4. Kriteerien painottaminen

Koko: px
Aloita esitys sivulta:

Download "4. Kriteerien painottaminen"

Transkriptio

1 4. Krteere paottame

2 4 Krteere paottame Mellä o yt vahtoehtoje attrbuuttkohtaset arvot v (x ) tapa yhdstää ämä arvot kokoasarvoks addtvse mall V(x)= w v (x ) ja krteerpaoje (w ) avulla Päätösehdotuksea estetää vahtoehdosta se, joka kokoasarvo o suur. Krteerpaot w mahdollsta johtaa päätöksetekjä preferessrelaatosta ( x,, x ) > ~ ( y,, y ) Tämä o kutek use la työlästä, mkä vuoks kehtetty kevyempä paotustekkota Vaaraa krteerpao väärä (=mallsta pokkeava) tulkta! 2

3 Krteere paottamstekkota Lähestymstavasta rppumatta krteerpaoja o syytä tarkastella herkkyysaalyys avulla Muuttuuko päätössuostus, jos krteerpaossa tapahtuu muutoksa? Mssä määr paot vovat muuttua lma, että suostus muuttuu toseks? Paot ormeerataa ste, että de summa o yks krteerpaoje määrttämse kaalta va paosuhtella w /w j o merktystä 3

4 4.. SMART Smple Mult-Attrbute Ratg Techque kehttäjää Ward Edwards (977) esmmäset sovellukset julksrahotteste ohjelmatomeptede prorsossa Paoje määrtysprosess:. Valtse vähte tärkeä krteer ja aa slle 0 pstettä. 2. Valtse seuraavaks vähte tärkeä krteer. Aa slle pstemäärä, joka kuvastaa ao. krteer ja aemm psteytettyje, vähemmä tärkede krteere keskästä tärkeyttä. 3. Käy tällä tavalla krteert läp vähte tärkemmästä tärkempää kues e kakk o psteytetty. 4. Jaa lopuks kuk krteer pstemäärä kakke krteere pstede kokoassummalla krteerpaot. Kysymykseasetata e kutekaa eksplsttsest ota huomoo vahtoehtoje attrbuuttkohtasa vahteluta. 4

5 4..2 Ordaalpaotusmeetelmät Meetelmssä kysytää aoastaa attrbuutte tärkeysjärjestys, josta lasketaa eräälaset keskarvopaot. Esm. SMARTER (SMART Explotg Raks, W. Edwards ja F.H. Barro, 994) käyttää cetrodpaoja. Olkoo krteerejä kpl ja R j krteer a j järjestysluku R j = tärkemmälle krteerlle R j = vähte tärkemmälle krteerlle Krteer paoks asetetaa w s.e. w w j R R j ja. Rak sum-paossa krteer pao o verraolle krteer saama järjestysluvu kääteslukuu w 2( + R ) = ( + ) Krteere summa o yks, sllä 2( + R ) w = = ( + ) 2( + ) 2 = R ( + ) ( + ) = 2 ( + ) = 2 = ( + ) 2 = = 5

6 2. Rak recprocal-paossa krteer pao o verraolle ao. krteer saama järjestysluvu kääteslukuu w 3. Cetrod-paot ovat ordaalvättäme rajaama paovektoraluee paopste jos. krteer o tärke, 2. toseks tärke je., R =, R 2 =2 ja paovektoraluee ekstreempsteet ovat (,0,0,0,..), (/2,/2,0,0, ), (/3,/3,/3,0, ) krteerpaoks saadaa ylesest w w j= R { jr R} j j R j R 4. Rak expoet-paossa krteerpao o verraolle term (-R +) potess jos z > (z < ), potess vahvstaa (heketää) tärkempe krteere paoja verrattua Rak sum-paoh ( ) w R + 6 z

7 Esm. Neljä krteerä (a,a 2,a 3,a 4 ) a 2 tärke, stte a, a 4 ja a 3 järjestysluvut R =2,R 2 =,R 3 =4,R 4 =3 a a 2 a 3 a 4 Σ Rak sum paot Rak rec. /2 /4 /3 2 /2 paot Cetrod /2 2 /2 /4 7/2 4 paot Rak exp(z=2) paot

8 4..3 SWING Edellä kuvatut meetelmät evät ota eksplsttsest huomoo stä, että paot kuvaavat arvo lsäystä, joka saadaa srryttäessä attrbuut huoommalta tasolta parhammalle. SWING-meetelmässä ä tehdää Määrtystekkka. Kuvttele vahtoehto, joka o huoo mahdolle jokase attrbuut suhtee. 2. Valtse attrbuutt, joka haluast esmmäseä srtää huoommalta tasolta parhammalle. Tälle attrbuutlle aetaa 00 pstettä. 3. Valtse tämä jälkee attrbuutt, joka haluast seuraavaks srtää huoommalta tasolta parhammalle. Aa tälle attrbuutlle pstemäärä, joka kuvastaa paraukse suuruutta suhteessa esmmäsee (kohda 2) parauksee. 4. Jatka kues kakk attrbuutt o käyty läp. 8

9 Esm. Hypoteette "pohjaoteerausvahtoehto" o x = ( x, x,, x ), V( x ) = 0 2 Jos :s attrbuutt srretää esmmäseks huoommalta parhammalle tasolle, se saa 00 pstettä, jollo x = ( x, x,, x, x ) 2 V( x) = w v ( x ) = wv ( x ) = w 00 j= j j j Jos j:s attrbuutt srretää seuraavaks huoommalta parhammalle tasolle s.e. paraus saa pstemäärä 60, x = ( x, x,, x, x ) 2 j V( x) = w v ( x ) = w v ( x ) = w 60 k= k k k j j j j Lopuks ä saadut paot ormeerataa. SWING-meetelmä omasuuksa kysymykset ottavat selväst huomoo attrbuut vahteluväl hypoteettste vahtoehtoje meltäme vo olla kov vakeaa. SMARTS-meetelmä (SMART usg Swgs) o yhdstelmä SMART- ja SWING-meetelmstä (Edwards ja Barro,994) 9

10 esks valtaa pe paraus (so. muutos jok attrbuut suhtee huoommalta parhammalle tasolla) ja aetaa slle 0 pstettä seuraavaks valtaa toseks pe paraus ja aetaa slle pstetä, jotka kuvastavat paraukse suuruutta aemp verrattua 4..4 Tradeoff-paotus Tradeoff-paotuksessa vertallaa kahta kuvtteellsta vahtoehtoa keskeää. Päätöksetekjää pyydetää asettamaa de seuraamukset ste, että vahtoehdot yhtä hyvä. tämä edellyttää, että päätösmuuttujat ovat jatkuva s.e. attrbuuttkohtae arvofukto o määrtelty joka psteessä meetelmällä o vahva teoreette pohja paot kytkeytyvät vahtoehtoje väls eroh. Esm. Oletetaa, että paraus x o x * o merkttävämp ku paraus x j o x j *. Päätöksetekjää pyydetää määrttämää sellae x, että ( x, x,, x, x ) ( x, x,, x, x ) 2 2 j wv( x) = w v ( x ) = w j j j j 0

11 4..5 Muta meetelmä Ns. cojot-aalyys o markkottutkmuksssa paljo käytetty meetelmä. kuluttajaa pyydetää tekemää vertaluja kuvtteellste tuottede välllä (esm. kumma tuottee valtsst?) attrbuutte paot estmodaa leaarsella regressolla ste, että tutkmuksessa havattu käyttäytyme selttyy mahdollsmma hyv.? wv( x) = V( x) V( y) = wv( y) j j j j j j j= j= Aalyysä vodaa käyttää esmerkks tuotesuuttelu ta markkaosuukse arvo tukea. todelle valtakäyttäytyme vo kutek poketa stä, mtä kuvtteellslla vahtoehdolla o havattu esm. käykä paoa vakea meltää

12 4.2 Tavottede herarkke kuvaus (arvopuu) Päätökse kokoastavote jaetaa osatavottes (krteereh, tekjöh), jotka vodaa edellee jakaa peemp osatekjöh (attrbuutteh) Traffc pla Level of Persoal servce Evromet Soco Ecoomc Iflueces Travellg durato Travellg comfort Tmg of travellg Idvdual travellg costs Polluto Urba sceery Eergy Cosumpto Effectve use of lad Total costs: vestmets ad mateace Facg of Ivestmets Tavotteea o jakaa laaja ja mosye ogelma paremm hahmotettavks osakokoasuuksks hajota ja halltse Hyvä arvopuu o. Mmaale (mmal) mukaa va oleellsa asota 2. Tomva (operatoal) krteert havaollsa ja merktyksellsä (so. vahtoehdot ovat krteere suhtee erlasa) 2

13 3. Täydelle (complete) mukaa kakk tarpeelle 4. Erytetty (decomposable) krteert ovat yksää melekkääst arvotavssa 5. E-päällekkäe (o-redudat) samoja asota e esy useampaa kertaa Mllo tavotteta e kaata eää jakaa eteepä? almma taso tavotteet joko mtattava, muute operatoalsotavssa (esm. korvkemuuttujlla) ta subjektvsest arvotavssa 4.2. Paottame arvopuussa Kokoasarvo määrttämstä varte tarvtaa va almma taso attrbuutte paokertomet sekä vahtoehtoje attrbuuttkohtaset arvot. Peraatteellsa etemstapoja o kaks. Herarkke ylätaso paot määrtetää erksee ja alataso paot johdetaa de avulla 2. E-herarkke ylätaso paoja e määrtetä erksee, mutta e johdetaa almma taso attrbuutte paosta 3

14 HIerarkke paotus E-herarkke paotus paot kerrotaa Ylätaso paoja e kysytä.... mutta e vodaa laskea summaa alataso paosta herarchcal weghtg o-herarchcal weghtg Vakka krteerpaot johdettas e-herarkksta lähestymstapaa käyttäe, ylempe tasoje krteerpaosta ollaa slt use kostueta Mssä määr aalyysssä o paotettu ympärstötekjötä ja taloudellsa äkökohta? 4

3. Monitavoitteinen arvoteoria

3. Monitavoitteinen arvoteoria 3. Motavottee arvoteora 3 Motavottee arvoteora Eglakelsä termejä Multattrbute Value Theory (MAVT) Value Tree Aalyss Arvopuuaalyys tarkottaa. tehtävä tavottede, krteere ja attrbuutte jäsetämstä herarkseks

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla

Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla Mat-2.8 Sovelletu matematka erkostyö Sjotussalku optmot Black-Ltterma -malllla Kar Vatae (4753V) 9.5.24 Ssällysluettelo Johdato...2 2 Sjotussalku optmot Markowtz malllla...3 2. Sjotussalku optmot...5 2.2

Lisätiedot

Suoran sovittaminen pistejoukkoon

Suoran sovittaminen pistejoukkoon Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.090 Sovellettu todeäkösyyslasku A Nordlud Harotus (vko 49/003) (Ahe: Tlastollsa testeä, regressoaalyysä Lae luvut 5.5, 6) HUOM! Laskarede palautukse takaraa o pokkeuksellsest

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Muuttujien välisten riippuvuuksien analysointi

Muuttujien välisten riippuvuuksien analysointi Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus

Lisätiedot

Segmentointimenetelmien käyttökelpoisuus

Segmentointimenetelmien käyttökelpoisuus Metsäteteen akakauskrja t e d o n a n t o Rasa Sell Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa Rasa Sell Sell, R. 00. Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa. Metsäteteen akakauskrja

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

Harjoituksen pituus: 90min 3.10 klo 10 12

Harjoituksen pituus: 90min 3.10 klo 10 12 Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle

Lisätiedot

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Kuorielementti hum

Kuorielementti hum Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat: Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp. PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1

Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1 Elektroka laboratorotyöt - Mttalatteet Mttalatteet M. Kusma, T. Torttla, J. Tyster Tvstelmä Laboratorotyössä tutustutaa sovelletu elektroka laboratoroo, laboratorossa olev mttalattes sekä laboratoro työsketelytapoh.

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

6. Capital Asset Pricing Model

6. Capital Asset Pricing Model 6. Captal Asset cg odel Ivestotpäätökset edustavat use seuaava ogelmatyyppejä:. te sjotuspotolo kaattaa aketaa? vt. kassavtoje täsmääme ks. lueto 3. kä o sjotuskohtee okea hta? vt. abtaasvapaus jvk-hottelu

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Gibbsin vapaaenergia aineelle i voidaan esittää summana

Gibbsin vapaaenergia aineelle i voidaan esittää summana Lueto 8: Epädeaalsuus ja aktvsuuskerro Torsta 1.11. klo 14-16 477401A - Terodyaaset tasapaot (Syksy 2012) http://www.oulu.f/pyoet/477401a/ eetu.hekke@oulu.f Kertausta: Gbbs eerga ja tasapaovako Gbbs vapaaeerga

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

SOKLIN KAIVOSHANKKEEN YVA-SELVITYS (TÄYDENNYS)

SOKLIN KAIVOSHANKKEEN YVA-SELVITYS (TÄYDENNYS) SOKLIN KAIVOSHANKKEEN YVA-SELVITYS (TÄYDENNYS) 16WWE1516 16.12.2011 Yhteystedot: Pöyry Fnland Oy PL 50 (Jaakonkatu 3) FI-01621 Vantaa Fnland Kotpakka Vantaa Y-tunnus 0625905-6 Puh. +358 10 3311 Faks +358

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

ler-modern isaatio * d *r n ax* *neäemw & rffi rffi # Sch ind Schindler {4ssxisä tu\*vmisu a**r3 \mj**nt rei

ler-modern isaatio * d *r n ax* *neäemw & rffi rffi # Sch ind Schindler {4ssxisä tu\*vmisu a**r3 \mj**nt rei ler-modern saato {4ssxsä tu\*vmsu a**r3 \mj**nt Sch nd re * d *r n ax* *neäemw & rff rff # - " Schndler e,}:r:?tr,::.}a:::.?r!=+,t:",:2-:r?:.+rp;,,..*,. 21/:4?:&rä1 1tt''f &t!:/t F:*?: Haluatko hssstäs

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Näytteenoton virhelähteet, luotettavuuden estimointi ja näytteenottoketjun optimointi

Näytteenoton virhelähteet, luotettavuuden estimointi ja näytteenottoketjun optimointi FIAS S5/000 Opas äytteeoto tekste vaatmuste täyttämseks akkredtota varte 5 (9) Lte äytteeoto vrhelähteet, luotettavuude estmot ja äytteeottoketju optmot Pett Mkke äytteeoto vrhelähteet, luotettavuude estmot

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat

Satunnaismuuttujat ja todennäköisyysjakaumat Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,

Lisätiedot

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet Mtlmä sgaal/koha-suht paratamsks Vahvstt pädaalsuudt Atur kohasovtus vahvstm Suodatus Chopprvahvstmt Lock- vahvst (Vahhrkkävahvst, PSD) Kskarvostus (Auto- ja rstkorrlaato) Ptr Kärhä 0/0/009 Luto 4: Mtlmä

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset: Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo,

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

KOMISSION DELEGOITU ASETUS (EU) /, annettu ,

KOMISSION DELEGOITU ASETUS (EU) /, annettu , EUROOPAN KOMISSIO Bryssel 1.6.2018 C(2018) 3302 fnal KOMISSION DELEGOITU ASETUS (EU) /, annettu 1.6.2018, delegodun asetuksen (EU) 2015/35 muuttamsesta vakuutus- ja jälleenvakuutusyrtysten hallussa oleven

Lisätiedot

Baltian Tie 2001 ratkaisuja

Baltian Tie 2001 ratkaisuja Balta Te 001 ratkasuja 1. Olkoot tehtävät T, = 1,,..., 8. Eräs mahdollsuus jakaa tehtävät kahdeksalle opskeljalle O j, j =1,,..., 8 o ohesessa taulukossa T 1 T T T 4 T T 6 T 7 T 8 O 1 O O O 4 O O 6 O 7

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

FDS-OHJELMAN UUSIA OMINAISUUKSIA

FDS-OHJELMAN UUSIA OMINAISUUKSIA FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen Smpex-menetemän menetemän askennaset teknkat 8. ento: Prmaa-smpex S ysteemanayysn Laboratoro Teknnen korkeako Matemaattsten agortmen ohemont Kevät 8 / Epäkäyvän kantaratkasn parantamnen. vaheen yenen smpex-menetemä

Lisätiedot

OKLS535. Opetusharjoittelu, OH3, 8 op kevät Harjoittelun tavoitteet

OKLS535. Opetusharjoittelu, OH3, 8 op kevät Harjoittelun tavoitteet OKLS535 Opetusharjottelu, OH3, 8 op kevät 2017 Harjottelu tavotteet Stoutume harjotteluu Opetussuutelmaa perustae: 1. Oma toma tavotteellstame ja tavottede toteutumse arvot vuorovakutuksessa oma opskeljaryhmä

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa

Lisätiedot

- Keskustelu symbolein. i

- Keskustelu symbolein.   i - Keskustelu symbolen Mukana KESYä kehttelemässä Anu Uuskylä, Martnnemen koulu, Oulun ylopsto Sar Haapakangas, Suomen Vanhempanltto Mar Joktalo-Trebs, Leea Paja ja Annukka Auto, Valter Ida Lndström, Jun

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.4 Tlastollse aals perusteet, evät 7 8. lueto: Usea selttää leaare regressomall Usea selttää leaare regressomall Seltettävä muuttua havattue arvoe vahtelu halutaa selttää selttäve muuttue havattue

Lisätiedot

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo

Lisätiedot

1. välikoe

1. välikoe Jan Loto TA7 Ekonometan johdantok Nm: Opkeljanmeo: välkoe 77 Vataa alla olevn kyymykn ympäömällä okea vahtoehto Kakn tehtävää on neljä vahtoehtoa, jota yk on oken Okeata vataketa aa pteen ja vääätä vataketa

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat: MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

JARRUDYNAMOMETRIN LASKENTAOHJELIITE

JARRUDYNAMOMETRIN LASKENTAOHJELIITE LIITE JARRUDYNAMOMETRIN LASKENTAOHJELIITE Jrruje surtuskyvy määrtys jrrudymmetrllä Määräksktsstuksess rsk kurm-ut j erävuu jrrujärjestelmä surtuskyky määrtetää jrrudymmetrmttuksll. Jrrujärjestelmä mttussuurede

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

Terveytemme Termisanasto ja tilastolliset menetelmät

Terveytemme Termisanasto ja tilastolliset menetelmät Terveytemme Termsaasto a tlastollset meetelmät Termsaasto Tlastollset meetelmät Lädevtteet Termsaasto Elaaodote Estyvyys Ilmaatuvuus Iävaot Koortt Luottamusväl Mallvaot PYLL el potetaalsest meetetyt elvuodet

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Ilkka Mellin (2006) 1/1

Ilkka Mellin (2006) 1/1 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA

VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS Tarmo Räty* Juss Kvstö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA Valton taloudellnen tutkmuskeskus Government Insttute for Economc Research Helsnk

Lisätiedot

KUVIEN LAADUN ANALYSOINTI

KUVIEN LAADUN ANALYSOINTI KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme?

Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme? TKK () Ilkka Mell (2004) 1 Todeäkösyyde aksoomat Suhteelle rekvess, klasse todeäkösyys ja ehdolle todeäkösyys Johdatus todeäkösyyslasketaa Todeäkösyyde aksoomat TKK () Ilkka Mell (2004) 2 Todeäkösyyde

Lisätiedot

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

ARITMEETTIS-GEOMETRIS-HARMONINEN KESKIARVOEPÄYHTÄLÖ

ARITMEETTIS-GEOMETRIS-HARMONINEN KESKIARVOEPÄYHTÄLÖ ARITMEETTIS-GEOMETRIS-HARMONINEN KESKIARVOEPÄYHTÄLÖ Markus Haula Matematka Pro Gradu-tutkelma Jyväskylä ylopsto Matematka ja tlastotetee latos Kesä 2008 Ssältö. Johdato 2 2. Määrtelmä 3 2.. Artmette keskarvo

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot