π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

Koko: px
Aloita esitys sivulta:

Download "π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ."

Transkriptio

1 Rhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 4, ratkaisuehdotus (5 sivua) Tehtävä 1. Etsi neliön smmetriarhmän D 8 kaikki alirhmät. Mitkä niistä ovat normaaleja? Ratkaisu. Rhmää D 8 käsiteltiin luentomateriaalin esimerkissä 4.9. Esimerkissä todettiin, että rhmä on alkioiden ρ = (1234) ja π = (12)(34) virittämä. Lisäksi jokainen rhmän alkio on muotoa π m ρ n joillakin m {0, 1} ja n {0, 1, 2, 3}. Toisin sanoen D 8 = {id, ρ, ρ 2, ρ 3, π, πρ, πρ 2, πρ 3 }. Tässä ρ 2 = (13)(24), ρ 3 = (1432), πρ = (24), πρ 2 = (14)(23) ja πρ 3 = (13). Lagrangen lauseen nojalla jokaisen alirhmän kertaluku jakaa rhmän kertaluvun, joka on kahdeksan. Alirhmissä on siis joko 1, 2, 4 tai 8 alkiota. Kertalukua 1 oleva alirhmä on tietenkin {id} ja kertalukua 8 oleva alirhmä D 8. Jos alirhmä sisältää alkion ρ, se sisältää mös alkiot ρ 2, ρ 3 ja ρ 4 = id. Jos alirhmässä on muitakin alkioita, niin sen kertaluku on suurempi kuin neljä ja kseessä on silloin rhmä D 8 itse. Siten ainoat epätriviaalit alirhmät, jotka sisältävät alkion ρ, ovat sklinen rhmä {id, ρ, ρ 2, ρ 3 } ja sen kaksialkioinen alirhmä {id, ρ 2 }. Jos alirhmä sisältää alkion ρ 3, niin se sisältää mös alkion ρ = (ρ 3 ) 3. Siten päädmme täsmälleen samoihin alirhmiin kuin llä. Tarkasteltavina ovat siis enää alkiot ρ 2, π, πρ, πρ 2 ja πρ 3. Nämä kaikki ovat alkioita, joiden kertaluku on kaksi, joten kukin niistä virittää kahden alkion sklisen rhmän. Tutkitaan sitten, millaisia rhmiä edellä mainituista alkioista valitut parit virittävät. Tapauksia on hteensä kmmenen. Ensinnäkin huomataan, että π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ. ja Rhmät π, πρ, π, πρ 3, πρ 2, πρ ja πρ 2, πρ sisältävät siis kaikki joko alkion ρ tai ρ 3, joten edellä osoitetun nojalla kaikki nämä alirhmät ovat itse asiassa koko rhmä D 8. Alkioiden ρ 2 ja π virittämä alirhmä on {id, ρ 2, π, πρ 2 }. Sama alirhmä ovat mös mös ρ 2, πρ 2 sekä π, πρ 2. Alkioiden ρ 2 ja πρ virittämä alirhmä puolestaan on {id, ρ 2, πρ, πρ 3 }. Saman alirhmän antavat mös pari ρ 2 ja πρ 3 sekä pari πρ ja πρ 3. Tutkitaan sitten, mitkä alirhmistä ovat normaaleja. Sellaiset alirhmät, joiden indeksi on kaksi, ovat normaaleja. Tässä tapauksessa siis kaikki neljän alkion alirhmät ovat normaaleja. 1

2 Muiden alirhmien tutkimisessa auttavat esimerkissä 4.9 selvitett konjugaattiluokat. Normaalisuuskiteerin nojalla on alirhmä on normaali täsmälleen silloin, jos se sisältää kaikkien alkioidensa konjugaatit. Luonnollisesti neutraalialkion ainoa konjugaatti on neutraalialkio itse. Mös alkio ρ 2 on konjugaattiluokkansa ainoa alkio, mikä tarkoittaa sitä, että sekään ei muutu missään konjugoinnissa. Alirhmä {id, ρ 2 } on siis normaali. Loput kahden alkion alirhmät eivät puolestaan ole normaaleja, sillä näemme, että ne eivät sisällä kaikkien alkoidensa kaikkia konjugaatteja. Siten olemmme osoittaneet, että rhmän D 8 alirmät ovat {id} (normaali), {id, πρ 3 }, {id, ρ 2 } (normaali), {id, ρ, ρ 2, ρ 3 } (normaali), {id, π}, {id, ρ 2, π, πρ 2 } (normaali), {id, πρ}, {id, ρ 2, πρ, πρ 3 } (normaali), {id, πρ 2 }, D 8. Tehtävä 2. Tarkastellaan edelleen neliön smmetriarhmää. Etsi jokaisen alkion D 8 keskittäjä ja laske indeksi [D 8 : C G ()]. Vertaa kutakin indeksiä alkion konjugaattiluokan kokoon. Mitkä alkioista kuuluvat rhmän keskukseen? Ratkaisu. Tiedämme, että kunkin alkion keskittäjä on rhmän D 8 alirhmä. Alirhmät on listattu edellisessä tehtävässä, joten keskittäjät lötvät tuosta listasta. Luonnollisesti alkion (1) keskittäjä on rhmä D 8. Esimerkin 4.9 nojalla tiedämme, että alkio ρ 2 = (13)(24) on konjugaattiluokkansa ainoa alkio. Siten se ei muutu missään konjugoinnissa ja siis kommutoi kaikkien alkioiden kanssa. Täten alkion ρ 2 keskittäjä on koko rhmä D 8. Muiden alkioiden konjugaattiluokat eivät ole ksiöitä, joten kaikki alkiot eivät keskitä niitä, vaan niiden keskittäjät ovat aitoja alirhmiä. Koska alkio ρ 2 kommutoi kaikkien alkioiden kanssa, se on jokaisen keskittäjän alkio. Siten loppujen alkioiden keskittäjät ovat epätriviaaleja alirhmiä, joihin kuuluu alkio ρ 2. Koska jokainen alkio kuuluu omaan keskittäjäänsä, voidaan kunkin alkion keskittäjä nt helposti poimia alirhmien joukosta. Näin saamme C D8 (id) = D 8, C D8 (π) = {id, ρ 2, π, πρ 2 }, C D8 (ρ 2 ) = D 8, C D8 (πρ) = {id, ρ 2, πρ, πρ 3 }, C D8 (ρ) = {id, ρ, ρ 2, ρ 3 }, C D8 (πρ 2 ) = {id, ρ 2, π, πρ 2 }, C D8 (ρ 3 ) = {id, ρ, ρ 2, ρ 3 }, C D8 (πρ 3 ) = {id, ρ 2, πρ, πρ 3 }. Seuraavassa taulukossa on verrattu alkioiden konjugaattiluokkien kokoja niiden keskittäjien kertalukuihin. Tulokset ovat lauseen 4.12 mukaisia eli konjugaattiluokan koko on sama kuin keskittäjän indeksi. Yllä lödettiin mös rhmän keskus. Se koostuu niistä alkioista, jotka keskittävät kaikki alkiot, tai toisaalta ovat ksin omassa konjugaattiluokassaan. Ainoat tällaiset 2

3 alkiot ovat id ja ρ 2. Siten ζd 8 = {id, ρ 2 }. Huomaa, että indeksi [D 8 : C D8 ()] on 1, jos ja vain jos ζd 8. D 8 C D8 () [D 8 : C D8 ()] id ρ ρ ρ π πρ πρ πρ Tehtävä 3. Olkoon G rhmä. Merkitään Z = ζg. Oletetaan, että tekijärhmä G/Z on sklinen. Osoita, että rhmä G on vaihdannainen ja G/Z on itse asiassa triviaali. Todistus. Tekijärhmän G/Z alkiot ovat muotoa gz, missä g G. Koska tekijärhmä on sklinen, saadaan kaikki alkiot rhmän virittäjän potensseina. Oletetaan, että alkio Z virittää tekijärhmän. Nt jokainen sivuluokka on muotoa (Z) n = n Z jollakin kokonaisluvulla n. Tehtävänä on osoittaa, että G on vaihdannainen. Olkoot a, b G. Koska sivuluokat muodostavat rhmän G osituksen, alkiot a ja b kuuluvat joihinkin sivuluokkiin. On siis olemassa sellaiset n, m Z, että a n Z ja b m Z. Nt a = n z 1 ja b = m z 2 joillakin z 1, z 2 Z = ζg. Keskuksen alkiot kommutoivat kaikkien alkioiden kanssa, joten saadaan ab = n z 1 m z 2 = n m z 1 z 2 = n+m z 1 z 2 ja ba = m z 2 n z 1 = m n z 2 z 1 = m+n z 2 z 1 = n+m z 1 z 2. Siispä ab = ba, mistä seuraa, että G on vaihdannainen. Koska G on vaihdannainen, tät olla G = ζg. Tekijärhmä G/ζG on siis triviaali. Tehtävä 4. Olkoon p jokin alkuluku. Osoita, että Z p 2 eli kertalukua p 2 oleva sklinen rhmä ei ole minkään kahden epätriviaalin alirhmänsä suora tulo. Todistus. Sklisellä rhmällä alirhmät määrätvät rhmän kertaluvun tekijöiden mukaan. Jokaista tekijää vastaa täsmälleen ksi alirhmä. Sklisen rhmän Z p 2 kertaluku on p 2. Koska p on oletuksen mukaan alkuluku, ovat sen ainoat jakajat 1, p ja p 2. Tekijöitä 1 ja p 2 vastaavat triviaalit alirhmät {[0]} ja Z p 2. Ainoa epätriviaali alirhmä on siis kokoa p, ja niitä on vain ksi kappale. Alirhmän tulo itsensä kanssa ei voi kuitenkaan olla suora, joten Z p 2 ei ole kahden epätriviaalin alirhmänsä suora tulo. 3

4 Tehtävä 5. Oletetaan, että σ on joukon X permutaatio. Permutaation σ kantaja määritellään seuraavasti: supp(σ) = { X σ() }. Kantajaan kuuluvat siis ne alkiot, jotka liikkuvat permutaatiossa paikaltaan. (Toisin sanoen kantaja on kiintopistejoukon komplementti.) Olkoot σ ja τ joukon X permutaatioita ja joukon X alkio. Osoita, että a) σ() supp(σ), jos ja vain jos supp(σ) b) supp(σ) = supp(σ 1 ) c) supp(σ τ) supp(σ) supp(τ). Todistus. Jokainen kohta on helpointa käsitellä kontraposition kautta (tai tutkimalla kantajan sijasta kiintopistejoukkoa.) a) Oletetaan ensin, että / supp(σ). Tällöin σ() =, joten σ(σ()) = σ(). Näin ollen σ() / supp(σ). Oletetaan sitten, että σ() / supp(σ), eli σ(σ()) = σ(). Koska σ on injektio, tät päteä σ() =, joten / supp(σ). b) Helposti nähdään, että / supp(σ) σ() = = σ 1 () / supp(σ 1 ). Täten X \ supp(σ) = X \ supp(σ 1 ) ja siirtmällä komplementteihin nähdään, että supp(σ) = supp(σ 1 ). c) Oletetaan, että / supp(σ) supp(τ). Tämä tarkoittaa, että / supp(σ) ja / supp(τ). Siispä σ() = ja τ() =, joten eritisesti σ(τ()) = σ() =. Tällöin / supp(σ τ). On siis päätelt, että jos supp(σ τ), niin supp(σ) supp(τ). Tehtävä 6. Osoita, että Rubikin rhmän keskus sisält asentorhmään R a. Todistus. Olkoon τ siirto, joka liikuttaa paloja ja ei siten kuulu asentorhmään R a. Oletetaan, että τ siirtää kuution palan paikasta paikkaan ja. Olkoon σ sellainen perussiirto, että se liikuttaa paikassa olevaa palaa, mutta ei koske paikassa olevaan palaan. Tällainen perussiirto on aina mahdollista lötää seuraavasti. Paikat ja ovat joko molemmat nurkkapaikkoja tai molemmat särmäpaikkoja. Jos on särmäpaikka, se sijaitsee htä aikaa kahdella tahkolla ja voi sijaita näistä vain toisella. Tällöin voidaan valita sellainen σ, joka kiertää sitä tahkoa, jolla ei sijaitse. Toisaalta jos on nurkkapaikka, se sijaitsee htä aikaa kolmella tahkolla ja voi sijaita näistä vain hdellä. Tutkitaan konjugaattia στσ 1 ja katsotaan, mitä se tekee paikassa olevalle palalle A. Oheisessa kuvassa on esimerkki tilanteesta. Siirto σ 1 siirtää palan A pois paikasta ja tilalle jonkin palan. Tämän jälkeen siirto τ saattaa liikuttaa palaa A, mutta ainakaan se ei vie sitä paikkaan. Sinne menee nimittäin tällä hetkellä paikassa oleva pala. 4

5 Lopulta siirto σ saattaa vielä liikuttaa palaa A, mutta se ei voi viedä sitä paikkaan, sillä siirron σ oletettiin olevan sellainen, että se ei vaikuta paikkaan. Nt tiedämme, että pala A ei liiku konjugaatissa στσ 1 paikkaan. Siirto τ kuitenkin siirtää palan A paikkaan, mistä seuraa, että στσ 1 τ. On siis päätelt, että τ / ζg. Täten koko Rubikin rhmän keskus sisält asentorhmään R a. τ A σ 1 σ C A C 5

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) 10.12.2012 Tehtävä 1. Osoita, että tuloryhmän R np R sp indeksi Rubikin paikkaryhmässä R p on täsmälleen kaksi. (Tarkkaan

Lisätiedot

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. 3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää

Lisätiedot

x gxg 1 Esimerkin 3-sykli saatiin siis konjugoimalla siirretyksi toimimaan lukujen 1, 2 ja 3 sijasta luvuilla 5, 8 ja 6.

x gxg 1 Esimerkin 3-sykli saatiin siis konjugoimalla siirretyksi toimimaan lukujen 1, 2 ja 3 sijasta luvuilla 5, 8 ja 6. 4 Konjugointi 4.1 Konjugoinnin määritelmä Usein ryhmän alkiot kuvaavat operaatioita jossain joukossa. Permutaatiot ovat tästä hyvä esimerkki. Tällaisessa tapauksessa voidaan konjugoinnilla siirtää jossain

Lisätiedot

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}. Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa suuriin, helpommin käsiteltäviin osiin. Tämän jälkeen voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin

Lisätiedot

4 Konjugointi. 4.1 Konjugoinnin määritelmä

4 Konjugointi. 4.1 Konjugoinnin määritelmä 4 Konjugointi 4.1 Konjugoinnin määritelmä Usein ryhmän alkiot kuvaavat operaatioita jossain joukossa. Ryhmäteoriassa tätä kutsutaan ryhmän toiminnaksi. Permutaatiot ovat hyvä esimerkki ryhmän toiminnasta.

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

4. Ryhmien sisäinen rakenne

4. Ryhmien sisäinen rakenne 4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.

Lisätiedot

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin

Lisätiedot

Tarkastellaan aluksi permutaatioryhmiin liittyvää esimerkkiä.

Tarkastellaan aluksi permutaatioryhmiin liittyvää esimerkkiä. 5 Tuloryhmät Jotkin ryhmät voidaan jakaa toisistaan riippumattomiin osiin niin, että jokainen ryhmän alkio saadaan tulona eri osista valituista alkioista. Tällöin ryhmää voidaan käsitellä osiensa tulona

Lisätiedot

Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä:

Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä: 6 Kommutaattorit Ryhmässä kahden alkion kommutaattori on kolmas alkio, joka mittaa alkuperäisten alkioiden vaihdannaisuutta. Jos alkiot kommutoivat keskenään, niiden kommutaattori on neutraalialkio. Kommutaattorit

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

ja siten kyseisen symmetriaryhmä on toinen dihedraaliryhmä (D 2 )

ja siten kyseisen symmetriaryhmä on toinen dihedraaliryhmä (D 2 ) APPROBATUR (MATP170) Harjoitus 7, Ratkaisut 1. Kuvaa kirjaimen H smmetriarhmä permutaatioiden avulla ja tee saadulle rhmälle kertotaulu. (Nimeä tätä varten kirjaimesta smmetrian mielessä tärkeitä kohtia

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014 Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Algebra I, harjoitus 8,

Algebra I, harjoitus 8, Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

4. Ryhmien sisäinen rakenne

4. Ryhmien sisäinen rakenne 3.5. Sisäiset symmetriat. Kuution väritysesimerkissä 3.14 tarkasteltiin yksittäisten alkioiden sijaan niiden konjugaattiluokkia ja todettiin, että konjugaattiluokkia vastaavat luonnollisella tavalla erityyppiset

Lisätiedot

Transversaalit ja hajoamisaliryhmät

Transversaalit ja hajoamisaliryhmät Transversaalit ja hajoamisaliryhmät Graduseminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Motivointi Esimerkki 1 (Ryhmäteorian kurssin harjoitustehtävä). Jos G on ryhmä,

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Ryhmäteoriaa. 2. Ryhmän toiminta

Ryhmäteoriaa. 2. Ryhmän toiminta Ryhmäteoriaa 2. Ryhmän toiminta Permutaatiot kuvaavat jonkin perusjoukon alkioita toisikseen. Eräät permutaatiot jättävät joitain alkioita paikalleen, toiset liikuttavat kaikkia joukon alkioita. Kaikki

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}.

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}. Algebra I Matematiikan ja tilastotieteen laitos Harjoitus 7 Ratkaisuehdotus (5 sivua) JR 1. Määritellään reaalilukuparien relaatio seuraavasti: (x,y) (x,y ) x =kx jay=ky jollakink R\{0}. Toisin sanoen

Lisätiedot

5. Ryhmän kompositiotekijät

5. Ryhmän kompositiotekijät 5. Ryhmän kompositiotekijät Jos ryhmästä löydetään normaali aliryhmä, sen suhteen voidaan muodostaa tekijäryhmä, jolla saattaa olla yksinkertaisempi rakenne kuin alkuperäisellä ryhmällä. Ryhmä voidaan

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

6 A 5, alternoiva ryhmä ja muita yksinkertaisia ryhmiä

6 A 5, alternoiva ryhmä ja muita yksinkertaisia ryhmiä 6 A 5, alternoiva ryhmä ja muita yksinkertaisia ryhmiä Tutustukaamme ensin ryhmään S 5. Jos käytämme syklinotaatiota, toteamme, että se sisältää syklejä, jotka ovat muotoa (12), (123), (1234), (12345),

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos meillä

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Matematiikan ja tilastotieteen laitos

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Matematiikan ja tilastotieteen laitos Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos Päivitetty syksyllä 2010 Sisältö 1 Johdanto 4 1.1 Yleistä.................................. 4 1.2 Kuution rakenne............................

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

2 Permutaatioryhmät. 2.1 Permutaation olemus

2 Permutaatioryhmät. 2.1 Permutaation olemus 2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutioongelman selvittämisessä Tässä

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

Latinalaiset neliöt ja taikaneliöt

Latinalaiset neliöt ja taikaneliöt Latinalaiset neliöt ja taikaneliöt LuK-tutkielma Aku-Petteri Niemi Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Latinalaiset neliöt 3 1.1 Latinalainen neliö.........................

Lisätiedot

7 Rubikin kuution laajennoksia

7 Rubikin kuution laajennoksia 7 Rubikin kuution laajennoksia Tavallista Rubikin kuutiota voidaan laajentaa monilla tavoilla. Ensi näkemältä nämä uudet versiot vaikuttavat paljon hankalammilta ratkaista, mutta tarkempi tarkastelu osoittaa,

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

2 Permutaatioryhmät. 2.1 Permutaation olemus. 2.2 Permutaatioilla laskeminen

2 Permutaatioryhmät. 2.1 Permutaation olemus. 2.2 Permutaatioilla laskeminen 2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutio-ongelman selvittämiseen Tässä

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2012 Sain idean tämän kurssin pitämiseen luettuani Jyrki Lahtosen artikkelin

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG

ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG PRO GRADU HELSINGIN YLIOPISTON MATEMATIIKAN LAITOS TOUKOKUU 2008 SISÄLTÖ 1. Merkinnöistä ja määritelmistä 2 2. Johdanto 3 3. Ryhmäteoriaa 5 3.1.

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:

Lisätiedot

Approbatur 3, demo 5, ratkaisut

Approbatur 3, demo 5, ratkaisut Approbatur 3, demo 5, ratkaisut 51 Tehtävänä on luetella kaikki joukon S 4 alkiot eli neljän alkion permutaatiot Tämä tarkoittaa kaikkia eri tapoja kuvata joukko {1, 2, 3, 4} bijektiivisesti itselleen

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Matti

Lisätiedot

Sylowin lauseet äärellisten ryhmien luokittelussa

Sylowin lauseet äärellisten ryhmien luokittelussa Sylowin lauseet äärellisten ryhmien luokittelussa Jenna Johansson 21. marraskuuta 2018 Pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2018 Merkintöjä: N Luonnollisten

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

5 Platonin kappaleet ja niiden symmetriaryhmät

5 Platonin kappaleet ja niiden symmetriaryhmät 5 Platonin kappaleet ja niiden symmetriaryhmät Ensimmäisissä luvussa käsittelimme ryhmäteorian peruskonsepteja niin kuin ne on 1800- ja 1900-luvuilla määritelty. Nyt palaamme ajassa taaksepäin, ja tutkimme,

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

X k+1 X k X k+1 X k 1 1

X k+1 X k X k+1 X k 1 1 Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 4 1. Oletetaan, että X n toteuttaa toisen kertaluvun differenssiyhtälön X k+2 2X k+1 + 2X k = ξ k,

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Permutaatioista alternoivaan ryhmään

Permutaatioista alternoivaan ryhmään Permutaatioista alternoivaan ryhmään Pro Gradu-tutkielma Sini-Susanna Fetula Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2014 Sisältö 1 Johdanto 2 2 Esitietoja 3 3 Permutaatioista. 6 3.1 Symmetrinen

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos

Lisätiedot

Alternoivien ryhmien ominaisuuksista

Alternoivien ryhmien ominaisuuksista Alternoivien ryhmien ominaisuuksista Pro gradu -tutkielma Anssi Aska 2257068 Matemaattisten tieteiden laitos Oulun yliopisto 2017 Sisältö 1 Johdanto 2 2 Peruskäsitteitä 3 2.1 Ryhmä ja aliryhmä........................

Lisätiedot

Eräitä ratkeavuustarkasteluja

Eräitä ratkeavuustarkasteluja Eräitä ratkeavuustarkasteluja Pro gradu-tutkielma Milla Jantunen 2124227 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö 1 Ryhmät ja aliryhmät 3 1.1 Ryhmä...............................

Lisätiedot

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,

Lisätiedot

Vastaoletuksen muodostaminen

Vastaoletuksen muodostaminen Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

! 7! = N! x 8. x x 4 x + 1 = 6.

! 7! = N! x 8. x x 4 x + 1 = 6. 9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

4 Abelin ryhmät. 4.1 Suorat tulot ja summat

4 Abelin ryhmät. 4.1 Suorat tulot ja summat 4 Abelin ryhmät Ensimmäisellä ryhmäteorian kurssilla käytiin läpi lähinnä syklisiä ryhmiä. Tällä kurssilla keskitymme epäkommutatiivisiin esimerkkeihin. On kuitenkin niin, että äärellisesti viritettyjen

Lisätiedot

Sylowin lauseet äärellisten ryhmien teoriassa

Sylowin lauseet äärellisten ryhmien teoriassa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Aleksi Heiskanen Sylowin lauseet äärellisten ryhmien teoriassa Luonnontieteiden tiedekunta Matematiikka Marraskuu 2017 Tampereen yliopisto Luonnontieteiden tiedekunta

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot