Luento 6 Luotettavuus Koherentit järjestelmät

Samankaltaiset tiedostot
Luento 6 Luotettavuus Koherentit järjestelmät

Luento 7 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus ja vikaantumisprosessit

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Mat Lineaarinen ohjelmointi

Raja-arvot. Osittaisderivaatat.

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

Kokonaislukuoptimointi

ABTEKNILLINEN KORKEAKOULU

6. Stokastiset prosessit (2)

Ilkka Mellin (2008) 1/24

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

Mat Sovellettu todennäköisyyslasku A

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

1, x < 0 tai x > 2a.

Jaksolliset ja toistuvat suoritukset

10.5 Jaksolliset suoritukset

3.5 Generoivat funktiot ja momentit

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

Epätäydelliset sopimukset

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

r i m i v i = L i = vakio, (2)

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Kollektiivinen korvausvastuu

Harjoituksen pituus: 90min 3.10 klo 10 12

SMG-1100: PIIRIANALYYSI I

Pyörimisliike. Haarto & Karhunen.

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Yrityksen teoria ja sopimukset

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

7. Menetysjärjestelmät

ler-modern isaatio * d *r n ax* *neäemw & rffi rffi # Sch ind Schindler {4ssxisä tu\*vmisu a**r3 \mj**nt rei

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Monte Carlo -menetelmä

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Painotetun metriikan ja NBI menetelmä

Gibbsin vapaaenergia aineelle i voidaan esittää summana

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

Mat Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla

SU/Vakuutusmatemaattinen yksikkö (5)

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

ESITYSLISTA 25/2002 vp PERUSTUSLAKIVALIOKUNTA

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

Suoran sovittaminen pistejoukkoon

FYSA220/2 (FYS222/2) VALON POLARISAATIO

3 Tilayhtälöiden numeerinen integrointi

Satunnaismuuttujat ja todennäköisyysjakaumat

7. Menetysjärjestelmät

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

7. Modulit Modulit ja lineaarikuvaukset.

Tasapainojen määrittäminen tasapainovakiomenetelmällä

3.3 Hajontaluvuista. MAB5: Tunnusluvut

SOVELLUSOHJELMAT HARJOITUSTYÖ

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

KlapiTuli-palotila. KlapiTuli-palotilan osat, kokoamis- ja turvaiiisuusohje. Sormikiinnikkeet. 1. Nuppi

SU/Vakuutusmatemaattinen yksikkö (6)

Johdatus tekoälyn taustalla olevaan matematiikkaan

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

HASSEN-WEILIN LAUSE. Kertausta

1ap/100. pv-1. p AK/s. p p-1. 1ap/100. pv-1. ai t20. pv-1. 1ap/100. sr t45. is-1. jä ai. pv-1 IV. p-1. 1ap/100. kaukolämpö AK-1 ju

Galerkin in menetelmä

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1

Tchebycheff-menetelmä ja STEM

Kuluttajahintojen muutokset

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

PPSS. Roolikäyttäytymisanalyysi Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN Vantaa info@mlp.

VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto

Viiteopas. 2 Kokoa ja kiinnitä uusi natronkalkkikolonni. 1 Poista vanha natronkalkki. Esitäyttö esiliitetyn letkuston avulla

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas!

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Pikaopas. Valmistelu ja esitäyttö

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet

Käyttötekniikka \ Käyttöautomaatio \ Kokonaistoimitukset \ Palvelut MOVITRAC B. Käyttöohje. Julkaisuajankohta 05/ / FI

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia

Parametrien oppiminen

A250A0100 Finanssi-investoinnit Harjoitukset

Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä Palautuspäivä

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

Transkriptio:

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu PL 00, 00076 Aalto aht.salo@aalto.f

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Määrtelmä Tarkasteltava ykskö luotettavuus O se todeäkösyys, että ykskkö suorttaa tarkotetulla tavalla slle kuuluvat tehtävät tarkasteltavaa aaaksoa täsmeettye ymärstöolosuhtede valltessa. Huomota Tarkasteltava ykskkö ruu tlateesta» Tosaa kyse komoetsta, tosaa koko ärestelmästä vrt. vkauut a taahtumauut Tarkotettu suorttame kuvattava yksselttesest» Taree esmerkks vahgokorvausvaatmuste a vraomasvaatmuste tulktsemseks somus-urdkka a säädökset (drektvt e.» Tolerassraat ylesä esm. vaa a tarkkuude oltava 0 ± 0.00 kg Tarkotettu ykskkö a tehtävä kuvattava myös» Esm. auto hads free haoame e estä kuletustehtävä suorttamsta, mutta työuhelut äävät sottamatta Aaakso ohella vodaa käyttää mutak suureta» Esm. aoklometrt, vrtakytkme kytkemskerrat Olosuhteet raattava myös» Esm. vuorstoraotukset autovuokraaalle Islassa Laatu vs. luotettavuus» Laatu staatte käste vttaa omasuuks oak hetkeä, luotettavuus huomo aa a olosuhteet» Luotettavuus mlko laadu, e välttämättä tos ä Mat-.7 Rskaalyys / Aht Salo

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Koherett ärestelmät (/ Komoet, =,.., tla 0, Mat-.7 Rskaalyys / Aht Salo os komoett e tom os komoett tom, :stä komoetsta koostuva ärestelmä tlavektor o =(,..., Järestelmä rakeefuto 0,, os ärestelmä e tom tlavektorlla os ärestelmä tom tlavektorlla Huom! sama muuttue loogste arvoe tulkta ku logkkakaavossa, se saa vkaussa tarkott va estymstä! Esmerkkeä Saraärestelmä - komoett eräkkä» Kakke tomttava, otta vrta mes lä m,, Rakkasärestelmä komoett ra» Yhdek tomme rttää ma k/-ärestelmä,, ( 0,, k k

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Koherett ärestelmät (/ Komoett o rrelevatt, os sllä e ole vakutusta rakeefuktoo Esm. komoett o alla olevassa ärestelmässä rrelevatt Järestelmä o koherett oss sä e ole rrelevattea komoettea a ( (,,,,,0,,,,,,, Ts. rakeefukto o okase komoet osalta eväheevä Yksttäse komoet muuttame vallsesta tomvaks vo tehdä ärestelmä tomvaks, mutta e tos ä Yleesä yrtää raketamaa koherettea ärestelmä, koska ässä komoettea vodaa korata lma, että tämä vo aheuttaa vkoa Kakk ärestelmät evät ole koherettea: esmerkks ykskomoette rakeefukto ( o e-koherett ( ( ( Mat-.7 Rskaalyys / Aht Salo

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Komoette kahdetame (/ Luotettavuutta vodaa arataa kahdetamalla oko koko ärestelmä ta se osat mutta kum o arem? a b a a b b Lause. Jos ärestelmä o koherett a a y ovat tlavektoreta, Eäyhtälö ätee yhtäsuuruutea, ku?. a b ( ( ( y,, ( ( ( y ( a b a b ( Ts. kaattaa kahdetaa komoettea, e ärestelmä! y ( Mat-.7 Rskaalyys / Aht Salo 5

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Komoette kahdetame (/ Todstus. Kaklle =,.., ätee Järestelmä o koherett, ote rakeefukto o argumettesa suhtee e-väheevä a Vastaavast ätee Saadaa ss Rakeefuktolle ätee Tosaalta ( ( y ( ( ( y,, ( Tämä vastaa rakkasärestelmää, ossa kahdetamstavalla e ss välä Mat-.7 Rskaalyys / Aht Salo ( ( ( ( ( y,, ( ( y ( y ( ( ( y,, ( ma{ (, ( y} ( y ( ( ( y,, ( ( y ( ( ( y ( ( y. ( ( y ( ( y y 6

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Raketeelle tärkeys (/ Komoet merktys luotettavuude kaalta ruu se sasta Esm. ärestelmässä komoett äyttää tärkeämmältä, koska se haoame västämättä vkaauttaa koko ärestelmä; ä e ole komoette a osalta Komoett o tomvaa kolmessa tlavektorssa (,,, (,0,, (,,0, (,0,0 Järestelmä tom ästä kolmessa Jos tlavektor, (, - o tlavektor, ossa komoett o tom a muut komoett saavat samat arvot ku mtä llä o tlavektorssa Vastaavast (0, - o tlavektor, ossa komoett e tom, mutta muut saavat tlavektor mukaset arvot Määrtelmä. Komoet raketeelle tärkeys koheretssa ärestelmässä o I ( (, (0, Tämä o suhteelle osuus stä mude komoette tlosta, ossa komoet vkaatume vkaauttaa koko ärestelmä Myös todeäkösyys, os muut komoett vkaatuvat rumattomast yhtä solla t:llä Mat-.7 Rskaalyys / Aht Salo 7

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Raketeelle tärkeys (/ Esmerkkärestelmä Komoett tomvaa mukaa tlavektoressa (,,, (,0,, (,,0, (,0,0 Järestelmä tom ästä kolmessa esmmäsessä Komoet vkaatume ohtaa tlavektoreh (0,,, (0,0,, (0,,0, (0,0,0 Järestelmä e tom ästä mssää I ( ( 0 Vastaavast komoetlle saadaa tlavektort (,,,(,0,,(0,,,(0,0, (kaks tom (,,0,(,0,0,(0,,0,(0,0,0 (yks tom I ( (0 0 0 Symmetrasystä komoet raketeelle tärkeys sama ku komoet Mat-.7 Rskaalyys / Aht Salo 8

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Mmtomtaolut a -katkosoukot Merktää < y oss y kaklle =,..., a < y ollek :lle Tarkastellaa seuraavassa koheretta ärestelmää Tlavektor o tomtaolku, oss (oss = os a va os ( Tomtaolku o mmtomtaolku, oss ( y 0, y So. yhdek mmtomtaolulla oleva komoet haoame vkaauttaa ärestelmä Tlavektor o katkosoukko, oss ( 0 Katkosoukko o mmkatkosoukko, oss ( y, y So. yhdek mmkatkosoukkoo kuuluva komoet koraame alauttaa ärestelmä tomvaks Mat-.7 Rskaalyys / Aht Salo 9

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Esmerkk Järestelmä Vkauu T + + Lasketaa huutaahtuma Boole algebralla saadaa katkosoukot {}, {,} a {,}, {,} Mmkatkosoukot (,0,0 a (0,, Mmtomtaolut (,,0 a (,0, Mat-.7 Rskaalyys / Aht Salo 0

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Rakeefukto a tomtaolut Olkoot P,..., P s koheret ärestelmä mmtomtaolut a, ( 0, Pätee os kakk P : komoett tomvat os ok P : komoett e tom ( m P P Järestelmä tom, os ok tomtaolu komoett tomvat os ollek tomtaolulle os kaklle tomtaolulle Saadaa ss, ( 0, ( ( ( 0 ma ( s ( Rakeefukto ss ykskästtesest estettävssä mmtomtaolkue rakkasärestelmää Ks. esm. mmtomtaolut (,,0, (,0, ma P ( ( P ( Mat-.7 Rskaalyys / Aht Salo

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Rakeefukto a katkosoukot Olkoot C,..., C k koheret ärestelmä mmkatkosoukot a, ( 0, Pätee os aak yks komoett C :ssa tom os mkää komoett C :ssa e tom ( ma ( C C Järestelmä e tom, os ok mmkatkosouko kakk komoett ettävät, os kaklle katkosoukolle ( os ollek katkosoukolle 0, Tällö ( ( ( 0 m ( k [ Rakeefukto ss ykskästtesest estettävssä mmkatkosoukkoe saraärestelmää Ks. esm. mmkatkosoukot (,0,0,, (0,, C ( [ ( [ k ( ( ] ][ ( ] ( ] Mat-.7 Rskaalyys / Aht Salo

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Järestelmä luotettavuus Komoet tla o satuasmuuttua X 0,, komoett e tom komoett tom Komoet luotettavuus Tlavektorsta vastaavast saadaa ss t-vektor (,,, Huom! Tarkasteluaakohta täsmeettävä, muute e melekäs määrtelmä Järestelmä luotettavuus Käytetää myös termä luotettavuusfukto Vodaa määrttää odotusarvoa r koska o bäärmuuttua ( P X r( P ( ( E ( Esmerkkeä Saraärestelmä tom, os se kakk komoett tomvat (oletetaa ämä rumattomks Rakkasärestelmälle Mat-.7 Rskaalyys / Aht Salo r( P ( P[ X r( P[ ] X ] (

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Luotettavuude laskeasta (/ Tomtaolut Järestelmä tom, os ok tomtaolku kuossa Luotettavuus o ss t slle, että tlavektora o tomtaolku Järestelmä luotettavuus = tomtaolkue t:e summa Esm. /-ärestelmä tomtaolut (0,,, (,0,, (,,0, (,,» T:e sottame X :de akalle rakeefuktossa e aa okeaa odotusarvoa, koska tällö tulee väärä tulotermeä (. Ts. bäärmuuttulle ätee» Sama luotettavuus saadaa odotusarvoa Mat-.7 Rskaalyys / Aht Salo r( ( ( ( ( X ( XX ( XX ( X X E[ X ] E[ X ] E[ ( X ] E[ ( X X ( X X ( X X ] E[ X X X X X X X X X X X X X X X X X X E[ X X X X X X X X X ] r( ]

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Luotettavuude laskeasta (/ Katkosoukot Järestelmä e tom, os oku katkosoukko toteutuu Luotettavuus saadaa ss vähetämällä yhdestä t slle, että tlavektor o katkosoukko» Katkosoukot (0,0,0,0, (0,0,0,, (0,0,,0, (0,0,, a (0,,0,0» Nä luotettavuudeks saadaa r( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Ehdollstame Järestelmä tomta vodaa ehdollstaa oku avakomoet tomalle - (0 r( = P (, P = + P, P = 0 - = r (, + r (0, (- - - Mat-.7 Rskaalyys / Aht Salo 5

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Luotettavuude laskeasta (/ Ehdollstame (atk. Tarkastellaa ärestelmää Ehdollstetaa ärestelmä komoetlle A: Komoett tom B: E tom A: luotettavuus A r( ( ( B: luotettavuus B r( ( ( Koko ärestelmä luotettavuus ss r( ( ( ( ( ( Mat-.7 Rskaalyys / Aht Salo 6

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Luotettavuude tärkeys Koheretssa ärestelmässä komoet luotettavuude tärkeyttä kuvaa I r r( (,, Ts. mte alo ärestelmä luotettavuus muuttuu, os yksttäste komoet luotettavuus muuttuu Luotettavuude ehdollstamskaavaa käyttäe tämä vodaa krottaa muodossa I r ( r(, r(0, Kuossato kaattaa yrkä kohdetamaa luotettavuudeltaa tärkem komoetteh Esm. saraärestelmässä :e komoet luotettavuus r( I r ( r( Ts. tärkeys suur komoetlle, oka luotettavuus e (tällö mude tulo suur ketu o yhtä vahva ku se heko lekk Mat-.7 Rskaalyys / Aht Salo 7

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lasketa-aroksmoesta (/ Huomota Rakeefukto käyttöö erustuvat em. laskutavat atavat tarka luotettavuusarvo Komoette oletetaa kutek oleva tosstaa rumattoma valla yhtesä vkaatumssytä Isossa ärestelmssä tarkka lasketa tulee raskaaks tarvtaa aroksmaatota Koherette ärestelme aroksmaatode äärää sara- a rakkasärestelmät, ote r( (» E kutekaa kov käyttökeloe os esm. elä komoetta yhtesellä t:llä =0.9, raoks saadaa 0.9 = 0.656 a -(-0.9 = 0.9999, mtkä ovat la välät k Mmtomtaolut a -katkosoukot Järestelmä vodaa kuvata saraakytkettyä mmkatkosoukkoa ta rakkakytkettyä mmtomtaolkua Nästä saadaa luotettavuusraat [ ( C ] r( [ Komoett vovat olla usella tomtaolulla a usessa katkosoukossa, kyse aroksmaatosta s P ] A B Mat-.7 Rskaalyys / Aht Salo 8

Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lasketa-aroksmoesta (/ Esmerkk Mmtomtaolut {}, {,},{,} Mmkatkosoukot {,},{,,} Mmtomtaolusta saadaa luotettavuudelle yläraa r( ( ( ( Mmkatkosoukosta saadaa luotettavuudelle alaraa r( ( ( ( ( Jos kakke komoette t:t samoa, ( ( ( ( ( r( ( ( Tarkka arvo vodaa laskea seuraavsta tosesa ossulkevsta katkosvektoresta (0,0,0,0,(0,0,,0,(0,0,0,,(0,0,,,(0,,0,0 Mat-.7 Rskaalyys / Aht Salo 9