi ϕ( ) = θ, missä θ / x. Määrittelemme transfiniittisella rekursiolla kuvauksen G : On x {θ} asettamalla G(α) = ϕ(x {G(β) : β < α}). Nyt on olemassa pienin sellainen α On, että G(α) = θ (muutoin G olisi injektio On x ja G 1 olisi surjektio u On jollain u x, josta seuraisi ristiriita, että On on joukko). Kuvaus g = G α on bijektio α x. Hyvinjärjestyslauseen nojalla voimme määritellä koon käsitteen mielivaltaiselle joukolle. Joukon x mahtavuus, x, on pienin sellainen ordinaali α, jolla on olemassa bijektio α x. Sanomme, että ordinaali α on kardinaali, mikäli α = α. Jotta mahtavuus olisi järkevä koon mitta, sillä täytyy ainakin olla se ominaisuus, ettei osajoukon mahtavuus koskaan ylitä joukon mahtavuutta. Tämän osoittamiseksi tarvitsemme seuraavaa tulosta. 8 Lemma Olkoon δ ordinaali ja x δ. Tällöin on olemassa ordinaali α δ ja bijektio α x. Todistus. Koska x δ, voimme määritellä (ilman valinta-aksioomaa) hyvinjärjestyslauseen todistuksessa käytetyn kuvauksen ϕ : y x ottamalla aina ϕ(z):ksi joukon z pienimmän alkion. Tällöin saatava bijektio g : α x on aidosti kasvava (eli γ < β < α g(γ) < g(β)). Transfiniittinen induktio osoittaa, että aidosti kasvavalle kuvaukselle g on voimassa g(β) β jokaisella β < α; täten β < δ jokaisella β < α ja näin ollen α δ. Luettelemme nyt eräitä joukkojen mahtavuuksia koskevia perustuloksia; ensimmäinen seuraa suoraan määritelmista, toinen Lemmasta 8, kolmas helposti toisen avulla ja neljäs seuraa kolmannesta valinta-aksiooman avulla. Joukon mahtavuus on kardinaali. Joukon mahtavuus on suurempi tai yhtäsuuri kuin osajoukon mahtavuus. x y joss on olemassa injektio x y. x y joss on olemassa surjektio x y. 6

7 Tarkastelemme vielä edellisten tulosten ja käsitteiden valossa luonnollisten lukujen esitystä ordinaaleina. Jotta voisimme tarkastella kaikkien luonnollisten lukujen joukkoa, tarvitsemme eksplisiittisen ehdon sille, että ordinaali on luonnollinen luku ja lisäksi tarvitsemme aksiooman, joka takaa luonnollisten lukujen joukon olemassaolon. Määritelmä Ordinaali α on äärellinen, jos jokaisessa epätyhjässä joukossa A α on suurin alkio. Ordinaali 0 on triviaalisti äärellinen. Olkoon α äärellinen ordinaali, α 0. Tällöin epätyhjässä joukossa α on suurin ordinaali β; tälle pätee, että β α, mutta β + 1 / α ja täten β + 1 = α; näin muodoin voimme merkitä β = α 1; ordinaali α 1 on ordinaalin α välitön edeltäjä. 9 Lemma Olkoon α äärellinen ordinaali. Tällöin jokainen injektio α α on surjektio. Todistus. Selvyyden vuoksi merkitsemme tässä kuvauksen ψ määritysjoukon alkion x kuva-alkiota ψ(x):llä ja ψ:n määritysjoukon osajoukon x kuvajoukkoa ψ[x]:llä. Vastaväitteestä seuraa, että on olemassa pienin äärellinen ordinaali α, jolla on olemassa sellainen injektio ϕ : α α, joka ei ole surjektio. On voimassa α 0 ja voimme määritellä injektion ϕ : α 1 α 1 asettamalla ϕ (γ) = ϕ(γ), mikäli ϕ(γ) α 1 ja ϕ (γ) = ϕ(α 1), mikäli ϕ(γ) = α 1. Olkoon β α \ ϕ[α]. Kuvaukselle ϕ pätee, että β / ϕ [α 1] ja lisäksi on voimassa ϕ(α 1) / ϕ [α 1] mikäli β = α 1. Täten ϕ ei ole surjektio, mikä on ristiriidassa α:n minimaalisuusominaisuuden kanssa. Korollaari Jokainen äärellinen ordinaali on kardinaali. Jos ordinaali α on äärellinen, niin jokainen ordinaali β < α on äärellinen ja myös ordinaali α + 1 on äärellinen. Täten ei ole olemassa suurinta äärellistä ordinaalia. Äärettömyysaksiooma: {α On : α on äärellinen} on joukko. Kyseistä joukkoa merkitään usein N:llä. Pannaan kuitenkin merkille, että tämä joukko on ordinaali; tästä syystä sille käytetään yleisesti vaihtoehtoista merkintää ω. Koska ω / ω, ordinaali ω ei ole äärellinen, vaan kyseessä on pienin ääretön ordinaali. Koska jokainen α < ω on äärellinen, ordinaali ω on kardinaali (pienin ääretön kardinaali, jota merkitään tässä ominaisuudessa usein symbolilla ℵ 0 ). 7

8 Olemme edellä nähneet, että kaikki ordinaalit α ω ovat kardinaaleja. Sen sijaan esimerkiksi ordinaali ω+1 ei ole kardinaali, sillä voimme määritellä bijektion ϕ : ω+1 ω asettamalla ϕ(ω) = 0 ja ϕ(α) = α + 1 jokaisella α ω. Sanomme, että joukko x on äärellinen, jos x < ω ja x on numeroituva, jos x ω. 10 Lemma Äärellisessä epätyhjässä joukossa E On on suurin ordinaali. Todistus. Olkoon E = δ. Merkitsemme κ α = {β E : β α} jokaisella α E ja panemme merkille, että κ α δ. Edellisen nojalla epätyhjälle joukolle x = {κ α : α E} on voimassa x δ + 1 ja tästä seuraa, koska δ + 1 on äärellinen, että joukossa x on suurin alkio γ. Olkoon alkiolle α E voimassa {β E : β α} = γ. Nyt α on E:n suurin alkio, sillä jos olisi α < ν ja ν E, niin tällöin {β E : β α} {β E : β ν} ja {β E : β α} = γ = {β E : β ν}, mistä seuraisi, että joukko γ voitaisiin kuvata bijektiivisesti aidolle osajoukolleen; tämä on Lemman 9 nojalla mahdotonta. Jos joukko ei ole numeroituva, sanomme sen olevan ylinumeroituva. Ylinumeroituvan joukon olemassaolo seuraa helposti tarkastelemalla potenssijoukkoja. 11 Lemma Jokaiselle joukolle x on voimassa x < P(x). Todistus. Tämä seuraa siitä, ettei ole olemassa surjektiota x P(x) (jokaiselle ϕ : x P(x) on voimassa {z x : z / ϕ(z)} / ϕ(x)). Täten esimerkiksi P(ω) on ylinumeroituva joukko. Näin näemme, että {α On : α on numeroituva} on luokan On aito alkusegmentti; täten se on ordinaali, pienin ylinumeroituva ordinaali, ja sitä merkitään ω 1 :llä (kyseessä on myös kardinaali, pienin ylinumeroituva kardinaali, jota merkitään usein vaihtoehtoisella symbolilla ℵ 1 ). Luokan On alku näyttää nyt seuraavalta: 0, 1, 2, 3,... ω, ω + 1, ω + 2,... ω + ω, ω + ω + 1,... ω 1,... ω 1 + ω,... ω 1 + ω 1,... Binääridesimaaliesitysten avulla näemme helposti, että on voimassa P(ω) = R. Ylinumeroituvaa kardinaalia R merkitään yleisesti c:llä. On voimassa ω 1 c, mutta väite, että c = ω 1, tunnetaan kontinuumihypoteesina ja sitä ei voida todistaa sen paremmin oikeaksi kuin vääräksikään joukko-opin tavallisten aksioomien nojalla. 8

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

DISKREETTIÄ MATEMATIIKKAA.

DISKREETTIÄ MATEMATIIKKAA. Heikki Junnila DISKREETTIÄ MATEMATIIKKAA. LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset..... 3 2. Luonnolliset luvut. Induktio.... 9 3. Äärelliset joukot.... 14 4. Joukon ositukset.

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Jarkko Peltomäki. Järjestetyt joukot ja hilat

Jarkko Peltomäki. Järjestetyt joukot ja hilat Jarkko Peltomäki Järjestetyt joukot ja hilat Luonnontieteiden kandidaatin tutkielma Turun yliopisto Syyskuu 2010 Sisältö 1 Johdanto 2 2 Järjestetty joukko 3 2.1 Määritelmiä ja perusominaisuuksia...............

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Neljännen viikon luennot Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuun 2.1. Esko Turunen esko.turunen@tut.fi Funktion y = f (x) on intuitiivisesti

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5...

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5... Calkinin-Wiln jono Funktio f : X Y on bijektio, jos sillä on käänteisfunktio f : Y X. Joukko X on äärellinen, jos se on thjä tai jos on olemassa bijektio f : X {,,,..., n}. Joukko X on numeroituva, jos

Lisätiedot

Äärettömistä joukoista

Äärettömistä joukoista Äärettömistä joukoista Markku Halmetoja Mistä tietäisit, että sinulla on yhtä paljon sormia ja varpaita, jos et osaisi laskea niitä? Tiettyä voimisteluliikettä tehdessäsi huomaisit, että jokaista sormea

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Johdatus matemaattisen analyysin teoriaan

Johdatus matemaattisen analyysin teoriaan Kirjan Johdatus matemaattisen analyysin teoriaan harjoitustehtävien ratkaisuja 18. maaliskuuta 2005 Ratkaisut ovat laatineet Jukka Ilmonen ja Ismo Korkee. Ratkaisuissa olevista mahdollisista virheistä

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA Heikki Junnila VERKOT LUKU I JOUKOISTA JA RELAATIOISTA 1. Joukkojen symmetrinen erotus.....................................1 2. Relaation sisältämät kuvaukset.................................... 7 Harjoitustehtäviä................................................

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio

Lisätiedot

RAKKAUS MATEMAATTISENA RELAATIONA

RAKKAUS MATEMAATTISENA RELAATIONA RAKKAUS MATEMAATTISENA RELAATIONA HEIKKI PITKÄNEN 1. Johdanto Määritelmä 1. Olkoon I ihmisten joukko ja a, b I. Määritellään relaatio : a b a rakastaa b:tä. Huomautus 2. Määritelmässä esiintyvälle käsitteelle

Lisätiedot

f 1 (b) kun b f(a) g(b) = a kun b B \ f(a). g(b) = g(b ). (2) b = b. = f(g(b )) iii) = b,

f 1 (b) kun b f(a) g(b) = a kun b B \ f(a). g(b) = g(b ). (2) b = b. = f(g(b )) iii) = b, 1.1 Olkoon f : A B injektio. Tällöin f : A f(a) on bijektio, joten on olemassa bijektiivinen käänteiskuvaus f 1 : f(a) A. Jos f(a) = B, niin tämä f 1 on haluttu surjektio. Voidaan siis olettaa, että f(a)

Lisätiedot

Lukujoukot luonnollisista luvuista reaalilukuihin

Lukujoukot luonnollisista luvuista reaalilukuihin Lukujoukot luonnollisista luvuista reaalilukuihin Pro gradu -tutkielma Esa Pulkka 517378 Itä-Suomen Yliopisto Fysiikan ja matematiikan laitos 26. maaliskuuta 2012 Sisältö 1 Johdanto 1 2 Luonnolliset luvut

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Vadi m Kulikov. Ressun lukio. Työ sijoitt uu kahdelle tieteenalalle: matematiikka ja filoso fia.

Vadi m Kulikov. Ressun lukio. Työ sijoitt uu kahdelle tieteenalalle: matematiikka ja filoso fia. Reaaliluvut: keksitty vai löydetty käsite? Filosofisesti tuettu reaalilukujen johdatus klassisen joukko-opin aksioomista. Vadi m Kulikov Ressun lukio Työ sijoitt uu kahdelle tieteenalalle: matematiikka

Lisätiedot

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen,

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen, Funktiotehtävät, 10. syyskuuta 005, sivu 1 / 4 Perustehtävät Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x. kun x on parillinen, f : N {0, 1, }, f(x) = 1 kun x on alkuluku,

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

Output. Input Automaton

Output. Input Automaton 16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

VERKOT. SUHTEIKOT JA VERKOT 1. Johdanto... 1 2. Pisteiden asteet...7 3. Yhtenäisyys... 11 4. Kulku suhteikossa... 18 5. Hamiltonin kulut...

VERKOT. SUHTEIKOT JA VERKOT 1. Johdanto... 1 2. Pisteiden asteet...7 3. Yhtenäisyys... 11 4. Kulku suhteikossa... 18 5. Hamiltonin kulut... Heikki Junnila VERKOT. LUKU I SUHTEIKOT JA VERKOT 1. Johdanto..... 1 2. Pisteiden asteet...7 3. Yhtenäisyys.... 11 4. Kulku suhteikossa.... 18 5. Hamiltonin kulut....... 26 Harjoitustehtäviä......35 LUKU

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010 ALGEBRA Tauno Metsänkylä Marjatta Näätänen 2010 c Tauno Metsänkylä ja Marjatta Näätänen ALGEBRA Tauno Metsänkylä Marjatta Näätänen Esipuhe Tämä kirja on syntynyt toisen tekijän(t.m.) Turun yliopistossa

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

Cantorin joukko. Heikki Valve. Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos

Cantorin joukko. Heikki Valve. Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos Cantorin joukko Heikki Valve Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

TOPOLOGISET RYHMÄT. I Topologisten ryhmien yleistä teoriaa

TOPOLOGISET RYHMÄT. I Topologisten ryhmien yleistä teoriaa Heikki Junnila TOPOLOGISET RYHMÄT I Topologisten ryhmien yleistä teoriaa 1. Määritelmä, perusominaisuuksia..... 1 2. Aliryhmät ja tekijäryhmät. Jatkuvat homomorfismit. Tulot..... 13 3. Yhtenäisyys ja epäyhtenäisyys

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen

Lisätiedot

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg.

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Olkoon L = {Lontoo, P ariisi, P raha, Rooma, Y hteys(x, y)}. Kuvan 3.1. kaupunkiverkko vastaa seuraavaa L-mallia

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

Ramseyn lauseen ensimmäinen sovellus

Ramseyn lauseen ensimmäinen sovellus Ramseyn lauseen ensimmäinen sovellus Jarkko Peltomäki 30. huhtikuuta 2012 Tässä esseessä esitetään Frank Ramseyn vuonna 1929 esittämä tulos logiikassa, jonka todistamiseksi hän osoitti myöhemmin tärkeäksi

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Cauchyn ja Sylowin lauseista

Cauchyn ja Sylowin lauseista Cauchyn ja Sylowin lauseista Pro gradu-tutkielma Jukka Kuru Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Peruskäsitteet 4 1.1 Funktion käsitteitä........................ 4

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Kombinatoriikka. Robert Service

Kombinatoriikka. Robert Service Kombinatoriikka Robert Service 1 2 ROBERT SERVICE Lista käytetyistä merkinnöistä Z kokonaislukujen joukko [n] joukko {1, 2,..., n}, erityisesti [0] = N luonnollisten lukujen joukko, {0, 1, 2,... } N positiivisten

Lisätiedot

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö

Lisätiedot

Sarjat ja differentiaaliyhtälöt

Sarjat ja differentiaaliyhtälöt Sarjat ja differentiaaliyhtälöt Johdanto Tämä luentomoniste on tarkoitettu korvaamaan luentomuistiinpanoja Sarjat ja differentiaaliyhtälöt-kurssilla. Tämä ei kuitenkaan ole oppikirja, mikä tarkoittaa sitä,

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Sisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25

Sisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25 Funktiot 12. syyskuuta 2005 sivu 1 / 25 Sisältö 1 Funktiot 2 1.1 Määritelmä ja peruskäsitteitä 2 1.2 Bijektiivisyys 3 1.3 Käänteisfunktio f 1 4 1.4 Funktioiden monotonisuus 5 1.5 Funktioiden laskutoimitukset

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

8.5. Järjestyssuhteet 1 / 19

8.5. Järjestyssuhteet 1 / 19 8.5. Järjestyssuhteet 1 / 19 Määritelmä Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä).

Lisätiedot

2. Arvon ja hyödyn mittaaminen

2. Arvon ja hyödyn mittaaminen 2. Arvon ja hyödyn mittaaminen 1 2 Arvon ja hyödyn mittaaminen 2.1 Miksi tarvitsemme arvofunktiota? Arvofunktio on preferenssien (mieltymysten) matemaattinen kuvaus. Arvofunktio kuvaa päätöskriteeriä vastaavan

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Oulun yliopisto TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Maisterintutkinnon kypsyysnäyte Laitos: Matemaattisten tieteiden laitos Tekijä (Sukunimi ja etunimet) Isopahkala

Lisätiedot

Johdatus diskreettiin matematiikkaan

Johdatus diskreettiin matematiikkaan Kirjan Johdatus diskreettiin matematiikkaan harjoitustehtävien ratkaisuja Jukka Ilmonen Jukka.Ilmonen@uta.fi Jarmo Niemelä jarmo.niemela@kolumbus.fi 27. elokuuta 2004 4. a) p q r p q r 0 0 0 0 1 0 0 1

Lisätiedot

MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä

MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä Antti Valmari & Antero Kangas Tampereen teknillinen yliopisto Matematiikan laitos 20. elokuuta 2013 Merkkien selityksiä Tähän

Lisätiedot

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen 1 2006

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen 1 2006 1 Joukon käsite JOUKKO-OPIN ALKEITA Veikko Rantala Ari Virtanen 1 2006 Joukon voisi yrittää määritellä kokoelmaksi olioita, mutta tämä edellyttää, että ymmärretään mitä olioilla ja kokoelmalla tarkoitetaan.

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.

Lisätiedot

Joukko-opin rooli suomalaisessa koulumatematiikassa

Joukko-opin rooli suomalaisessa koulumatematiikassa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Eero Seppä Joukko-opin rooli suomalaisessa koulumatematiikassa Informaatiotieteiden yksikkö Matematiikka Tammikuu 2013 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Roosa Niemi Riippuvuuslogiikkaa Informaatiotieteiden yksikkö Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö ROOSA NIEMI: Riippuvuuslogiikkaa

Lisätiedot